
HAL Id: hal-01916059
https://hal.science/hal-01916059

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability in Fully Probabilistic Event-B: How to Bound
the Enabling of Events
Syrine Aouadi, Arnaud Lanoix

To cite this version:
Syrine Aouadi, Arnaud Lanoix. Reliability in Fully Probabilistic Event-B: How to Bound
the Enabling of Events. New Trends in Model and Data Engineering - MEDI 2018
Workshops: DETECT, MEDI4SG, IWCFS, REMEDY, Oct 2018, Marrakesh, Morocco.
https://www.springer.com/gp/book/9783030028510. �hal-01916059�

https://hal.science/hal-01916059
https://hal.archives-ouvertes.fr

Reliability in Fully Probabilistic Event-B:
How to Bound the Enabling of Events

Syrine Aouadi2 and Arnaud Lanoix1

1 University of Nantes / LS2N UMR CNRS 6004
arnaud.lanoix@univ-nantes.fr

2 syrine.aouadi@eleves.ec-nantes.fr

Abstract. In previous work, we have proposed a fully probabilistic version of
Event-B where all the non-deterministic choices are replaced by probabilistic
ones and, particularly, the events are equipped with weights that allow us to con-
sider their enabling probability. In this work, we focus on the reliability of the
system by proposing to constraint the probability of enabling an event (or a set
of events) to control its importance with regard to the intended system behaviour.
We add a specific upper bound which must limit the enabling probabilities of the
chosen events and we consider the necessary proof obligations to check that the
considered events respect the bound. At the end, we illustrate our work by pre-
senting a case study specified in probabilistic Event-B and where bounding the
enabling of some events is mandatory.
Keywords:Event-B, Probabilistic Event-B, Probabilistic properties, Reliability,
Weight, Proof obligations

1 Introduction

Systems using randomized algorithms [1], probabilistic protocols [2] or failing com-
ponents become more and more complex. It is then necessary to add new modeling
features in order to take into account the inherent complexity of the system properties
such as reliability [3], responsiveness [4,5], continuous evolution, energy consumption
etc. One of these features is probabilistic reasoning, which can be used in order to in-
troduce uncertainty in a model or to mimic randomized behavior. Probabilistic model-
ing formalisms have therefore been developed in the past, mainly extending automata-
based formalisms [6,7]. Abstraction [8,9], refinement [10] and model-checking algo-
rithms [11,12] have been successfully studied in this context. However, the introduc-
tion of probabilistic reasoning in proof-based modeling formalisms has been, to the
best of our knowledge, quite limited [13,14,15,16,17,18,19,20]. Although translations
from proof-based models to automata-based models are always possible, the use of
automata-based verification techniques in the context of proof-based models is most
of the time inconvenient because of possible state-space explosion introduced in the
translation.

Event-B [21] is a proof-based formal method used for modeling discrete systems.
It is equipped with Rodin [22], an open toolset for modeling and proving systems. This
toolset can easily be extended, which makes Event-B a good candidate for introducing
probabilistic reasoning in a proof-based modeling formalism.

So far, several research works have focused on the extension of Event-B to allow
the expression of probabilistic information in Event-B models. In [23], Abrial et al.
have summarized the difficulties of embedding probabilities into Event-B. This paper
suggests that probabilities need to be introduced as a refinement of non-determinism.
In Event-B, non-determinism occurs in several places such as the choice between en-
abled events in a given state, the choice of the parameter values in a given event,
and the choice of the value given to a variable through some non-deterministic as-
signments. To the best of our knowledge, the existing works on extending Event-B
with probabilities have mostly focused on refining non-deterministic assignments into
probabilistic assignments. Other sources of non-determinism have been left untouched.
In [24], Hallerstede et al. propose to focus on a qualitative aspect of probability. They
refine non-deterministic assignments into qualitative probabilistic assignments where
the actual probability values are not specified, and adapt the Event-B semantics and
proof obligations to this new setting. In [25], the same authors study the refinement of
qualitative probabilistic Event-B models and propose tool support inside Rodin. Other
works [26,27,28] have extended this approach by refining non-deterministic assign-
ments into quantitative probabilistic assignments where, unlike in [24], the actual prob-
ability values are specified. This new proposition is then exploited in order to assess
several system properties such as reliability and responsiveness.

