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Micromechanical analysis of second order work in granular media

Nejib Hadda · François Nicot · Franck Bourrier ·

Luc Sibille · Farhang Radjai · Félix Darve

Abstract This paper examines instabilities in granular
materials from a microscopic point of view through numer-
ical simulations conducted using a discrete element method
on two three-dimensional specimens. The detection and the
tracking of grain scale deformation mechanisms constitute
the key point for a better understanding the failure process
and puzzling out what lies behind the vanishing of the macro-
scopic second order work. For this purpose, the second order
work from microscopic variables, involving contact force
and branch vector, was introduced and tracked numerically.
Then, all contacts depicting negative values of the second
order work were deeply investigated, especially their spa-
tial distribution (homogeneity, agglomeration, dispersion. . .)
within the specimen according to the density of the granu-
lar assembly and to the loading direction. A set of compar-
isons has been considered in this context in order to highlight
how a specimen is populated with such contacts whether it
is loaded along a direction included within the plastic ten-
sorial zone or along a direction for which the specimen is
likely to behave elastically (elastic tensorial zone). Moreover,
these comparisons concerned also loading directions within
the cone of instability so that links between the vanishing
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of both microscopic and macroscopic second order works
can be established and the local mechanisms responsible for
failure occurrence may be figured out.
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1 Introduction

Concern about failure in geomaterials and eligible inter-
particle mechanisms occurring during its process is still
generating considerable research interest and raising many
issues, therefore it is desirable to understand this phenom-
enon as well as possible.

Micromechanics is likely to lie in the heart of many aspects
of failure in granular media [11,20,33,36] nevertheless it is
worth noting that, for granular materials, the macro and micro
worlds are widely connected. On one hand, when applying
an external force on the boundaries of an assembly of grains
(macro scale), this force is transmitted via the contact net-
work from particles in contact with the boundaries to the core
of the specimen generating changes in inter-particles con-
tact forces which in turn guide the local motions of particles
(translational and rotational displacements) through constitu-
tive equations and physical constraints (contact law, internal
angle of friction, degrees of freedom, non uniform distri-
bution of local variables. . .) giving rise to the macroscopic
deformation. On the other hand, failure is likely to be set off at
the micro scale through local instabilities inside the assem-
bly before it amplifies to concern the whole specimen and
can be detected thereafter at the macro scale by an outburst
in kinetic energy which may be followed by the vanishing
of the stresses on the boundaries and a brutal collapse of the
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specimen (large deformations) if the loading is stress or force
controlled.

In recent years, increasing researches and approaches have
been focused at the micro scale with a fundamental aim to
physically describe the micromechanical behavior and/or to
intercept inter-particles’ or structure’s like scenarios govern-
ing the failure process [28,37]. The description of the micro-
mechanical behavior covers the description of the struc-
ture (positions of grains and contact points), as well as the
local kinematics and its evolutions [6,33] (displacements,
rotations. . .) and also the description of inter-particles’ con-
tact forces network including force chains [28,29].

The local descriptions mentioned above depend on each
other and were investigated by many authors numerically
and experimentally for different purposes either to validate
micro-macro mechanical approaches and constitutive models
[2,11,14,17,24,26,28] or to predict the occurrence of shear
bands [1,5,12,13] or instabilities [35,38]. In this regard,
Radjai et al. [9], Oda et al. [24], Oda and Iwashita [25] and
Iwashita and Oda [28] focused on contact networks, strong
and weak force networks (including or not force chains net-
works), Kuhn and Bagi [10,12,13] were interested in defining
and describing objective and non-objective relative motions
(particularly rotations at different scales) and distinguishing
their contributions in the deformation of a granular assem-
bly, Tordesillas [33] and Tordesillas and Muthuswamy [34]
showed that the presence of 3-cycles in a contact network
is associated with frustrated rotations of particles, and con-
firmed the influence of particles sliding and relative rota-
tions on the stability and buckling of force chains. However,
a quantitative micro-macro description is still being sought,
that’s why it is crucial to put forward an efficient grain-scale
tool in order to investigate physical origins of failure and ide-
ally if it can be related to an instability criterion such as the
vanishing of the so called second order work.

Indeed the vanishing of the second order work [8] con-
stitutes a basic and necessary condition for failure to occur
[18,19,21] but also gives indications about the specific stress
or strain loading directions that may lead a system to failure
[19]. On this basis, a link between the second order work
from macroscopic variables and the second order work from
microscopic variables involving contact forces and particles’
positions was developed [20] in order to address failure from
the micromechanical point of view and describe the local
mechanisms governing the vanishing of the second order
work.

