Combining MEDLINE and publisher data to create parallel corpora for the automatic translation of biomedical text
Résumé
Background: Most of the institutional and research information in the biomedical domain is available in the form
of English text. Even in countries where English is an official language, such as the United States, language can be a
barrier for accessing biomedical information for non-native speakers. Recent progress in machine translation
suggests that this technique could help make English texts accessible to speakers of other languages. However, the
lack of adequate specialized corpora needed to train statistical models currently limits the quality of automatic
translations in the biomedical domain.
Results: We show how a large-sized parallel corpus can automatically be obtained for the biomedical domain,
using the MEDLINE database. The corpus generated in this work comprises article titles obtained from MEDLINE
and abstract text automatically retrieved from journal websites, which substantially extends the corpora used in
previous work. After assessing the quality of the corpus for two language pairs (English/French and English/Spanish)
we use the Moses package to train a statistical machine translation model that outperforms previous models for
automatic translation of biomedical text.
Conclusions: We have built translation data sets in the biomedical domain that can easily be extended to other
languages available in MEDLINE. These sets can successfully be applied to train statistical machine translation
models. While further progress should be made by incorporating out-of-domain corpora and domain-specific
lexicons, we believe that this work improves the automatic translation of biomedical texts.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|