Unfortunately, sources of non-determinism other than assignments have been left
untouched, although the authors argue that probabilistic choice between events or pa-
rameter values can be achieved by transformations of the models that embed these
choices inside probabilistic assignments. While this is unarguably true, such transfor-
mations are not trivial and greatly impede the understanding of Event-B models. More-
over, these transformations would need to be included in the refinement chain when
designers need it, which would certainly be counter-intuitive to engineers.

In previous works [29,30] we pursued these works by proposing a probabilistic
extension of Event-B and presenting some ways of introducing probabilistic reason-
ing within Event-B. We have proposed some new syntactic elements for writing fully
probabilistic Event-B models in the Event-B framework. The consistency of such mod-
els has been expressed, as in standard Event-B, in terms of proof obligations. In the
standard Event-B setting, convergence is a required property for proving a refinement
step as soon as new events are introduced in the model. The counterpart property in
the probabilistic setting is almost-certain convergence, which has already been studied
in [24], in the context of non-deterministic models with only probabilistic assignments.
We therefore have exhibited new sufficient conditions, expressed in terms of proof obli-
gations, for the almost-certain convergence of a set of fully probabilistic events. While
the conditions we exhibit are more constrained than those from [24] concerning events
and parameters, they are also less restrictive concerning probabilistic assignments. Fi-
nally, some of the previously mentioned results have been implemented in a prototype
plugin for Rodin.

In the probabilistic Event-B context, the probabilistic events are equipped with
weights, in order to easily consider the enabling probability of each event in any con-
figuration. In this paper, we extend the previous work by considering a kind of proba-
bilistic invariant that allows us to model and verify properties concerning reliability: we

add a specific upper bound to constraint the enabled probability of an event (or a set of
events) in order to limit their importance with regards to the system behavior. As in the
previous work, we check that the considered events respect the bound by means of new
proof obligations. These new proof obligations ensure that in any configurations where
the considered event can be enabled, this enabled probability is lower than the consid-
ered bound. Finally, we illustrate our work on an industrial simplified case study: the
PCB manufacturing and control system [31,32]. Particularly, we show the requirements
for applying the enabled bound property on a realistic used system.

Outline. The paper is structured as follows. Section 2 presents the scientific background
of this paper in terms of Probabilistic Event-B. In Section 3, we focus on how to con-
straint the enabling of events, and the necessary proof obligations on such models. Sec-
tion 4 introduces our case study: a simple PCB manufacturing and control system which
illustrate the use of the previously mentioned property. Finally, Section 5 concludes the
paper.

2 Preliminaries: Probabilistic Event-B

Event-B [21] is a formal method used for the development of complex discrete sys-
tems. Systems are described in Event-B by means of models. We have previously ex-
tended standard Event-B models to introduce probabilistic reasoning. In Event-B, non-
determinism can appear in three places: the choice of the enabled event to be executed,
the choice of the parameter value to be taken and the choice of the value to be assigned
to a given variable in a non-deterministic assignment. To obtain a fully probabilistic
Event-B model, we have proposed to replace all these non-deterministic choices with
probabilistic ones.

MODEL
M

VARIABLES
v̄

INVARIANTS
I (v̄)

VARIANT
V(v̄)

EVENTS
Init =̂ . . .
e1 =̂ . . .
. . .
en =̂ . . .

END

For the sake of simplicity, we assume in the rest of the pa-
per that a fully probabilistic Event-B model is expressed by a tuple
M=(v̄,I(v̄),V(v̄),PEvts, Init) where v̄= {v1 . . . vn} is a set of variables,
I (v̄) is an invariant, V(v̄) is an (optional) variant used for proving the
(almost-certain) convergence of the model, PEvts is a set of probabilis-
tic events and Init ∈ PEvts is the initialization event. The invariant I (v̄)
is a conjunction of predicates over the variables of the system specify-
ing properties that must always hold.

