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29 Abstract
30 Questions: Are the vegetation structure and soil properties of fallows similar to adjacent 
31 species-rich Mediterranean steppe communities 35 years after abandonment? Is there a 
32 spontaneous re-development towards the original steppe vegetation after re-introduction of the 
33 traditional grazing system? Can differences in functional trait composition be identified 
34 according to different land-use types? Do traits of selected species affect the ability to re-
35 colonize fallow land?
36
37 Location: Mediterranean steppe of La Crau (Southeastern France)
38
39 Methods: We conducted 80 vegetation surveys and soil analyses in the steppe and adjacent 
40 fallow land in six locations in La Crau in 2015; for three locations, data from 2001 was included. 
41 To compare the functional composition of steppe vs. fallow land, community-weighted means 
42 (CMW) of specific leaf area (SLA), leaf dry matter content (LDMC) and canopy height were 
43 calculated. To test whether trait variability is associated with the re-colonization success of 12 
44 selected target species, we measured SLA, LDMC, canopy height, plant width and aboveground 
45 biomass on eight replicate individuals per site and species.
46
47 Results: Fallow land was characterized by lower species richness and elevated phosphorus and 
48 potassium content in the soil. Comparing vegetation relevés between 2001 and 2015 revealed 
49 that the fallows were developing towards steppe vegetation. CWMs of SLA were significantly 
50 lower and CWM of LDMC higher in steppe than in fallow land. There was no similarity in trait 
51 composition between steppe species that successfully re-colonized the fallow-land community, 
52 and no evidence that intraspecific trait variability is associated with re-colonization success of 
53 these species. 
54
55 Conclusions: Even after decades of abandonment and re-introduction of the grazing system, 
56 the vegetation structure, soil properties and plant functional trait composition of fallows differ 
57 from those of adjacent steppe communities. These results illustrate the need for active 
58 restoration to accelerate the recovery of former arable land to the target steppe communities.
59
60 Keywords: Community trait means; Cultivation; Dry Grassland; Grazing; Intraspecific trait 
61 variability; Leaf dry matter content; Natural recovery; Restoration; Specific leaf area
62
63 Nomenclature: Jäger & Werner (2002); Pavon (2014)
64
65 Abbreviations: CV = coefficient of variation; CWM = community-weighted mean; ITV = 
66 intraspecific trait variability; LDMC = leaf dry matter content; SLA = specific leaf area
67
68 Running head:  Recovery of Mediterranean steppe vegetation
69
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70 Introduction

71 Semi-natural grasslands including the steppes of the Mediterranean basin are among 

72 Europe’s most species-rich ecosystems (Willems 1983; WallisDeVries et al. 2002). 

73 Nevertheless, the 20th century’s agricultural intensification caused a dramatic decrease in steppe 

74 grasslands worldwide and led to fragmentation as well as eutrophication of these habitats, 

75 leading to a decrease in plant diversity (Poschlod et al. 1998; White et al. 2000; Karlik & 

76 Poschlod 2009). To protect the species diversity and to better connect semi-natural grasslands, 

77 grassland remnants need to be conserved or, if already altered, restored. For the restoration of 

78 these species rich grasslands, several techniques have already been proposed (Kiehl et al. 2010 

79 for review) as the natural colonization of characteristic grassland species into former intensively 

80 cultivated areas is usually very slow (Römermann et al. 2005, Buisson et al. 2006). It has 

81 already been shown that it might take several decades or centuries until the species composition 

82 and diversities of grasslands return (Forey & Dutoit 2012); accordingly, active restoration 

83 measures are typically needed. 

84 To evaluate restoration success, traditional restoration studies assess the floristic similarity 

85 between restored and original (target) vegetation, focussing on species composition as well as 

86 diversity (Jaunatre et al., 2013). However, these indicators are highly dependent on site 

87 characteristics that determine the local species-pool (Stuble et al. 2017). A complementary way 

88 of assessing restoration success is to focus on the restoration of the functional composition 

89 (Laughlin 2014, Engst et al. 2016), which is especially relevant for those sites where original 

90 species are lost from the local species pool. The analyses of plant functional traits can provide 

91 insights into how land-use changes affect vegetation dynamics and function (e.g. Römermann 

92 et al. 2009, Breitschwerdt et al. 2015), but this trait-based approach has rarely been examined 

93 in connection with restoration success in Mediterranean dry grasslands. 
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94 Various habitat filters (e.g., environmental factors such as climate conditions, soil properties, 

95 or disturbance) allow only species with certain trait values to establish (Keddy 1992; Weiher & 

96 Keddy 1995; Diaz et al. 1998; Venn et al. 2011). The species that pass these filters are 

97 necessarily similar, which eventually leads to trait convergence (Diaz et al. 1998; Wilson 2007; 

98 Laughlin et al. 2012). But, species also need to be dissimilar enough to avoid competition, 

99 according to the limiting similarity hypothesis, which eventually leads to trait divergence 

100 (MacArthur & Levins 1967; Wilson 2007; Cornwell & Ackerly 2009; Laughlin et al. 2012). 

101 Comparing the functional composition of original vs. changed plant communities and analyzing 

102 the trait composition of target species that have already successfully re-established in the 

103 restoration sites seem promising as this approach complements the taxonomic evaluation of 

104 restoration success, therewith leading to a better undestanding of the factors preventing 

105 successful restoration.

106 The aim of this study was to evaluate whether the taxonomic and functional composition of 

107 fallow lands can develop into the direction of original steppe communities without having 

108 established active restoration measures such as the addition of propagules. 

109 We performed vegetation relevés to assess whether fallow lands re-developped into the 

110 direction of the target steppe vegetation with respect to the species composition and diversity. 

111 To elucidate the potential natural development of fallow land vegetation towards the original 

112 steppe vegetation we analyzed temporal trends in vegetation changes by comparing vegetation 

113 relevés and soil analyses from 2001 with results for 2015.