In this paper, the microscopic formalism of the sec-
ond order work in granular material is reviewed with a
brief sketch over some theoretical aspects lying behind its
establishment. Then numerical simulations using the dis-
crete element method on two three dimensional specimens
are performed in order to validate the theoretical develop-
ment. Agreements between theoretical and numerical results

and between macro and micro second order works are both
discussed in the second part.

Finally some microscopic investigations related to the spa-
tial distribution of contacts with negative values of micro-
scopic second order work are carried out in the last session.
This distribution is related to the diffuse nature of the failure
considered here, highlighting some micro-structural aspects
(or origins) of this latter. This last analysis also offers the
opportunity to intercept major grain-scale clues lying behind
the vanishing of the macroscopic second order work.

2 Extension of the second order work
to the micro-structure

The second order work [8] can be either expressed through
the material description (Lagrangian formalism) as W2 =
∫

Vo δ�i j δFi j dVo or through the spatial description (Eulerian
formalism) by assuming small deformations and neglect-
ing geometrical aspects [18,22] as W2 =

∫

V δσi j δεi j dV ,

where � is the first Piola-Kirchoff stress tensor, F the general
term of the deformation gradient tensor, σ the Cauchy stress
tensor and, and ε is the strain tensor. In both descriptions, the
second order work is associated with incremental evolutions
involving incremental pair quantities δFi j and δ�i j or δεi j
and δσi j related through the mechanical constitutive behav-
ior of the granular packing. V is the current volume of the
system andV0 refers to the volume at the initial configuration.

It was shown [20] that the second order work can be
expressed in terms of the microscopic variables accounting
for the microstructure of the material.

Considering a granular assembly composed of N particles
‘p’ (1 ≤ p ≤ N ), the second order work from microscopic
variables writes

Wµ
2 =

∑

p,q
δ f ci δlci +

∑

p∈V
δ f pi δx pi (1)

where l̄c is the branch vector relating the centers of contacting
particles p and q, f̄ c the inter-particle contact force, x̄ p the
position of particle ‘p’ and f̄ p the resultant force applied to
the particle ‘p’.

Equation (1) shows that the micromechanical expression
of the second-order work is the combination of two terms.
The first term Wm

2 = ∑

p,q δ f ci δlci , can be related to the
local second-order work

∑

p,q δ f ci δuci (where δuc is the
inter-particle relative displacement, Nicot and Darve [23]),
and connect the contact force network with the geometrical
distribution of branches between grains.

The second term
∑

p∈V δ f pi δx pi of Eq. (1) involves the

incremental unbalanced force δ f̄ p applied to each particle
‘p’ and the incremental change in position of particle ‘p’.

The numerical simulations performed herein are kinemat-
ically controlled, they are thus not accompanied by a burst
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in kinetic energy and inertial effects can hardly occur. The
whole analysis can be done in quasi static regime and the
contribution of the term

∑

p∈V δ f pi δx pi becomes negligi-
ble. Equation (1) therefore reduces to

Wµ
2 =

∑

p,q
δ f ci δlci (2)

When important particles rearrangements occur in irre-
versible strain regime (sliding between particles, contact
opening and contact creation), the second term is likely to
be no longer negligible and its contribution may be consid-
erable.

In the next part, we will focus on the comparison between
macro and micro second order works and on the numerical
validation of Eq. (2) analytically developed above.

3 Numerical analysis using discrete element method

3.1 Discrete element model

In what follows, the incremental variation of a given variable
ξ denoted by δξ (δξ(t) = ξ̇ (t)δt) during an infinitesimal
variation of time t, is approximated by finite increments in
the discrete elements method, thus will be rather denoted by
�ξ.

The vanishing of the second order work was proved to
be related to both porosity and confining pressure of the
assembly [21,30,31]. In order to cover as many cases as
possible and generalize the results found in this paper inde-
pendently from such parameters, numerical simulations were
conducted on two three-dimensional specimens (Fig. 1a) of
densely (porosity=0.38) and loosely (porosity=0.42) com-
pacted assembly of particles S1 and S2 respectively. We
used the software ‘Yade’ [40] based on the discrete element
method [3].

The motion of the particles is governed by the elonga-
tion of both a normal and a tangential spring created at the

initial contact point of each pairwise overlapping particles
(see Fig. 1b).

In the normal direction, the contact constitutive relation is
linear elastic and it assumes that the normal component f cn
of the contact force is linearly related to the particle overlap
through the normal contact stiffness denoted by kn .

The tangential component f ct of the contact force involves
similarly the tangential contact stiffness denoted by kt and
the tangential relative displacement which can be calculated
by integrating the relative tangential velocity vt in the contact
plane during the lifetime of the overlap.