Probabilistic events A probabilistic event has the following structure
where ei is the name of the event, Wi(v̄) is the weight of the event,
t̄ = {t1 . . . tn} represents the (optional) set of parameters of the event,
Gi(t̄ , v̄) is the (optional) guard of the event and Si(t̄ , v̄) is the action of
the event. A probabilistic event is enabled in a given valuation of the

variables (also called a configuration) if and only if i) there exists a parameter valuation
such that its guard Gi(t̄ , v̄) is fulfilled in this context and ii) its weight Wi(v̄) is strictly
positive.

event ei =̂
weight

Wi(v̄)
any t̄ where

Gi(t̄ , v̄)
then

SPi(t̄ ,v̄)
end

In standard Event-B, when several events are enabled, the event to
be executed is chosen non-deterministically. The weight Wi(v̄) of the
event resolves this non-deterministic choice: in configurations where
several probabilistic events are enabled, the probability of enabling one
of them will therefore be computed as the ratio of its weight against the
total value of the weights of all enabled events in this state. Moreover,
for the sake of expressibility, we propose to express the weight Wi(v̄)
of a probabilistic event ei as an expression over the variables v̄ of the
fully probabilistic Event-B model. The probability of enabling a given
event can therefore evolve as the system progresses.

For the events equipped with parameters t̄ , a valuation of the parameters is chosen
such that the guard Gi(t̄ , v̄) of the event is satisfied. In standard Event-B, when there are
several such parameter valuations, one of them is selected non-deterministically. We
therefore have proposed to replace this non-deterministic choice by a uniform choice
over all parameter valuations ensuring that the guard of the event is satisfied.

Probabilistic assignments The action SPi(t̄ ,v̄) of a probabilistic event may contain sev-
eral assignments that are executed in parallel. An assignment can be expressed in one
of the following forms:

– Deterministic assignment: x:= E(t̄, v̄) means that the expression E(t̄ , v̄) is assigned
to the variable x.

– Predicate probabilistic assignment: x:⊕Q(t̄,v̄,x,x’) means that the variable x is
assigned a new value x’ such that the predicate Q(t̄ ,v̄,x,x ’) is satisfied. Instead
of choosing non-deterministically among the values of x’ such that the predicate
Q(t̄ ,v̄,x,x ’) is true as in standard predicate non-deterministic assignments, we pro-
pose to choose this new value using an uniform distribution.

– Enumerated probabilistic assignment: x := E1(t̄,v̄) @ p1 ⊕ . . . ⊕ En(t̄,v̄) @ pn me-
ans that the variable x is assigned the expression Ei with probability pi . In order to
define a correct probability distribution, each pi must be strictly positive and smaller
or equal to 1, and they must sum up to 1. Although rational numbers are not na-
tively handled in Event-B, we assume that an adequate context is present. That can
be done by defining a "Rational" theory in Rodin using the theory plug-in providing
capabilities to define and use mathematical extensions to the Event-B language and
the proving infrastructure [33].

Before-after predicate and semantics The formal semantics of an assignment is de-
scribed by means of a before-after predicate (BA) Q(t̄ ,v̄,x,x ’) , which describes the re-
lationship between the values of the variable before (x) and after (x’) the execution of
an assignment.

– The BA of a deterministic assignment is x’= E(t̄ , v̄).
– The BA of a predicate probabilistic assignment is Q(t̄ ,v̄,x,x ’) .
– The BA of an enumerated probabilistic assignment is x’∈{E1(t̄,v̄) . . . En(t̄ , v̄)}.

Recall that the action Si(t̄ , v̄) of a given event ei may contain several assignments
that are executed in parallel. Assume that v1 . . . vi are the variables assigned in Si(t̄ , v̄)

– variables vi+1 . . . vn are thus not modified – and let Q(t̄ ,v̄,v1 ,v’1) . . . Q(t̄ ,v̄,vi ,v’ i) be
their corresponding BA. Then the BA Si(t̄ , v̄,v̄ ’) of the event action Si(t̄ , v̄) is:

Si(t̄ , v̄,v̄ ’) =̂ Q(t̄,v̄,v1,v’1) ∧ . . . ∧ Q(t̄,v̄,vi,v’i) ∧ (v’ i+1=vi+1) ∧ . . . (v’n=vn)

Proof obligations The consistency of a standard Event-B model is characterized by
means of proof obligations (POs) formally defined in [21] which must be discharged.
Discharging all the necessary POs allows to prove that the model is sound with re-
spect to some underlaying behavioral semantics. The consistency of a fully probabilis-
tic Event-B model is also characterized by means of POs to be discharged. Among all
of them, the first ones are adaptation of the standard POs and the second ones are POs
specific to fully probabilistic Event-B.