114 We explored the functional composition (community-weighted mean = CWM) of traits 

115 related to plant performance and growth rate and as indicators of competitive ability and 

116 environmental tolerance of species (Garnier 1992; Reich et al. 1997; Poorter et al. 2009; 

117 Lauterbach et al. 2013; Pérez-Harguindeguy et al. 2013). Nutrient-rich environments such as 

118 former agricultural land typically favor plants with high specific leaf area (SLA) and low leaf 

119 dry matter content (LDMC). Vice versa, species with trait values indicating nutrient 
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120 conservation strategies, slow growth rates and high longevity should dominate in nutrient poor 

121 environments (Chapin et al. 1993; Garnier 1992; Lavorel & Garnier 2002; Pérez-Harguindeguy 

122 et al. 2013; Poorter & Garnier 1999; Poorter & Remkes 1990; Römermann et al. 2009; Villar 

123 et al. 2005). Canopy height reflects the competitive ability of plant communities through better 

124 light assessment (Gaudet & Keddy 1988; Westoby et al. 2002), yet the investment in height 

125 incurs costs for construction and maintenance of the stem (Falster & Westoby 2003) and thus 

126 should be positively related to soil nutrient availability. 

127 Intraspecific variation patterns in plant functional traits are a major determinant of the ability 

128 to respond and evolve with climate change and changing environmental conditions (Nicotra et 

129 al. 2010; Laforest-Lapointe et al. 2014; Bucher et al. 2017; Bucher et al. 2018). In some cases, 

130 trait variability can even be more important than particular trait values: species showing high 

131 functional variability may successfully re-establish because they manage to adapt to changing 

132 environmental conditions (Albert et al. 2011; Jung et al. 2010). In addition to the above 

133 mentioned traits we included additional plant width and biomass to test whether high 

134 intraspecific trait variability is related to re-establishment success. Both traits reflect 

135 competitive strength and should thus relate positively to soil nutrients (Pérez-Harguindeguy et 

136 al. 2013). 

137 To summarize, this study combines a taxonomic with a trait-based approach to i) identify 

138 the effects of former land uses on present vegetation composition, species diversity and 

139 physical-chemical soil parameters, and ii) investigate whether re-development towards the 

140 original steppe vegetation can be detected after a further 14 years of recovery under traditional 

141 grazing conditions (2001 vs. 2015). Moreover, we iii) investigate whether differences in CWM 

142 of plant height, SLA and LDMC between fallow land and original steppe vegetation are still 

143 observable and attempt to iv) determine whether the traits of successful colonizers show higher 

144 functional variability than those of species that have not re-established on fallow lands yet.
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145 Materials and Methods

146 Study sites

147 The plain of La Crau (Fig. 1) is the last remaining xeric steppe (Devaux et al. 1983) in 

148 southeastern France (43°33´N, 4°52´W). The area was formed by ancient river deposits during 

149 the Pleistocene period between 2 000 000 BP and 30 000 BP (Molliex et al. 2013). It has a 

150 Mediterranean climate with a frequent, strong northwesterly wind, the Mistral. Siliceous 

151 pebbles cover approximately 50% of La Crau, and plant roots are prevented from reaching the 

152 alluvial water table by an impermeable conglomerate lying 40–60 cm deep (Colomb & Roux 

153 1978). Traditionally, the land has been used for itinerant sheep grazing, probably since early 

154 Neolithic times (Buisson & Dutoit 2006). Industry, military activities, quarries, highways and 

155 intensive agriculture led to fragmentation and reduction of the semi-natural steppe vegetation 

156 from approximately 60 000 ha to 11 500 ha in the 20th century (Buisson & Dutoit 2006; Deverre 

157 1996; Etienne et al. 1998). During the period of melon cultivation (1965–1985), intensive 

158 fertilization, herbicides and deep ploughing changed the soil structure and degraded the 

159 conglomerate (Römermann et al. 2004, 2005). In contrast, cereals (1950–1966) were cultivated 

160 without deep ploughing and using less fertilizer (Devaux et al. 1983; Masip 1991). At the time 

161 of abandonment, no active restoration operations were realized. Grazing, representing an 

162 important factor for the maintenance of these grasslands, was re-introduced immediately when 

163 cultivation ceased (Dureau & Bonnefon 1998). The recovery of fallow land in our study area 

164 was thus not a strictly passive restoration technique. The flocks of sheep link remaining steppe 

165 patches (the target) and fallow lands and potentially facilitate the dispersal and establishment 

166 of steppe species into fallow lands (Fischer et al. 1996).

167 Vegetation surveys 

168 To investigate whether type of cultivation and time since abandonment play a role in 

169 restoration success on fallow land, six locations containing a total of 16 study sites differing in 
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170 their land-use histories were examined (Table 1, Fig. 1). One long-abandoned and one recently 

171 abandoned cereal field were included, to represent different time spans.

172 We conducted vegetation relevés on 20 m x 20 m sites, placing five replicate 2 m × 2 m 

173 quadrats at each corner and in the middle (hereafter referred to as ‘plots’). Species cover was 

174 estimated using the scale of Braun-Blanquet (1964). At each location, at least two sites 

175 consisting of one undisturbed steppe plot and one adjacent fallow land plot grazed by the same 

176 flock of sheep were studied. The locations Petit Abondoux, Poulagère and Couliès were 

177 sampled in May 2014 (Tanet 2014; Fig. 1), and the locations Peau de Meau, Grand Abondoux 

178 and Valigne in April 2015 (Fig. 1). 

179 Percentages of vegetation cover, stone cover and bare ground were estimated on the five 

180 plots at the time of vegetation sampling. To estimate the standing crop, we cut the total 

181 aboveground biomass on three 0.5 m × 0.5 m randomly chosen quadrat within each site. The 

182 leaf area index (LAI), the ratio of foliage area to ground surface area (Watson 1947), of each of 

183 the five plots was measured using the LAI-2200C Plant Canopy Analyzer. Species richness S 

184 representing the total number of species, Shannon diversity index (Hs) and Evenness (E) were 

185 calculated for each plot (Mühlenberg 1993).