The friction is incorporated at the contact level by the
Coulomb friction law, thus f ct must obey the constraint
f ct ≤ µ f cn , where µ is the coefficient of friction. When this
limit is reached, the tangential relative motion is regarded
as sliding with a friction force µ f cn directed opposite to
the tangential relative velocity. Thus, in the tangential
direction, the constitutive relation is linear elastic–purely
plastic.

Moreover, for cohesionless materials, the springs act until
the bodies depart from each others and come out of contact,
only compressive normal forces are allowed.

3.2 Numerical simulations

The two specimens are cubical in shape and contain 10,000
spherical particles of uniform radius distribution ranging
from 2 to 12 mm enclosed within six rigid frictionless walls.

The parameters in the contact constitutive relation are cho-
sen such that kn/D = 356 (MPa) and kt/kn = 0.42, where
D is the mean diameter of the two particles in contact. Inter-
particle friction angle ϕc is set to 35◦. The characteristics
and mechanical parameters of both specimens are detailed in
Table 1.

Both assemblies were compacted from initially sparse
arrangements of particles to an isotopic state by increasing
particles sizes until the desired isotropic pressure (σ1 = σ3 =

Fig. 1 A three dimensional
view of the specimen (a), the
inter-particle contact law (b)

(b)(a)

x
y

z nk cϕ

tk
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Table 1 Physical and mechanical parameters of the dense and loose specimens S1 and S2

kn/D [MPa] kt/kn ϕc [◦] Particle density (ρ) Void ratio Coordination number Reduced stiffness κ

[kg/m3] (e) (z) (κ = kn/(Dp))

S1 356 0.42 35 3,000 0.636 4.43 1,780 (p = 200 kPa)

S2 356 0.42 35 3,000 0.71 4.22 3,560 (p = 100 kPa)
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Fig. 2 Deviatoric stress in terms of axial strain at a confining pressure
of 200 kPa for S1 (a), and 100 kPa for S2 (b)

200 kPa for S1 and σ1 = σ3 = 100 kPa for S2) is reached.
They are then subjected to an axisymmetric drained triaxial
compression.

The evolution of both deviatoric stress q = σ1 −σ3 and
volumetric strain εv versus the axial strain ε1 are shown in
Figs. 2 and 3 respectively for both specimens.

For the loose specimen, the deviatoric stress increases con-
tinuously (positive hardening regime) toward a limit plateau
at which q = 110 kPa, and a mainly contractant volumetric
behavior is observed. For the dense specimen, the deviatoric
stress increases to reach a peak at q = 290 kPa and then a
softening regime is observed.
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Fig. 3 Volumetric strain in terms of axial strain at a confining pressure
of 200 kPa for S1 (a), and 100 kPa for S2 (b)

3.3 Second order work from macroscopic variables

In order to compute the second order work from macroscopic
variables, three stress states defined by their deviatoric stress
ratio η = q

p (where p is the mean pressure in the specimen)
are considered (represented by the points (A1, B1, C1) and
(A2, B2, C2) in Fig. 2 for dense and loose specimens respec-
tively). These arbitrary stress states are chosen before the
Mohr-Coulomb condition is reached and correspond to val-
ues of η (see Table 2) smaller than ηpeak for S1 and ηplateau for
S2 as illustrated in Fig. 2. In particular, A1 and A2 correspond
to the isotropic state for each specimen.

The stress states defined above will constitute initial states
from which strain probes (as first introduced by Gudehus [7])
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Table 2 Deviatoric stress ratio
η corresponding to the stress
states A1, B1 and C1 for S1 and
A2, B2 and C2 for S2

Specimen S1 Specimen S2

A1 B1 C1 A2 B2 C2

η 0. 0.76 0.95 0. 0.35 0.44

(a) (b)

Fig. 4 Circular diagrams of the normalized second order work for dense (a) and loose specimen (b)

are performed. These strain probes consist in a series of strain
loading increments �ε̄ defined in the Rendulic strain plane
by their direction αε (Fig. 2; varying here from 0◦ to 360◦

with a step of 5◦) and their norm ‖�ε̄‖ (set here equal to
5 × 10−5).

Once the stress response �σ̄ is computed for each strain
loading increment, the macroscopic normalized second order
work is computed as W n

2 = �ε̄ · �σ̄/ ‖�ε̄‖ · ‖�σ̄‖ [16],
for all investigated strain directions αε and for all considered
stress states.

Figure 4 shows circular diagrams of second order work,
plotted in the Rendulic plane of strain increments for the
initial deviatoric stress ratios corresponding to (A1, B1, C1)

for S1and (A2, B2, C2) for S2.

For the readability of these representations, a constant ℓ =
0.5 is added to the normalized value of W2. Consequently,
when W n

2 is negative the plot is inside the dashed circle of
radius r = ℓ, whereas plot is outside the dashed circle for
positive values of W n

2 .