In the following, we recall the adaptation of the most important of the standard POs:
(event/pINV) for invariant preservation, which states that the invariant still holds after
the execution of each probabilistic event in the Event-B model M. Given an event ei
with a guard Gi(t̄ , v̄) and an action Si(t̄ , v̄), this PO is expressed as follows:

I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄) > 0 ∧ SPi(t̄,v̄,v̄ ’) ` I (v̄ ’) (event/INV)

Then, we give some of the new POs specific to fully probabilistic Event-B:

– we impose that the expression Wi(v̄) representing the weight of a given probabilistic
event must evaluate to natural numbers.

I (v̄) ∧ Gi(t̄ ,v̄) ` Wi(v̄) ∈ NAT (event/WGHT/NAT)

– In order to be able to use a discrete uniform distribution over the set of parameter
valuations ensuring that the guard of a probabilistic event is satisfied, we impose
that this set must be finite.

I (v̄) ` finite ({t̄ | Gi(t̄ , v̄)}) (event/param/pWD)

– Probability values pi in enumerated probabilistic assignments are strictly positive
and smaller or equal to 1.
` 0 < pi ≤ 1 (event/assign/pWD1)

– The sum of the probability values p1 . . . pn in enumerated probabilistic assignments
must be equal to 1.
` p1 + . . . + pn = 1 (event/assign/pWD2)

Feasibility of enumerated probabilistic assignments is trivial: as soon as at least one
expression Ei(t̄ , v̄) is present and well-defined, it always returns a value.

– In order to define a discrete uniform distribution over the set of values of a variable
x making the predicate Qx(t̄ ,v̄,x ’) of the corresponding assignment satisfied, we
impose that this set must be finite.

I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄)>0 ` finite ({x’ | Qx(t̄ ,v̄,x ’)}) (event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured by the standard feasi-
bility PO [21] inherited from Event-B. It ensures that the set {x’ | Qx(t̄ ,v̄,x ’)} is
not empty.

3 Contribution: Limiting the Enabling of Probabilistic Events

We recall that, in standard Event-B, when several events are enabled in a given configu-
ration, the event to be executed is chosen non-deterministically. In order to resolve this
non-deterministic choice, we have proposed to equip each event with a weight Wi(v̄)
that is an expression over the variables v̄ of the fully probabilistic Event-B model. Note
that using weights instead of actual probability values is convenient as the set of enabled
events evolves with the configurations of the system. Using probability values instead
would require to normalize them in all configurations.

Enabling probability A probabilistic event is enabled in a given configuration if and
only if there exists a parameter valuation such that its guard Gi(t̄ , v̄) is fulfilled and its
weight Wi(v̄) is strictly positive. In configurations where several probabilistic events
are enabled, the probability of choosing one of them will therefore be computed as the
ratio of its weight against the total value of the weights of all enabled events in this
configuration. Formally, this enabling probability is defined as follows.

Let M=(v̄,I(v̄),V(v̄),PEvts, Init) be a fully probabilistic Event-B model. Given an
event ei in PEvts and a valuation σ of the variables v̄ of the model, the enabling proba-
bility of ei in σ is formally defined by

P(ei,σ) =
[σ]Wi(v̄)

∑e j∈PEvts ([σ]Wj(v̄ | [σ]Wj(v̄)> 0∧∃ θ′.[σ,θ′]G j(v̄, t̄) =>)
(1)

if ∃ θ.[σ,θ]Gi(v̄, t̄) => and [σ]Wi(v̄)> 0 (2)
= 0 otherwise (3)

where θ and θ′ are possible valuations of the parameters t̄ .
The probability of enabling a given event can therefore evolve as the system pro-

gresses. Equation (1) represents the ratio of the weight of the considered event ei against
the total value of the weights of all the enabled events (including the weight of ei), when
Equation (2) is verified i.e. the event ei is enabled. Otherwise as Equation (3) the en-
abling probability of ei is equal to 0.