186 Soil sampling

187 To identify the effect of former land use on physical-chemical soil parameters, three replicate 

188 mixed soil samples of the upper soil layer (0–10 cm) were collected randomly within each site. 

189 After drying and sieving with a 2 mm mesh sieve, soil samples were analyzed at the INRA soil 

190 analysis laboratory (Institut National de la Recherche Agronomique, Arras, France) according 

191 to standardized protocols. Organic carbon (C in g kg-1) and total nitrogen content (N in g kg-1) 

192 were analyzed via the dry combustion method using a CHN elemental analyzer (Vario EL 

193 Elemental Analyzer, Elementar). Phosphorus content (P in g kg-1) was measured by the Olsen 

194 method (Olsen 1954). Calcium (Ca in g kg-1), magnesium (Mg in g kg-1) and potassium (K in 

195 g kg-1) were determined by the Metson method (Metson 1957). Additionally, soil pH was 
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196 measured in a 1:1 soil-water solution, after stirring once followed by a 24 h rest period. Carbon-

197 nitrogen ratio (C:N) and organic matter (OM in g kg-1) were calculated using total C and N 

198 results. The amount of clay (> 0.002 mm), fine silt (0.002–0.02 mm), coarse silt (0.02–

199 0.05 mm), fine sand (0.05–0.2 mm) and coarse sand (0.2–2 mm) in g kg-1 were determined 

200 according to the Robinson method (Robinson 1922) without previous decarbonation (Baize 

201 2000).

202 Comparison of vegetation composition between 2001 and 2015

203 To investigate whether the vegetation composition of the fallow land had re-developed 

204 towards the vegetation of unaltered steppes over the previous 14 years, we compared old 

205 vegetation relevés from Römermann et al  (2004, 2005) to recent vegetation relevés for the 

206 locations Peau de Meau (steppe, cereal fallow, melon fallow; Table 1), Petit Abondoux (steppe, 

207 cereal fallow; Table 1) and Valigne (steppe, melon fallow; Table 1). Ten replicate relevés were 

208 carried out per site in 2001 and five in 2015. 

209 Trait data and community-weighted means (CWM)

210 We compiled trait data for SLA (the ratio of fresh leaf area to dry mass in g cm-2), LDMC 

211 (the ratio of dry mass to fresh mass in mg g-1) and canopy height (cm) for all species observed 

212 in the vegetation relevés using the trait databases TRY (Kattge et al. 2011) and BROT (Paula 

213 & Pausas 2013). This dataset was then supplemented with our own measurements for species 

214 missing from the databases. For our own measurements, five individuals per species were 

215 collected at the site where they were most abundant, following the approach described in 

216 Rosbakh et al. (2015). Plants were collected and measured from May to July 2015, following 

217 standardized protocols (Pérez-Harguindeguy et al. 2013). For each species, two healthy sun 

218 leaves were collected, wrapped in moist paper and stored in a plastic bag in a cool box until the 

219 fresh leaf weight was measured. The fresh leaf area was determined at 300 dpi on a flatbed 

220 scanner. Leaf area was measured on scanned fresh leaves with the Leaf Trait package for R 
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221 (Bernhardt-Römermann, unpubl.). Then, the leaves were dried at 70° C to constant mass and 

222 subsequently weighed. For each vegetation relevé, we then calculated the CWM for SLA, 

223 LDMC and canopy height according to:

Formula 1: 𝐶𝑊𝑀𝑐 =
𝑠

∑
𝑖 = 1

𝑝𝑖𝑐 × 𝑇𝑖𝑐

224 where the mean value of trait T for species i in the community c was weighted by species 

225 relative abundance pic in the community, with a total of S species (Garnier et al. 2004; Violle et 

226 al. 2007).

227 Species selection and trait measurements for intraspecific trait variability (ITV)

228 Species selection was based on vegetation relevés from 2001 (Römermann et al. 2004, 2005) 

229 and 2014 (Tanet 2014). The final selection was based on indicator species analysis conducted 

230 with the package ‘indicspecies’ (Cáceres & Legendre 2009) supplemented by expert knowledge. 

231 We identified three successful colonizers as those occurring originally in the steppe but also in 

232 the fallow land (Carthamus lanatus L., Lobularia maritima L  Desv., Sideritis romana L.). Five 

233 unsuccessful colonizers were limited to the steppe (B. retusum, Hypochaeris glabra L., Linum 

234 trigynum L., Stipa capillata L., Trifolium campestre Schreb.). Four species whose major 

235 distribution was in fallow land were added for comparison (Crepis foetida L., Dactylis 

236 glomerata L., Galactites tomentosus Moench., Trifolium subterraneum L.). We sampled a 

237 maximum of eight individuals per species and site if abundant: for details, see Table 2 and 

238 Table 3. Besides SLA, LDMC and canopy height, we expanded our trait set to include plant 

239 width (cm), aboveground biomass (g), seed mass (mg) and leaf carbon (leaf C in mg kg-1), 

240 nitrogen (leaf N in mg kg-1) and phosphorus content (leaf P in mg kg-1; Table 3). Plant width was 

241 measured with a measuring tape at maximum diameter without extending the plant, biomass 

242 was dried at 70° C to constant mass and subsequently weighed. We determined average seed 

243 mass by weighing five batches of 20–100 ripe seeds per species, depending on the species. Seed 

Page 10 of 36  
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244 sampling was not possible for B. retusum, H. glabra and S. capillata as seed production was 

245 not sufficient in 2015. Due to insufficient plant material, leaf samples of the eight individuals 

246 were pooled per site prior to nutrients analyses. Thus, ITV could not be calculated thereof but 

247 leaf nutrients could be compared between the different land-use types (see Appendix S3).