Cone of unstable strain directions (illustrated by the gray
hatched zone and grouping the incremental strain directions
along which the second order work takes negative values) are
seen in the second quadrant of the axisymmetric strain incre-
ment plane defined by (−

√
2�ε3, �ε1) at deviatoric stress

ratios η = 0.95 and η = 0.44 for S1 and S2 respectively.

3.4 Second order work from microscopic variables

The second order work can also be computed according to
Eq. (2) from contact forces f̄ c and position vector of particles
x̄ p.

To determine the scalar product � f ci �lci of Eq. (2), incre-
ments � f̄ c are calculated as the incremental change of the

contact force experienced by a given contact during a strain
probe in a direction αε. The branch vector increment �l̄c
is deduced from the displacement, during the same strain
probing, of particles ‘p’ and ‘q’ involved in the contact as
�l̄c = (�x̄ p − �x̄q). Then summing up scalar products
over all the contacts in the specimen, the value of the sec-
ond order work from microscopic variables

∑

p,q � f ci �lci
is computed for a given direction αε.

The new and lost contacts experienced during the strain
probes are also taken into account for the computation of
� f ci �lci where final contact force -for lost contacts- and
initial one -for new contacts- are considered as nil.

Figure 5 shows the evolution of the second order work
(not normalized) from both macroscopic and microscopic
variables at η = 0.95 and η = 0.44 for S1 and S2 respec-
tively in terms of the direction of the strain loading increment
αε.

A good agreement is found between both microscopic and
macroscopic expressions of the second order work for the
two cases, in the elastic tensorial zone as well as in the plastic
tensorial zone1 (the zone in light grey on the figure) including
the cone of instability (the dashed zone), as well as in the
elastic tensorial zone.

Similar results are found for other deviatoric stress states
(not displayed here), showing that discrete element method
agrees well with the theoretical development.

As a starting point in the microscopic investigation, inter-
est will be focused now on the evolution of the number of

1 The plastic tensorial zone groups all directions along which the
response to the strain probe has a predominant plastic component com-
pared to elastic one.
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Fig. 5 Comparison between the second order works from both macro-
scopic and microscopic variables for dense (a) and loose specimen (b)

contacts with negative values of � f ci �lci along strain probes
and their spatial distribution in the specimen.

4 Spatial distribution of the second order work
from microscopic variables

The aim of this study is to geometrically locate contacts (c−)

defined as contacts with a negative value of � f ci �lci and
characterize their spatial distribution in the specimen. Are
these contacts uniformly distributed (individual contact dis-
tribution) or gathered together into aggregates separated from
each other (grouped contact distribution)?

First and foremost, it is convenient in a preliminary study
to make an idea about the evolution of the number (Nc−) of
contacts c− in terms of the direction αε of strain probe.

4.1 Evolution of N−
c in the specimen

The contact network in the specimen constitutes a basic
element in the description of microstructure of a granular
assembly [11,12,24,26,28,33]. The evolution of the total
number of contacts Nc (scalar term) during lifetime simula-
tion is insufficient to fully describe the contact network, but
once related to the mobilized strength of the contact normal
force, an improved description may be obtained [28,33] and
better conclusions can be drawn on the microscopic behav-
ior. The contact network can be separated into a weak and a
strong contact networks with respect to the normal compo-
nent fn of the contact force. Thus, a contact c belongs to the
weak phase if f cn ≤ 〈 f cn 〉 and to the strong phase otherwise,
where 〈 f cn 〉 is the mean normal force at a given state.

For strain probes with a small increment, even if parti-
cle rearrangement occurs in the plastic tensorial zone, a very
slight variation in the total number of contacts Nc is generally
observed, with a very slight increase in the elastic tensorial
zone and a very slight decrease in the plastic tensorial zone
as illustrated in Fig. 6a, and likewise in Fig. 6b. In this figure,
�Nc/Nc is plotted against the strain probe direction αε for
the dense specimen at the isotropic stress state (η = 0) and
at a stress state close to the peak of q (η = 0.95). The frac-
tions of lost and created contacts, compared to the initial
total number of contacts existing in the stress state before
strain probes also vary slightly around zero. Close to the
right border of the tensorial plastic zone, �Nc/Nc changes
its sign from negative to positive whereas no change in sign is
observed close to the left border, instead a sharp decrease in
�Nc/Nc is observed. It can be also perceived, that the max-
imum decrease in the number of contacts (alike in �Nc/Nc)
does not correspond to directions within the instability cone,
but it rather corresponds to strain probe directions around the
purely radial extension (αε = 180◦).