Enabled bound property In standard and probabilistic Event-B, the events for which we
want to study their termination are annotated as convergent. We adopt the same prin-
ciple and we annotate by bounded the events for which we want to limit their enabling
probabilities. We also introduce a specific upper bound EB(v̄) (notice ENABLED_BOUND
into the B model) as an expression over the variables v̄ of the fully probabilistic Event-
B model to limit the enabling probability of the bounded events. Note that this upper
bound can evolve as the system progresses.

Considering a bounded event ei , it must verify the enabled bound property, i.e. in
all configurations in which ei could be enabled, then its enabling probability must be
lower than or equal to the value of the enabled upper bound EB(v̄) in that configuration.
Formally

∀σ. ∃ θ.[σ,θ]Gi(v̄, t̄) => ∧ [σ]Wi(v̄)> 0⇒ P(ei,σ)≤ [σ]EB(v̄) (4)

Proof obligations Checking standard or probabilistic Event-B models consists of dis-
charging proof obligations. We then propose necessary POs to check the above men-
tioned enabled bound property on a fully probabilistic Event-B model.

Let M=(v̄,I(v̄),V(v̄),PEvts, Init) be a fully probabilistic Event-B model. Let ei be a
bounded event from PEvts= {e1 . . . ei . . . en}. Let EB(v̄) be the enabled upper bound.
Then, the necessary POs are defined as follows.

1. The enabled upper bound EB(v̄) must always be a rational number i.e. a positive
non-zero value strictly lower than 1:

I (v̄) ` 0 < EB(v̄)< 1 (eBOUND/WD)

2. Each bounded event ei satisfies the enabled bound property (see Equation (4)), i.e.
its enabling probability is always lower than or equal to the enabled upper bound.

I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄) > 0 ` (event/WGHT/eBOUND)
Wi(v̄)

∑ (e j).(W j(v̄) | G j(t̄ ,v̄) ∧W j(v̄) > 0)
≤ EB(v̄)

4 Case Study: the PCB Manufacturing and Control System

In this section, our purpose is to highlight on a concrete case study the interest of the
enabled bound property. We then propose a fully probabilistic Event-B model of a sim-
plified industrial case study: the Printed Circuit Boards (PCB) manufacturing and con-
trol system [31,32]. This case study interests electronic cards manufacturers that face
the ever increasing requirement of reducing their cost and improving products quality.
That requires having a fine control strategy through which we evaluate the produced
electronic cards by detecting possible errors from the tests performed.

In the considered case study, we will focus on two kinds of tests: the ICT ("In
Circuit Testing") tests check the presence of all the attempted components and the FCT
("Functional Testing") tests verify the functional behavior of each PCB.

Our proposed model simply abstracts the manufacturing and control process. We
only identify each manufactured card by a unique identifier and we introduce two
events, one representing the fair cards manufacturing, the other modeling the deficient
cards manufacturing. The PCB manufacturing and control system must provide a his-
tory about the produced PCB and the error reporting.

Informal description of this system imposes two probabilistic requirements

(i) the risk of having a deficient card must decrease with the increasing number of
reported errors;

(ii) having fair cards increases with correct cards production rise.

In fact, the manufacturing and control system must be a self-corrective maneuver on the
PCB production line.

Event-B Context To model the static aspects of the system, we propose the Event-B
context as depicted by Figure 1. Precisely,

CONTEXT
PCBctx

SETS
Error_State

CONSTANTS
Max_Cards
Max_Errors
ICT_Error
FCT_Error
ICT_FCT_Error

AXIOMS
Max_Cards ∈ N1
∧ Max_Errors ∈N1
∧ partition (Error_State,{ICT_Error},{FCT_Error},{ICT_FCT_Error})
∧ Max_Errors ≤ Max_Cards

END

Fig. 1. PCB manufacturing system context

– the constant Max_Cards models the maximum number of cards that can be pro-
duced whereas the constant Max_Errors models the maximum number of errors
that can be reported;

– the set Error_State represents the tree kind of errors that can be reported during the
test phase:
• the constant ICT_error designs an "In Circuit" error;
• the constant FCT_error Designs a "Functional" error;
• the constant ICT_FCT_error designs a double error, i.e. "In Circuit" and "Func-

tional" errors simultaneously.

Note that Error_State is syntactically expressed as a partition between ICT_error,
FCT_error and ICT_FCT_error, i.e. Error_State = {ICT_error,FCT_error,ICT_FCT_error}.