248 To characterize the differences in trait composition between individuals measured in the 

249 steppe and the fallow land sites, a principle component analysis (PCA) was conducted (matrix: 

250 854 individuals of 9 species x 9 traits; H. glabra, B. retusum, T. subterraneum were excluded 

251 because of data constraints – insufficient biomass and seeds available). Prior to analyses, data 

252 was standardized to zero mean and unit variance. 

253 To characterize ITV, the coefficient of variation (CV) was calculated as the standard 

254 deviation divided by the mean for all measured traits (Pérez-Harguindeguy et al. 2013) based 

255 on the eight individuals per species and site. ITV was calculated for all species occurring in the 

256 steppe sites to assess whether species with higher trait variability were more likely to pass 

257 through the environmental filter and thus manage to re-establish in fallow land. Therefore, we 

258 included four unsuccessful colonizers three successful colonizers and two fallow land species 

259 in our CV calculation (Table 2). 

260 Statistical analyses

261 Vegetation composition and soil properties

262 To test for the effect of land-use history on vegetation structure (S, Hs, E, standing crop, 

263 LAI, vegetation cover/stone cover/bare ground) and soil properties (clay, silt, sand, organic 

264 matter, total C, total N, C:N, pH, P, Ca, Mg and K), one-way ANOVA followed by a Tukey 

265 Honest Significant Difference post-hoc test was performed for normally distributed data with 

266 homogeneous variances. Any data not showing normal distribution and homogeneous variances 

267 were analyzed by the nonparametric Kruskal–Wallis test followed by the pairwise Wilcoxon 

268 test with P-value adjustment according to Holm.
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269 To assess associations between differences in vegetation composition and environmental 

270 parameters, a detrended correspondence analysis (DCA) was conducted. We used species 

271 abundances of the five vegetation relevés per site as the main matrix (a total of 12 species x 16 

272 sites). Then, environmental parameters were correlated with the axes using mean values 

273 calculated per site for each parameter. The environmental factors considered were five physical 

274 soil variables (clays, fine and coarse silt, fine and coarse sand) and eight chemical soil variables 

275 (total C, total N, C:N, pH, P, Ca, Mg and K) as well as percentage cover of vegetation, stones 

276 and bare ground and time since abandonment as deduced from the fallow land cultivation period 

277 (Table 1). All parameters were standardized to zero mean unit variance prior to analyses.

278 Comparison of vegetation composition between 2001 and 2015

279 As the 2001 data were obtained on 2m x 2m plots via the frequency method (Pfadenhauer et 

280 al. 1986), we harmonized the data for 2001 and 2015 into presence/ absence data to avoid any 

281 observer effects in the estimation of the frequencies and for the non-metric multidimensional 

282 scaling (NMDS). Species that occurred just once across the overall dataset were removed to 

283 avoid discriminating the dataset too strongly by their presence alone instead of discriminating 

284 the gradient by their frequencies.

285 Differences in trait composition: Community-weighted means (CWM) and intraspecific trait 

286 variability (ITV)

287 To analyze differences between CWM of the three land-use types and CVs, a one-way 

288 ANOVA followed by a Tukey Honest Significant Difference post-hoc test was performed for 

289 normally distributed data with homogeneous variances. Any data not showing normal 

290 distribution and homogeneous variances were analyzed by the nonparametric Kruskal–Wallis 

291 test followed by the pairwise Wilcoxon test with P-value adjustment according to Holm.

292 All statistical analyses were carried out in R (version 3.3.1, R Development Core Team 2015, 

293 Vienna, AT). Multivariate analyses (DCA, PCA, NMDS) were performed using the R packages 

294 ‘vegan’ (Oksanen et al. 2008) and ‘MASS’ (Venables & Ripley 2002).
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295 Results

296 Vegetation and soil attributes

297 Vegetation structure and soil properties of fallow lands differed from those of adjacent 

298 steppe (Table). The steppe showed highest values in species richness, Shannon diversity and 

299 Evenness; cereal fallows typically had intermediate positions (Table 4). Melon fallows had 

300 significantly higher values in soil Ca, P and pH. The C/N ration was highest in steppes. 

301 The DCA (Fig. 2) showed a trend towards very homogeneous vegetation composition in the 

302 steppe plots at different sites, whereas the fallow lands tended to be more heterogeneous in 

303 vegetation composition. The first axis separated steppe from fallow land and was negatively 

304 correlated with total soil C, vegetation cover and soil C:N ratio. Percentages of bare ground, 

305 clays, pH and P were positively correlated with fallow land. 

306 Comparison of vegetation composition between 2001 and 2015

307 In 2001, steppe and fallow lands had distinct species composition trends indicated by the 

308 separated polygons of the NMDS (Fig. 3). Fourteen years later, the fallow land had developed 

309 towards the original steppe vegetation, while there had been little change in steppe vegetation 

310 composition. The steppe communities of both 2001 and 2015 were characterized by perennial 

311 species, such as the dominant steppe species B. retusum and S. capillata and the annual species 

312 Aira cupaniana Guss. and Linum strictum L.. Cereal fallows in 2001 commonly contained 

313 Euphorbia falcata L. and Reseda phyteuma L., whereas Medicago monspeliaca L. and Poa 

314 bulbosa L. were identified as late colonizers of these cereal fallows. Melon fallows in 2001 

315 were characterized by Bromus rubens L., Bromus intermedius L., Hordeum murinum L. and 

316 Rostraria cristata (L.) Tzvelev. In 2015, these species had declined and Plantago lagopus L. 

317 and Catapodium rigidum (L.) C.E.Hubb. had become the typical melon fallow species. For 

318 details on species distribution see Fig. 3.
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319 Differences in trait composition

320 As shown in Table 4, CWM of SLA was significantly lower in steppe than in fallow-land 

321 communities (χ2 = 54.19, P < 0.001) while CWM of LDMC was significantly higher in steppe 

322 communities (F2,77 = 52.38, P < 0.001). Canopy height differed among all the land-use types. 