Figure 7 shows the evolution of the ratio of contacts
belonging to the weak phase (Nw

c /Nc) and those belong-
ing to the strong phase (N sc /Nc). For both dense and loose
specimens, a predominance of the number of contacts Nw

c
involved in the weak phase is observed. Overall, about 60 %
(or more) of contacts are carried by the weak contact network
whereas only 40 % (or less) are carried by the strong contact
network.

Now, we follow the concentration of contacts c− for the
whole granular assembly by computing the ratio Nc−

/

Nc,
and also for each contact phase respectively, through the val-
ues of ratios Nw

c−/Nw
c (for the weak phase) and N sc−/N sc (for

the strong phase). Results in terms of the strain probing direc-
tion are displayed in Fig. 8. For the whole assembly and for
both phases, changes in the concentration of c− contact is
similar, and there is not a qualitative difference in the popu-
lating of one of the two contact phases by negative values of
second order work at contact. Hence, in all cases there is a
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Fig. 6 Evolution of the total contact number Nc (a) and �Nc/Nc (b) in the dense specimen in terms of the strain probe directions at the isotropic
stress level and a stress level close to the peak of q

strong increase of concentration of c− contact in the plastic
tensorial zone reaching a peak for directions corresponding
to the cone of instability for both specimens. This last result
reveals that unstable loading directions whose existence is
detected by the vanishing of the second order work computed
from macroscopic variables (cone of instability) are deeply
related to local mechanisms connected to the vanishing of
the second order work defined at contact scale. Moreover,
the vanishing of the second order work seems to be more a
consequence of the increasing number of c− contacts rather
than an increase of the amplitude of negative values of the
second order work computed from microscopic variables at
each contact. This come in line with the quasi-static nature
of the simulation where, for the strain loading increments
considered here, the particle relative displacements stay lim-
ited, and thus amplitudes of contact force increment � 	f c and
branch vector increments �	lc are low.

The main difference between the weak contact phase
and the strong phase is quantitative, whatever the loading

direction the weak phase is more densely populated by c−
contact than the strong phase. For strain directions close to
the direction of isotropic compression (αε = 35.3◦) the ratio
N sc−/N sc for the strong phase is even almost nil, and only the
weak phase keep a small proportion of contacts presenting a
negative second order work.

In particular the weak phase may become the quasi unique
contributor at the borders of the plastic tensorial zone, espe-
cially for the dense specimen. Contribution of the strong
phase, carrying the whole deviatoric load [29], becomes par-
ticularly visible in the plastic tensorial zone where this phase
is essential to insure the stability of the specimen. Inversely,
the weak phase able to balance an isotropic pressure [29]
seems to play a key role for strain loading directions around
the direction relative to the isotropic compression and is the
only contributor. However, the highest contribution for both
phases (i.e. highest values of Nw

c−/Nw
c and N sc−/N sc and con-

sequently highest value of Nc−/Nc) matches with the strain
directions belonging to the cone of instability. Hence, both
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Fig. 7 Evolution of the contact number according to its belonging to
weak and strong contact networks with respect to the total number of
contact, in terms of the strain probe direction for dense (a) and loose
specimen (b)

contact networks are involved in the vanishing of the macro-
scopic second order work but with a weight more impor-
tant of the weak contact network whatever the strain loading
direction.

A second study is considered herein in order to confirm the
previous results and to show which phase (among the weak
and strong phases) contributes the most in the production
of c− contacts. For this purpose, the number of c− contacts
produced by each phase is compared to the total number
of c− contacts, namely the ratios N sc−/Nc− and Nw

c−/Nc− .

The evolution of these two quantities, along with N sc /Nc and
Nw
c /Nc (already plotted separately in Fig. 7), in terms of the

strain probe direction αε is plotted in Fig. 9 for both dense and
loose specimens at stress states close to the peak and to the
plateau of q respectively. It can be concluded that the weak
phase produces the major part of c− contacts. This comes in
line with the previous conclusion since the concentration in
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Fig. 8 Evolution of the concentrations of c− contacts in the whole
specimen, in the weak and strong contact networks respectively, in terms
of the strain probe direction for the dense (a) and loose specimen (b)

c− was found to be more important in the weak phase, which
has the largest number of contacts.

Moreover, Fig. 9 points out another interesting point;
the directions along which the second order work (com-
puted from macroscopic variables) vanishes (cone of unsta-
ble directions) are characterized by a sharp increase in the
production of c− contacts in the strong phase accompanied
by a similar decrease of the weak phase participation.

In contrast, the contribution of the strong phase in the
production of c− contacts is lower along the directions for
which the second order work has positive values

Figures 8 and 9 confirm that the weak phase is more sub-
jected to vanishing microscopic second order works.