The maximum number of reported errors must be lower than or equal to the maxi-
mum number of produced cards. Only one kind of error is reported for a specific card.

Event-B model We propose to model the system’s state by means of three state vari-
ables, as depicted by Figure 2:

– the set Cards represents all the produced cards;
– the partial function Errors models the history of all the cards which have reporting

errors, i.e. it associates to each necessary card, the corresponding reported error;
– the variable Next_ID identifies the nextly produced card.

We then model the dynamic of the system using three (probabilistic) events.

– the event init initializes the model: regarding Cards and Errors, they are initialized
to empty sets and Next_ID is initialized to any chosen integer value (10 on the
illustrated specification);

MODEL
PCBsystem

SEES
PCBctx

VARIABLES
Cards
Errors
Next_ID

INVARIANTS
Cards ⊆ N1
∧ Errors ∈ Cards 7→Error_State
∧ Next_ID ∈ N1
∧ finite (Cards)
∧ finite (Errors)
∧ card(Cards) ≤ Max_Cards
∧ card(Errors) ≤ Max_Errors

ENABLED_BOUND
(Max_Cards+card(Cards)+1) / (Max_Cards+card(Cards)+Max_Errors−card(Errors)+2)

EVENTS
event init =̂
begin

Next_ID:= 10
Cards := ∅
Error := ∅

end
event Manufacturing_OK =̂
weight

Max_Cards + 1 + card(Cards)
when

card(Cards) < Max_Cards ∧ card(Errors) ≤ Max_Errors
then

Cards := Cards ∪ {Next_ID}
Next_ID := Next_ID + 1

end
event Manufacturing_Error =̂
bounded
weight

Max_Errors + 1 − card(Errors)
any error where

error ∈ Error_State ∧ card(Cards) < Max_Cards ∧ card(Errors) < Max_Errors
then

Cards := Cards ∪ {Next_ID}
Next_ID := Next_ID + 1
Errors := Errors ∪ {Next_ID 7→error}

end
END

Fig. 2. PCB manufacturing system model

– the event Manufacturing_OK models the fair cards production. Cards could be pro-
duced when the maximum number of produced cards is not reached and the maxi-
mum number of errors is also not reached; The number of the newly produced card
is added to Cards, and the Next_ID is incremented;

– the event Manufacturing_Error represents the production of deficient cards: The
event’s parameter error chooses a kind of errors among the Error_State, i.e. a "In
Circuit" error, a "Functional" error or the both simultaneously. The newly produced
card is also registered, the Next_ID is incremented and the reported error is added
to Errors : Next_ID 7→ error.

We note that the system stops running when the allowed numbers of reported errors
or total cards produced are reached.

Probabilities appear in weights associated to each events and in the uniform choice
between the kind of errors in the event Manufacturing_Error. We recall that informal de-
scription of this system imposes two probabilistic requirements: the risk of having a de-
ficient card must decrease with the increasing number of reported errors and having fair
cards increases with cards production rising, due to the the manufacturing and control
system must be a self-corrective maneuver on the PCB production line. In other words,
the more errors are reported, the less errors will be reported, whereas the more cards
are produced, the more fair care will be produced. As the events Manufacturing_OK
and Manufacturing_Error will be enabled simultaneously, their respective probabilities
computed from their weights translate the requirements:

– the weight of the event Manufacturing_OK increases with the number of produced
cards, that corresponds to the requirement "the more cards are produced, the more
fair care will be produced";

– the weight of the event Manufacturing_Error decreases with the number of reported
errors, that correspond to the requirement "the more errors are reported, the less
errors will be reported".

To illustrate the attempted behavior of the specified system, we give in Figure 4 a
sub-part of the corresponding probabilistic transition system, with Max_Errors fixed to
2 and Max_Cards fixed to 3.

Verification We consider that the consistency of the Event-B model PCBsystem pre-
sented above is verified by discharging all the necessary consistency proof obliga-
tions. We only focus on the verification of the enabled bound property depicted in
Section 3. we annotate by bounded the event Manufacturing_Error and we add an
ENABLED_BOUND: the enabling probability of Manufacturing_Error must be always
limited by the value of the ENABLED_BOUND. We have chosen as ENABLED_BOUND
an expression which corresponds to the enabling probability of the event Manufacturing
_OK to ensure that always errors are reported less than fair cards are produced; it is a
specific case: in a more general case, any expression could be chosen with respect to
the case study.