323 The highest values were observed in the steppe and the lowest in cereal fallows (F2,77 = 5.19, 

324 P < 0.01). For individual species information see Appendix S1. 

325 The PCA (Appendix S2) partly separated the species according to their trait composition 

326 measured in the steppe and the fallow land. C. foetida, D. glomerata, L. trigynum and 

327 S. romana showed a tendency towards a distinction between the steppe and fallow lands and 

328 thus changes in plant trait values due to land-use change, as indicated by the black arrow.

329 The CV did not reveal any differences between successful and unsuccessful colonizers (Fig. 

330 4). Overall, significant differences between species were found for SLA (χ2 = 27.44, P > 0.001), 

331 LDMC (χ2 = 31.75, P > 0.001) and plant width (χ2 = 36.91, P > 0.001). L. trigynum, as a typical 

332 steppe species, varied more in SLA than the fallow land species D. glomerata and the successful 

333 colonizer S. romana. Regarding LDMC values, L. trigynum displayed the highest variability, 

334 while B. retusum and D. glomerata had significantly lower variability. B. retusum had a 

335 significantly lower CV in plant width than L. trigynum and S. romana. S. romana showed 

336 significantly higher variation in plant width than C. lanatus (successful colonizer). 

337 Discussion

338 The recovery of fallow land in our study area implemented grazing and was thus not a strictly 

339 passive restoration technique. The fact that more than 35 years after cultivation has ceased the 

340 studied vegetation did not fully transform to steppe calls for more active intervention, like 

341 seeding and planting. Notwithstanding these results, the comparison of vegetation relevés from 

342 2001 with results for 2015 indicated a (though slow) conversion of fallow land towards steppe 

343 vegetation. Furthermore, there was no particular similarity in trait composition between steppe 
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344 species that successfully re-colonized fallow lands and the fallow-land community, and no 

345 evidence that intraspecific trait variability is associated with re-colonization success of these 

346 species. 

347 Effect of former cultivation on vegetation attributes and soil parameters

348 Former cultivation practices still influence present vegetation attributes. The species 

349 composition of recently abandoned cereal fallows can be distinguished from the species 

350 composition of the steppe. However, in the long-abandoned cereal fallow, there is a visible 

351 vegetation development towards the original steppe community. 

352 Our results show that the dominant perennial steppe grass B. retusum has so far been unable 

353 to re-establish on the fallow land; this is not only directly explained by habitat change due to 

354 deep soil ploughing and high fertilization, but also indirectly by competition with the common 

355 fallow land species (Buisson et al. 2015; Coiffait et al. 2012). Moreover, dispersal limitation 

356 and the mainly vegetative reproduction of this steppe grass (Dureau & Bonnefon 1998) have 

357 prevented successful re-establishment. The decline of C:N ratios on the fallow land can be 

358 explained by organic matter mineralization and the absence of restitution from perennial grass 

359 species unable to re-colonize fallow land (Römermann et al. 2004, 2005). 

360 The high percentage of bare ground is characteristic of fallow land, where stones were 

361 removed for cultivation purposes (Buisson & Dutoit 2006). However, stones create important 

362 micro-habitats for the typical steppe vegetation: they preserve humidity, serve as shelter and 

363 create safe sites for rhizomes of e.g., B. retusum (Bourrelly 1984; Caturla et al. 2000; Buisson 

364 et al. 2015). 

365 According to Janssens et al. (1998), plant diversity is limited by high soil fertility, especially 

366 by plant-available phosphorus. The fallow land remains distinguished from the steppe by its 

367 elevated phosphorus and potassium content due to former fertilization, as also observed by 

368 Gough and Marrs (1990) on abandoned fields in the UK. Because of different cultivation regime 

369 intensities, i.e., deep ploughing, fertilization, the application of pesticides in melon-cultivated 
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370 areas (Masip 1991) versus less intensive cereal cultivation, phosphorus content was higher in 

371 melon fallows than in cereal fallows. Deep ploughing for melon cultivation destroyed the upper 

372 part of the geological conglomerate 40 cm deep in the soil, bringing some pieces of the matrix 

373 (composed of CaCO3) to the surface. Hence, Ca content increased and higher pH was measured. 

374 The effect of ploughing also appears in the physical soil parameters. As a result of soil 

375 disturbance through ploughing, clays from the steppe subsoil layer (20–40 cm) were transported 

376 to the topsoil, leading to a higher clay content for the fallow land (10–20 cm; Duclos 1994). 

377 The opposite effect is observed for the coarse silt of the steppe, which was buried in the subsoil 

378 as a result of ploughing (Bulot et al. 2017; Chenot et al. 2017).

379 Öster et al. (2009) found that in semi-natural grassland communities in Sweden, species 

380 richness and similarity were still lower in fallow lands more than 50 years after cultivation. 

381 Differences in plant attributes between calcareous grassland and fallow land after 60-100 years 

382 were also shown by Fagan et al. (2008), Karlik & Poschlod (2009) and Forey and Dutoit (2012). 

383 Remnants of fertilization persist in the soil of fallow land for many years and still affect plant 

384 communities and the vegetation structure decades after abandonment (Willems et al. 1993; 

385 Austrheim & Olsson 1999; Lepš 1999).

386 Comparison of vegetation structure between 2001 and 2015

387 The resurvey of the research site in 2015 shows a trajectory of the former cultivated areas 

388 towards the original steppe community, even though differences in vegetation and soil structure 

389 still exist. Although common in 2001, ruderal species H. murinum and R. cristata were not 

390 recorded on melon fallows in 2015. Similarly, Bromus species- typical species in the first year 

391 of abandonment- were less common on fallow land in 2015. In cereal fallows, not only weed 

392 species but also some typical steppe species had established by 2015. The steppe vegetation did 

393 not change over time because the disturbance regime (i.e., extensive grazing) remained stable 

394 between 2001 and 2015 (Sauguet 2013). The more rapid development from cereal fallow 

395 vegetation towards steppe vegetation was probably due to the fact that less fertilizer was applied 
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396 during cultivation and that there was no deep ploughing (Römermann et al. 2005, Buisson et al. 