The weak phase acts as a confining and stabilizing struc-
ture with respect to the strong phase, limiting the collapse
of the force chains and insuring the load bearing capacity of
the granular assembly [33,37]. As the weak phase is more
densely populated with c− contacts, we may imagine that
the loss of bearing capacity of a specimen in the case of
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Fig. 9 Evolution of N sc−/Nc− , N sc /Nc, Nw
c−/Nc− and Nw

c /Nc in
terms of the strain probe direction for dense (a) and loose
specimen (b)

failure development from an unstable state, is related to a
reduction of the confining and stabilizing role of the weak
phase offering the possibility for the force chains to collapse
(characterized by a strong increase of the c−population in
the strong phase).

The previous study shows that both strong and weak
phases are occupied by c− but this cannot fully confirm the
homogeneity of the geometric spatial distribution of c− in
the specimen.

4.2 Homogeneity of the distribution of contacts
c− in the specimen

As illustrated in Fig. 10, an elementary cubic volume with
variable edge length l ≤ L initially centered in the specimen
is considered in order to compute the number of contacts
Nc− with negative values of � f ci �lci in this expanding cube.
l is set equal to 2Ds (where Ds is the mean particle diameter
of the granular assembly) for the initial volume, and then

L

l

Fig. 10 Illustration of the cubic elementary volume variation
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Fig. 11 Evolution of Nc− in terms of (l/L)3 for dense (a) and loose
specimen (b)

gradually increased by steps of 2Ds until the boundaries of
the specimen are reached (l = L).

The evolution of Nc− in terms of (l/L)3 is reported in
Fig. 11 for dense specimen at η = 0.95 and for loose
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Table 3 Results of the χ2 goodness of fit test evaluating the homogeneity of c− contacts spatial distribution for dense (S1) and loose (S2) specimens
after performing strain probes into stable (αε = 0◦) and unstable (αε = 135◦) directions

Specimen S1 S2

Strain probe direction αε = 0◦ αε = 135◦ αε = 0◦ αε = 135◦

H0 Hypothesis of the χ2 test Rejected Not rejected Rejected Not rejected

The H0 hypothesis of the χ2 test, corresponding to the hypothesis of a homogeneous distribution of c− contacts, was tested with a significance
level set at 5 %
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Fig. 12 Comparison between the observed distributions and the corre-
sponding theoretical Poisson distributions of the number of c− contacts
in the cubic sub-volumes for dense and loose samples at η = 0.95 and

η = 0.44 respectively and for two strain probe directions corresponding
to a stable direction (αε = 0◦) and to an unstable one (αε = 135◦)

specimen at η = 0.44. Nc− increases linearly for all cases
and in all directions of strain probes (for simplicity and
clarity reasons, only two directions are shown: αε = 0◦

(stable direction corresponding to a lateral extension) and
αε = 135◦(direction in instability cone).

It can be noticed that Nc− is deeply related to the direction
of strain probe, it jumps considerably to a value almost three
times bigger for the loose specimen and eight times bigger
for the dense specimen from a stable direction (αε = 0◦) to
an unstable one (αε = 135◦).

These linear like curves shows also that the geometrical
distribution of c− in the specimen is almost homoge-
neous, since Nc− is proportional to the dimensionless quan-
tity (l/L)3 such that Nc− = C(l/L)3, where C is the
slope of curve and defines the volumic concentration of
Nc− .

The homogeneity of the spatial distribution of c− in the
specimen can also be evaluated using a statistical analysis of
the distribution of the number of c− contacts in sub-volumes
of the specimen. The repartition of c− contacts follows a
Poisson point process if no spatial structure of the c− con-
tacts exists, (i.e. c− contacts are homogeneously distributed)
[4]. Thus, if the sample is divided into n sub-volumes of
equal volume Vn, the distribution of the number nc− of c−
contacts in the sub-volumes can be computed. The probabil-
ity P(nc− = k) for having k c− contacts into a sub-volume
can therefore be expressed as follows:

P(nc− = k) = λke−λ

k! (3)

where λ can be estimated by the mean likelihood E(nc−)

of the c− contacts in the different elementary volumes.
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In our context, the specimen is divided into 216 cubical sub-
volumes with an edge length of 4Ds [39]. The number nc−
of c− contacts in each sub-volume is then calculated. The
observed distribution of nc− is compared with the theoret-
ical corresponding Poisson distribution with the parameter
λ = E(nc−).

The χ2 goodness of fit test [15,27,32] was used to test
whether the theoretical Poisson distribution matches well of
the observed distribution of nc− in the sub-volumes.

The statistical analysis exposed above is used to evalu-
ate the homogeneity of the dense and loose specimens at
η = 0.95 and η = 0.44 respectively after performing strain
probes into two directions corresponding to a stable direction
(αε = 0◦) and to an unstable one (αε = 135◦).