To prove that the enabled bound property is verified, we must discharge the POs
(eBOUND/WD) and (event/WGHT/eBOUND). The PO (eBOUND/WD) is instantiated as fol-
lows on the Event-B model PCBsystem:

Fig. 3. Extract of the transition system of PCBsystem with Max_Errors=2 and Max_Cards=3

1 Max_Cards ∈ N1
2 Max_Errors ∈N1
3 Max_Errors ≤ Max_Cards
4 Cards ⊆ N1
5 Errors ∈ Cards 7→Error_State
6 finite (Cards)
7 finite (Errors)
8 card(Cards) ≤ Max_Cards
9 card(Errors) ≤ Max_Errors

10 |− − − − − − − − − − − − − − − − − − − −
11 0 <
12 (Max_Cards + card(Cards) +1)
13 / (Max_Cards + card(Cards) + Max_Errors − card(Errors) +2)
14 < 1

We have to show that the goal (lines 11-14) could be established using the hypothe-
ses (lines 1-9). It is obvious since the sum given line 12 is strictly positive when taking
account of the hypotheses lines 1 and 8. The hypotheses lines 5 and 9 imply that the dif-
ference (Max_Errors + 1 − Max_Cards) is also strictly positive. Thus, numerator given

line 12 is strictly lower than denominator given line 13. So, the considered fraction is
strictly lower than 1 and the PO (eBOUND/WD) is discharged.

Secondly, we instantiate the PO (event/WGHT/eBOUND) in the context of the bounded
event Manufacturing_Error. Note that the event Manufacturing_Ok could always be trig-
gered with Manufacturing_Error so the PO becomes as follows:

1 Max_Cards ∈ N1
2 Max_Errors ∈N1
3 Max_Errors ≤ Max_Cards
4 Cards ⊆ N1
5 Errors ∈ Cards 7→Error_State
6 Next_ID ∈ N1
7 finite (Cards)
8 finite (Errors)
9 card(Cards) < Max_Cards

10 card(Errors) < Max_Errors
11 |− − − − − − − − − − − − − − − − − − − −
12 (Max_Errors − card(Errors) +1)
13 / (Max_Cards + card(Cards) + Max_Errors − card(Errors) +2)
14 <
15 (Max_Cards + card(Cards) +1)
16 / (Max_Cards + card(Cards) + Max_Errors − card(Errors) +2)

Clearly, when we take account the hypothesis given line 3, the goal is obviously
discharged.

In this example, we showed how demonstrate the necessary POs by hand, but in an
industrial context, the Rodin toolset will be used and their embedded automatic provers
will be in charge of discharging the POs. Discharging the POs (eBOUND/WD) and (even-
t/WGHT/eBOUND) ensures that the enabled bound property is proved on the PCBsystem,
i.e. always errors on cards are less reported than fair cards are produced.

5 Conclusion

Some properties as invariance, deadlock-freeness or convergence are natively managed
in Event-B. In our probabilistic extension of Event-B, we have studied the almost cer-
tain convergence of a set of events. Moreover, a variety of research works treated the
expression and verification of other probabilistic properties such as reliability or re-
activity. In this paper we pursue our investigation of probabilistic properties and how
to verify them using proof-based techniques. We proposed to express and check an en-
abled bound property where an event’s probability is bounded by a fixed limit described
during the requirements specification phase. This property can be used in a wide class
of industrial systems, especially those where errors execution have a limit that must not
be crossed. Hence, we illustrated a simplified use case of control and manufacturing of
printed circuit boards where the enabled bound property was imperative to check if the
likelihood of manufacturing an erroneous card can be at most equal to that of producing
a correct card.