397 2006).

398 Effect of former cultivation on plant functional traits

399 This study confirms the relevance of the leaf traits SLA and LDMC at community level to 

400 explain the response of ecosystems to land-use change, as proposed by previous studies (Díaz 

401 et al. 2007; de Bello et al. 2010; Vandewalle et al. 2010). The steppe community was 

402 characterized by smaller and denser leaves, typical of plants following a conservative strategy 

403 (Grime 1973; Saatkamp et al. 2010; Pérez-Harguindeguy et al. 2013). Our study demonstrates 

404 that the fallow land is still a nutrient-rich environment favoring communities with high SLA 

405 and low LDMC. This is in line with findings demonstrating the association of low SLA with 

406 efficient nutrient conservation strategies, nutrient-poor habitats, slow growth rates and high 

407 longevity, as outlined above (Poorter & Remkes 1990; Garnier 1992; Chapin et al. 1993; 

408 Poorter & Garnier 1999; Lavorel & Garnier 2002; Pérez-Harguindeguy et al. 2013). Our 

409 analyses showing that the cereal fallows occupy an intermediate position with respect to trait 

410 composition also reveal that type of cultivation plays an important role in re-development 

411 towards the unaltered steppe vegetation. Plant height was greater in steppe communities than 

412 in fallow land, contradicting our initial hypothesis. However, it is in line with findings from 

413 Australian ecosystems (Falster & Westoby 2003) that showed positive relationships between 

414 plant height and LAI. Our finding of higher plants in the steppe may be related to the higher 

415 fodder quality in nutrient-rich fallow land, which could lead to preferential grazing by 

416 herbivores, reducing plant height (Falster & Westoby 2003; Saatkamp et al. 2010). This 

417 differential selection by herbivores of recently impacted sites due to their higher fodder quality 

418 could also have implications for restoration (Yates et al. 2000). Tests of plant and soil mineral 

419 content of our data revealed a significantly positive correlation between soil phosphorus and 

420 leaf phosphorus content (r = 0.67, P < 0.001), soil nitrogen and leaf nitrogen content (r = 0.35, 

421 P < 0.02, analyses not shown).
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422 We found no evidence of particular similarity between the trait values of successful 

423 colonizers and those of the species typically found in fallow-land communities. We thus have 

424 to reject the idea that colonizers simply “fit into” the assembly of recent fallow-land 

425 communities with initial assembly conditions of high nutrient levels and recently-moved soil. 

426 Alternatively, the data can be understood as indicating that successful colonizers exploit the 

427 diverging conditions created during longer grazing periods with decreased nutrient status, and 

428 that these colonizers may be better adapted to grazing than typical fallow-land species 

429 (Saatkamp et al. 2010). However, our species pool was quite small with differences in sample 

430 size, and further studies should consider a more extensive species set covering more families.

431 Furthermore, our data show higher functional variability to be highly species- and trait-

432 specific, with no clear pattern revealed for the trait values of successful or unsuccessful 

433 colonizers. This supports the view that plants in fallow lands are assembled according to their 

434 adaptability to specific grazed fallow-land conditions, rather than reflecting a wide intraspecific 

435 trait variability that ensures their survival in both fallow-land and steppe communities. Hence, 

436 our study suggests that plants with specifically high ITV are not favored in the assembly process 

437 after abandonment and during grazing.

438 Conclusions and implications for management

439 Our study demonstrates that natural recovery of abandoned fallow land, notwithstanding its 

440 close proximity to the target vegetation, can take more than 35 years, even when the traditional 

441 grazing system is re-introduced just after cultivation abandonment. Regular monitoring of 

442 further vegetation development in the abandoned fallow land would enable the potential for 

443 natural recovery after a period of cultural land-use to be assessed. 

444 In addition to monitoring natural recovery over the long term, new grazing systems could be 

445 introduced to hasten recovery or more active restoration implemented by seeding nurse or 

446 structuring species (e.g. B. retusum; Coiffait-Gombault et al., 2012; Buisson et al., 2015). 

447 Future analyses could cover an extended set of species and include further traits to better 
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448 elucidate assembly processes. In particular, they should consider traits closely related to soil 

449 water conditions, such as leaf venation traits and water-use efficiency, and traits related to soil 

450 stoichiometry, such as root traits, mycorrhizal type (Jaunatre et al. 2016) and seed nutrient 

451 content. Future projects need to identify project-specific restoration targets in order to 

452 implement a trait-based approach into their restoration protocol.
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Table 1. Overview of the land-use history of the study sites in La Crau studied in 2015. *Comparison 
between 2001 and 2015.

Location Study sites Land-use type Abbreviation Cultivation period

Peau de Meau

steppe

steppe

steppe

cereal fallow

cereal fallow

melon fallow

-

-

-

melons, cereals

melons, cereals

melons

PM_CSa*

PM_CSb

PM_CSc

PM_MCa*

PM_MCb

PM_ME*

-

-

-

1974–1977

1969–1970

1965–1968, 1984

Petit Abondoux
steppe

cereal fallow*

-

melons, cereals

PA_CS

PA_MC*

-

1979–1984

Grand Abondoux
steppe

melon fallow

-

melons

GA_CS

GA_ME

-

1980–1981

Valigne
steppe

melon fallow

-

melons

VA_CS*

VA_ME*

-

1978, 1984

Poulagère
steppe

old cereal fallow

-

cereals

PO_CS

PO_OC

-

< 1900

Couliès
steppe

recent cereal fallow

-

cereals

CO_CS

CO_RC

-

1994, 2000

*comparison between 2001 and 2015
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Table 2. List of the 12 species, classified into unsuccessful colonizers, fallow-land species and 
successful colonizers, on which trait measurements were performed on the study sites (Table 1) in 2015. 