The results from the χ2 goodness of fit test (Table. 3)
show that the distribution of nc− follows a Poisson distri-
bution from both dense and loose samples in the unstable
direction whereas it is not the case in the stable direction.
The statistical tests therefore highlight that the distribution
of c− contacts is homogeneous for both loose and dense
specimens into the unstable direction. On the contrary, for
stable directions, the statistical tests do not allow conclud-
ing for the homogeneity of the distribution of c− contacts.
However, the qualitative adequacy of the global shape of the
observed distribution and the corresponding theoretical Pois-
son distribution of nc− (Fig. 12) tends to show that the spatial
distribution of c− contacts is almost homogeneous, i.e. that
no significant clustering pattern exists. These results have
been confirmed for different sizes of the cubic sub-volumes
with or without considering the sub-volumes at the edges of
the specimens.

The significant tendency in the homogeneity of the c−
contacts in the specimen confirms the results observed for the
elementary cubic volumes with variable edges. As c− con-
tacts are almost homogeneously distributed in the specimen,
the concentration C of Nc− can be used as a representative
indicator of the proportion of c− contacts in the specimen.

The concentration C of Nc− can be plotted in terms of
both strain probe direction αε and stress ratio η as shown in
Fig. 13. The variation of C in terms of αε reaches its highest
values in the plastic tensorial zone, along directions within
the cone of instability where the second order work vanishes.
A tight correspondence between the minima and maxima of
C and W2 (Fig. 5) is also distinguished, the minima of W2

corresponds to the maxima of C and vice-versa.
It is also well illustrated that the volumetric concentration

C increases along directions within to the cone of instability
and when the deviatoric stress state defined by η gets closer
to the peak/plateau of the q = f (ε1) curve.

Two main results can be put forward from the previous
study. First, the contacts with negative values of � f ci �lci are
almost homogeneously distributed in the specimen although
statistical analysis shows a significant homogeneity of c−
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Fig. 13 Evolution of C in terms of both stress ratio and strain probe
direction for dense (a) and loose specimen (b)

contacts along unstable directions and a slight tendency
towards non homogeneity of c− contacts for stable direc-
tions. Second, Nc− depends strongly on the deviatoric stress
state and on the loading direction.

These results provide a solid platform for the next inves-
tigation in the same context concerning the existence of any
correlation length between contacts with negative values of
� f ci �lci .

4.3 Minimal distance between the contacts c−

In order to check whether the positions of contacts c− are
uniform (individual contact distribution) or gathered together
into aggregates (grouped contact distribution), another analy-
sis is considered. The principle consists in computing for each
contact c−k in the specimen, with k = { 1, . . . , Nc− } , the
minimum distance dkmin between this contact and the near-
est contact c−m (m 
= k) in the neighborhood. The contact
c−k and the corresponding computed distance dkmin are then
stored into a list. In a first study, we focus on the mean value

〈dmin〉 of all computed distances
{

d1
min, . . . , dNc−min

}

.
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Fig. 14 Evolution of 〈dmin〉/Ds in terms of strain probe directions for
the dense specimen at different stress ratio

The evolution of 〈dmin〉 normalized to Ds in terms of αε

for the dense specimen is plotted in Fig. 14 for η = 0 and
η = 0.95 respectively.

The smallest values of 〈dmin〉 correspond to the directions
in the cone of instability, 〈dmin〉 decreases as long as the
deviatoric stress state approaches the peak/plateau or αε gets
inside or closer to the cone of instability. In addition, the
same correspondence between the minima and maxima of
〈dmin〉/Ds and W2 (Fig. 5) is observed which finally comes
in line with the previous study since Nc− increases in these
directions and the distances between c− shrinks.

In a second study, the same reasoning is applied in order to
detect agglomerations of contacts c− (if any) such as doublet,
triplet. . . , but instead of storing the minimal distance dkmin
between c−k and c−m in the neighborhood, the twenty first
minimal distances are considered. Thus for each contact c−k
twenty values dkmini

i = (0, . . . , 20) are stored into a list
as follows

Fig. 15 Evolution of 〈dmini 〉 in terms of i, dense specimen

Fig. 16 Evolution of the twenty 〈dmini 〉 in terms of the strain probe
direction for the dense specimen

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c−1
c−2
·
·

c−Nc−

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

d1
min1

d1
min2

· · · d1
min20

d2
min1

d2
min2

· · · d2
min20

· · · · · ·
· · · · · ·

dNc−min1
dNc−min2

· · · dNc−min20

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

〈dmin1〉 〈dmin2〉 · · · 〈dmin20〉

Figure 15 shows that 〈dmini 〉 increases smoothly in terms
of the rank i with no sharp variations that could reflect a
tendency or inclination toward a specific gathering to which
the contacts c− may be subjected.