References

1. Motwani, R., Raghavan, P.: Randomized algorithms. Chapman & Hall/CRC (2010)
2. Abrial, J.R., Cansell, D., Méry, D.: A mechanically proved and incremental development of

IEEE 1394 tree identify protocol. Formal aspects of computing 14(3) (2003) 215–227
3. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment: Assessment,

Hardware, Software and Human Factors. Volume 2. Wiley (1992)
4. Chu, W.W., Sit, C.M.: Estimating task response time with contentions for real-time dis-

tributed systems. In: Real-Time Systems Symposium, 1988., Proceedings., IEEE (1988)
272–281

5. Trivedi, K.S., Ramani, S., Fricks, R.: Recent advances in modeling response-time distribu-
tions in real-time systems. Proceedings of the IEEE 91(7) (2003) 1023–1037

6. Stoelinga, M.: An introduction to probabilistic automata. Bulletin of the EATCS 78(176-
198) (2002)

7. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons (2014)

8. Katoen, J.P.: Abstraction of probabilistic systems. In: Formal Modeling and Analysis of
Timed Systems: 5th International Conference, FORMATS 2007, Salzburg, Austria, October
3-5, 2007. Proceedings, Springer (2007)

9. Dehnert, C., Gebler, D., Volpato, M., Jansen, D.N.: On abstraction of probabilistic sys-
tems. In Remke, A., Stoelinga, M., eds.: Stochastic Model Checking. Rigorous Dependabil-
ity Analysis Using Model Checking Techniques for Stochastic Systems: International Au-
tumn School, ROCKS 2012, Vahrn, Italy, October 22-26, 2012, Advanced Lectures, Springer
(2014)

10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Logic
in Computer Science, 1991. LICS’91., IEEE (1991) 266–277

11. Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In:
International Conference on Foundations of Software Technology and Theoretical Computer
Science, Springer (1995) 499–513

12. Baier, C., Katoen, J.P., et al.: Principles of model checking. MIT press Cambridge (2008)
13. Haghighi, H., Afshar, M.: A Z-Based formalism to specify markov chains. Computer Science

and Engineering 2(3) (2012) 24–31
14. Sere, K., Troubitsyna, E.: Probabilities in action systems. In: Proc. of the 8th Nordic Work-

shop on Programming Theory. (1996) 373–387
15. Hoang, T.S.: The development of a probabilistic B-method and a supporting toolkit. PhD

thesis, The University of New South Wales (2005)
16. Goldreich, O.: Probabilistic proof systems. In: Modern Cryptography, Probabilistic Proofs

and Pseudorandomness. Springer (1999) 39–72
17. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin, S.: Proba-

bilistic relational verification for cryptographic implementations. In: ACM SIGPLAN No-
tices. Volume 49., ACM (2014) 193–205

18. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in HOL.
Electronic Notes in Theoretical Computer Science 112 (2005) 95–111

19. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Science of
Computer Programming 74(8) (2009) 568–589

20. Hurd, J.: Formal verification of probabilistic algorithms. PhD thesis, University of Cam-
bridge, Computer Laboratory (2003)

21. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge University
Press (2010)

22. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. International journal on software tools for
technology transfer 12(6) (2010) 447–466

23. Morgan, C., Hoang, T.S., Abrial, J.R.: The challenge of probabilistic Event B —extended
abstract—. In: ZB 2005: Formal Specification and Development in Z and B, Springer (2005)
162–171

24. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In: Integrated
Formal Methods, Springer (2007) 293–312

25. Yilmaz, E.: Tool support for qualitative reasoning in Event-B. PhD thesis, Master Thesis
ETH Zürich, 2010 (2010)

26. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Reliability assessment in Event-B development.
NODES 09 (2009)

27. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into Event-B
development. Formal Aspects of Computing 27(1) (2015) 53–77

28. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Towards probabilistic modelling in Event-B. In:
Integrated Formal Methods, Springer (2010) 275–289

29. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Moving from Event-B to probabilistic Event-B.
In: Proceedings of the 32th Annual ACM Symposium on Applied Computing, ACM (2017)

30. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Introducing probabilistic reasoning within Event-
B. Software & Systems Modeling (Oct 2017)

31. Gaiero, D., Zola, U.: ICT Vs FCT Test : case studies. (June 2014)
32. Electronics notes: PCP Inspection Techniques And Technologies. https://www.electronics-

notes.com/articles/test-methods/automatic-automated-test-ate/pcb-inspection.php
33. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Theories of Programming

and Formal Methods. Volume 8051 of LNCS. (2013) 67–81