Species group Species Abbreviation Family Individuals sampled 
per species

Brachypodium retusum (Pers.) P. Beauv. Bra_ret Poaceaea 64

Hypochaeris glabra L. Hyp_gla Asteraceae 15

Linum trigynum L. Lin_tri Linaceae 120

Stipa capillata L. Sti_cap Poaceae 110

Unsuccessful 
colonizers

Trifolium campestre Schreb. Tri_cam Fabaceae 59

Crepis foetida L. Cre_foe Asteraceae 128

Dactylis glomerata L. Dac_glo Poaceae 128

Galactites tomentosus Moench. Gal_tom Asteraceae 52

Fallow-land 
species

Trifolium subterraneum L. Tri_sub Fabaceae 16

Carthamus lanatus L. Car_lan Asteraceae 125

Lobularia maritima L. Desv. Lob_mar Brassicaceae 128Successful 
colonizers

Sideritis romana L. Sid_rom Lamiaceae 128

     



For Review Only

27

Table 3. Plant functional traits measured on 12 focal species (Table 2). *These plant traits are not part 
of the main study, but available in Supporting Information (Appendix S2, S3). 

Organ Plant trait Abbreviation Unit Measurements per site

Whole plant Canopy height cm 8 individuals

Plant width cm 8 individuals

Aboveground biomass g 8 individuals

Leaf Specific leaf area SLA g cm-2 8 individuals

Leaf dry matter content LDMC mg g-1 8 individuals

Leaf carbon content* Leaf C mg g-1 pooled

Leaf nitrogen content* Leaf N mg g-1 pooled

Leaf phosphorus content* Leaf P mg g-1 pooled

Seed Seed mass* mg 5 individuals
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Table 4. Summary of mean ± standard error (SE) of the measured vegetation and soil parameters and 
community-weighted means (CWM) for the three land-use types. The statistical test values are given. 
Different letters indicate significant differences between the three land-use types as extracted from pair-
wise tests. *** P < 0.001; ** P < 0.01; * P < 0.05; n.s. P > 0.05

Steppe Cereal Melon Statistical 
test values

Mean ± SE Mean ± SE Mean ± SE

Species richness 35.3±0.1 a 29.0±1.6 b 22.7±1.5 c χ² = 27.5***

Shannon diversity index 2.6±0.06 a 2.3±0.1 a 1.9±0.09 b χ² = 24.7***

Evenness 0.7±0.01 a 0.7±0.02 a 0.6±0.02 b χ² = 15.9***

Standing crop 42.8±1.2 a 17.9±0.7 b 18.7±0.8 b F = 289.5***

Leaf area index 3.0±0.1 a 1.3±0.2 b 1.0±0.1 b F = 57.2***

Vegetation cover 60.3±1.9 a 50.2±3.2 b 43.7±3.4 b F = 10.2***

Stone cover 46.5±1.2 a 36.6±2.5 b 45.0±2.0 a F = 10.7***

V
eg

et
at

io
n

Bare ground 9.9±0.7 b 16.2±1.2 a 18.8±2.5 a F = 13.6***

Clays 192.7±2.0 c 202.2±3.4 b 213.4±2.6 a F = 20.0***

Fine silt 192.1±1.7 191.4±1.1 194.3±2.3 n.s.

Coarse silt 161.5±4.0 a 140.1±1.2 b 144.6±2.1 b F = 12.0***

Fine sand 210.8±4.8 203.7±3.2 214.4±5.4 n.s.

Coarse sand 242.9±6.2 b 262.7±4.2 a 233.2±7.8 b F = 7.2**

Total Carbon 16.2±0.3 15.6±0.2 15.4±0.6 n.s.

Total Nitrogen 1.4±0.03 1.5±0.02 1.5±0.05 n.s.

Carbon-Nitrogen ratio 11.0±0.06 a 10.6±0.04 b 10.5±0.09 b F = 25.0***

Organic matter 28.0±0.5 26.9±0.4 26.59±1.1 n.s.

pH 6.9±0.04 c 7.1±0.03 b 7.25±0.05 a F = 20.6***

Phosphorus 0.009±0.0003 b 0.03±0.006 a 0.04±0.007 a F = 22.0***

Calcium 1.4±0.03 b 1.5±0.03 ab 1.6±0.05 a F = 7.2**

Magnesium 0.9±0.009 0.9±0.02 0.9±0.03 n.s.