Figure 16 shows, for the twenty considered minimal dis-
tances, that the evolution of 〈dmini 〉 in terms of αε is identi-
cal to the first minimal distance 〈dmin1〉, with lowest values
in the tensorial plastic zone and more precisely within the
cone of instability. The curves representing 〈dmini 〉 keep the
same shape independently of the rank i which proves that for
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Fig. 17 Three dimensional views of contacts with negative second order work according to their belonging to strong (light) and weak (dark)
contact networks for the dense specimen

each strain probing direction, the contacts c− have almost the
same neighborhood distribution on average in the spherical
volume of radius R = d̄min20 which can reach up to 27 %
(about 6.25 × Ds) of the specimen edge’s length for strain
probes directions within the elastic tensorial zone; and 8.6 %
(about 2×Ds) of the specimen edge’s length for strain probes
directions within the cone of instability.

Finally, a three-dimensional graphical representation of
contacts with negative values of second order work from
microscopic variables is proposed as an illustration of the
analysis reported above (see Fig. 17).

The light spheres represent the contacts c− held by the
strong network, whereas the dark ones belong to the weak
contact network. Boundary effects may be noticed, but
expected as well since the walls are frictionless and the van-
ishing the microscopic second order work for a purely elastic
wall-particle contact cannot occur.

The 3D representations confirm both results quantitatively
shown in the previous study; first, the homogeneity of the
spatial distribution of contacts c− within the specimen; and
second, the competition between strong and weak phase in

holding contacts with negative values of microscopic second
work with a predominance of the weak phase.

From this study, the neighborhood (in terms of spatial
distribution of contacts c−) of c− seems to not be qualita-
tively affected by the strain loading direction. There is only
a quantitative dependence between the density of contacts
c− homogeneously spread within the sample and the strain
loading direction; with the particular case of unstable strain
direction grouped within the cone of unstable directions for
which the c− density is the highest.

5 Concluding remarks

On the basis of a discrete numerical model, relation between
unstable loading directions (characterized by negative values
of the macroscopic expression of the second order work) and
the elementary terms constituting the microscopic expression
of the second order work (i.e. � f ci �lci ) have been investi-
gated.
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Firstly, it was confirmed from a numerical point of
view that both microscopic and macroscopic expressions of
second order work are equivalent over a representative ele-
mentary volume, in a quasi-static regime of deformation.
Then, focus was concentrated on the spatial distribution,
throughout the granular assembly, of the contacts named c−,

bringing a negative contribution to the second order work. It
was shown that both weak and strong contact networks are
populated by such contacts and thus contribute to the van-
ishing of the second order work at the macroscopic scale.
However, in all cases the weak phase is more densely popu-
lated and is consequently the most important contributor of
c− contacts. A good agreement is found between the unstable
loading directions (forming the cone of instability) and the
density of population of c− contacts, which is, for these direc-
tions, the highest in the weak and the strong contact networks.
Hence, the development of unstable loading directions seems
more likely related to a multiplication of c− contacts (i.e. of
potentially unstable contacts) rather than an increase of the
contribution of some pre-existing c− contacts.

The loading directions included inside the cone of insta-
bility are leading to a sudden effective failure as soon as a
proper control variable is chosen for this loading, accord-
ing to second order work criterion and the three necessary
and sufficient conditions for failure [18,22]. It has been
shown in this paper that the distribution of unstable inter-
granular contacts is uniform for these directions. It was
shown that c− contacts are merely homogeneously distrib-
uted within the sample. No significant aggregate structure
(grouped contact) was identified even though the statistical
analysis of the distribution of c− contacts shows a slight
tendency towards non homogeneity for stable directions.
Thus, the failure mode which would be induced from the
considered stress-strain states by a proper control parame-
ter will be also homogeneous, corresponding to what has
been called a “diffuse” failure mode [23]. Analyzing the
causes of this potential non homogeneity for stable directions
constitutes an interesting perspective for further research
works.

Finally, as the weak contact network is the most densely
populated with c− contacts we may imagine that, due to
this important population of potentially unstable contacts,
the weak phase could present some defects in its role of
propping-up the force chains carrying the deviatoric load-
ing. Affected by this loss of support, some force chains could
present an unstable configuration resulting, at the scale of the
granular assembly, in an unstable mechanical response when
it is loaded in a direction included in the cone of instability.
However, this last point is still an open question and fur-
ther micromechanical investigations are necessary to better
understand the relation between the c− contacts, the unsta-
ble mechanical response and finally failure of the granular
assembly.
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