So
il

Potassium 0.3±0.01 c 0.4±0.03 b 0.4±0.03 a χ² = 24.7***

SLA 15.2±0.3 b 21.4±0.7 a 21.4±0.9 a χ² = 54.2***

LDMC 333.9±5.7 a 252.4±6.3 b 276.0±5.5 b F = 52.4***

C
W

M
 tr

ai
ts

Canopy height 32.6±0.5 a 29.3±1.2 b 29.5±1.1 ab F = 5.2**
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Figure 1. Map of La Crau area in France with the six selected locations. Modified from Sylvain 
Fadda, IMBE (In light grey, the area of steppe remnants ). At every location, we chose at least two 
study sites that represented one undisturbed steppe and at least one fallow land.
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Figure 2. Detrended correspondence analysis (DCA) of all plots. Main matrix: vegetation data (16 sites 
with 5 vegetation relevés; 136 species) and second matrix: environmental factors (data on 19 parameters 
for 16 sites). In total, plots from eight steppe sites (white), five cereal fallows (light grey; rectangle: 
long-abandoned field (since 1900); triangle: recently-abandoned field (since 2000) and three melon 
fallows (dark grey) are shown. Vectors were significantly related to the axes (P < 0.05).
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Figure 3. Results of non-metric multidimensional scaling (NMDS) carried out on the presence/ absence 
vegetation data for 2001 and 2015. The color of polygons (convex hulls) indicates the land- use types 
(white: steppe, light grey: cereal fallows, dark grey: melon fallows) while the structure represents the 
time of assessment (plain: assessed in 2001 with n = 10, dotted: assessed in 2015 with n = 5). Vegetation 
relevés from Peau de Meau, Valigne and Petit Abondoux were included. Final stress = 0.19. For clarity, 
only 56 species are displayed (out of 130). 
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Figure 4. Coefficient of variation (CV) of (a) specific leaf area (SLA), (b) leaf dry matter content 
(LDMC), (c) canopy height, (d) plant width and (e) biomass for selected species occurring in the steppe 
sites. The scales of the y-axis differ among panels. In the right-hand corner, the total CV of plant traits 
is given, represented by a dashed line in the boxplots. Kruskal–Wallis tests were applied followed by 
the pairwise Wilcoxon test with P-value adjustment according to Holm (*** P < 0.001; ** P < 0.01; 
* P < 0.05; n.s. P > 0.05). Different letters indicate significant differences among species. For 
abbreviations of species names, see Table 2.
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Appendix S1. Trait values of specific leaf area (SLA), leaf dry matter content (LDMC) and canopy height for all species. Mean ± standard errors are given for the measured trait values per species 

and land-use type. Different letters indicate significant differences between steppe, cereal and melon fallow. *** P < 0.001; ** P < 0.01; * P < 0.05; n.s. P > 0.05  

    SLA       LDMC       Canopy height   

  

Species Steppe Cereal Melon 

Statistical 

test values Steppe Cereal Melon 

Statistical 

test values Steppe Cereal Melon 

Statistical  

test values   

U
n
su

cc
es

sf
u
l 

 

co
lo

n
iz

er
s  

Bra_ret 9.5±0.3 - - - 512.8±7.1 - - - 15.6±0.5 - - - 

Hyp_gla 22.7±1.6 - - - 152.3±13.5 - - - 2.0±0.4 - - - 

Lin_tri 17.8±0.7 a 16.2±0.6 ab 15.0±1.0 b χ² = 7.4* 330.9±11.9 327.4±13 2 324.2±18.0 n.s. 11.9±0.4 11.3±0.8 10.7±0.7 n.s. 

Sti_cap 5.1±0.1 4.9±0.1 5.0±0.3 n.s. 569.9±7.2 575.6±16 9 558.0±9.1 n.s. 32.7±1.0 a 26.4±1.5 b 25.3±1.6 b F = 9.8*** 

Tri_cam 27.7±0.7 - - - 281.7±7.0 - - - 6.1±0.4 - - - 

F
al

lo
w

-l
an

d
 

sp
ec

ie
s  

Cre_foe 22 2±0.6 19.9±0.6 20.1±0.7 n.s. 192.7±4.3 a 181.4±5.5 b 186.7±5.2 ab χ² = 6.6* 4.4±0.3 ab 4.0±0.3 a 5.3±0.4 b χ² = 9.7** 

Dac_glo 20.8±0.4 20.8±0.5 22.0±0.6 n.s. 361.0±4.7 360.8±5.5 360.5±5.1 n.s. 14.8±0.6 a 11.7±0.6 b 11.9±0.7 b χ² = 11.8** 

Gal_tom 11 3±0.3 a 10.9±0.3 a 9.6±0.4 b F = 5.5** 228.9±8.2 233.2±10.8 228.8±19 1 n.s. 28.3±1.9 32.2±2.0 27.9±2.2 n.s. 

Tri_sub - 19.4±0.5 - - - 313.5±10.8 - - - 2 3±0.2 - - 

S
u
cc

es
sf

u
l 

co
lo

n
iz

er
s  

Car_lan 7.4±0.2 a 6.5±0.2 b 7.7±0.3 a χ² = 15.9*** 394.3±8.5 a 341.8±11 1 b 366.7±15 1 ab F = 4.3* 23.0±1.1 a 15.8±1.0 b 25.0±1.5 a χ² = 15.1*** 

Lob_mar 11 3±0.3 10.3±0.4 10.2±0.5 n.s. 303.1±7.6 323.7±9.8 333.1±12 1 n.s. 8.9±0.3 a 6 3±0.4 b 6.2±0 3 b F = 22.5*** 

Sid_rom 24.0±0.5 22.5±0.6 23.1±0.6 n.s. 224.8±3.9 230.0±6.5 222.9±7.7 n.s. 7.0±0.4 a 3 3±0.3 c 5.4±0.6 b χ² = 29.6*** 
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Appendix S3. Leaf nutrient content of carbon (C), nitrogen (N) and phosphorus (P) compared between original steppe and fallow lands (eight individuals per site pooled). Mean ± standard errors 

(SE) are shown. P was measured with inductively-coupled plasma optical emission spectrometry (IPC-OES, Optima 3000, Fa. Perkin Elmer) at the TLL (Thüringer Landesanstalt für Landwirtschaft, 

Jena). Leaf N and leaf P content were analyzed with a CHN elemental analyzer (Vario EL Elemental Analyzer, Elementar). Leaf nutrient content could not be measured for Hypochaeris glabra, 

Trifolium campestre and Trifolium subterraneum due to insufficient plant material.  

 Steppe Cereal Melon Statistical test values 

 Mean ± SE Mean ± SE Mean ± SE  

Leaf carbon content 43.24±0.25 a 41.40±0.34 b 42.13±0.45 ab χ2 = 13.0** 

Leaf nitrogen content 1.70±0.08 b 2.15±0.14 a 1.94±0.18 ab χ2 = 6.7* 

Leaf phosphorus content 1.26±0.01 c 2.86±0.07 b 3.39±0.10 a χ2 = 58.1*** 

 

Page 36 of 36  




