Preamble

Online change-point detection

Contribution 00000000000 00000 Simulation results

Perspectives

Innia

< □ > < Ξ > < Ξ > <</p>

1/64

INSTITUT ÉLIE CARTAN DE LORRAINE INRIA BIGS TEAM

> ENBIS-18 in Nancy 2 - 6 September 2018

Change-point Detection Methods in the Online Context

Anne Gégout-Petit, Nassim Sahki, Sophie Mézières

2 septembre 2018

Nassim SAHKI

reamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Plan

Online change-point detection

- Recursive detection statistics
- Stopping rule

Contribution

- Instantaneous threshold
- Procedure reset
- Corrected stopping rule

Simulation results

<ロ>< 臣>< 臣>< 臣>< 臣> 臣 のへで 2/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Preamble

◆□▶◆臣▶◆臣▶ 臣 のへで

3/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

What is change-point?

A change-point is an instance in time where the statistical properties of sequence of observations $\{X_i\}_{i=1,.,n}$ before and after this time point differ.

▲□▶▲臣▶▲臣▶ 臣 のQ@

4/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
B (1) 11				

Definition

 \Rightarrow A change-point exists in an ordered sequence of data : { X_i }_{i=1,..,n} = { $X_1, ..., X_n$ } :

• $\exists ! v \in \{1, ..., (n-1)\};$

 $\label{eq:constraint} \bullet \left\{ \begin{array}{l} \{X_1,..,X_v\} & \text{are distributed according to a density } f(x) \ ; \\ \{X_{v+1},..,X_n\} & \text{are distributed according to a density } g(x). \end{array} \right.$

where f, g are known, such as : $f(x) \neq g(x)$.

 \Rightarrow Existence of m multiple change-points :

• $\exists m \in \mathbb{N}, \{v_j\}_{j=1,...,m} = \{v_1,...,v_m\}$, such as : $\{v_j\}_{j=1,...,m} \subset \{1,...,(n-1)\}$.

▲□▶▲臣▶▲臣▶ 臣 のQ@

6/64

• At each $\{v_j\}_{j=1,..,m}$: distribution of observations before and after v_j are different.

Preamble	Online change-point detection 00 00	Contribution 0000000000 00000 00	Simulation results	Perspectives

Definition

 \Rightarrow A change-point exists in an ordered sequence of data : { X_i }_{i=1,..,n} = { $X_1, ..., X_n$ } :

• $\exists ! v \in \{1, ..., (n-1)\};$

 $\label{eq:constraint} \bullet \left\{ \begin{array}{l} \{X_1,..,X_v\} & \text{are distributed according to a density } f(x) \ ; \\ \{X_{v+1},..,X_n\} & \text{are distributed according to a density } g(x). \end{array} \right.$

where f, g are known, such as : $f(x) \neq g(x)$.

 \Rightarrow Existence of *m* multiple change-points :

• $\exists m \in \mathbb{N}, \{v_j\}_{j=1,...,m} = \{v_1,...,v_m\}$, such as : $\{v_j\}_{j=1,...,m} \subset \{1,...,(n-1)\}$.

▲□▶▲≧▶▲≧▶ 差 のQで

6/64

At each {v_j}_{j=1,..,m}: distribution of observations before and after v_j are different.

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Change-point detection

The change-point detection is the problem of estimating the location of this point in a sequence of observations.

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Change-point detection

The change-point detection is the problem of estimating the location of this point in a sequence of observations.

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspective
	00 00	0000000000 00000 00		000

Context of analysis

Offline context :

- All data is received and processed in one go;
- The primary aim is accurate detection of changes;
- Inference about all change-points simultaneously.

9/64

-≣ →

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspective

Context of analysis

Offline context :

- All data is received and processed in one go;
- The primary aim is accurate detection of changes;
- Inference about all change-points simultaneously.

Э

э.

Online context :

- Data arrives either as single data-points or in batches;
- Data must be processed quickly before new data arrives;
- The aim is the quickest detection of a change after it has occurred;
- Inference about most recent change only.

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Online change-point detection

◆□▶◆臣▶◆臣▶ 臣 のへで

11/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Hypotheses				
Let $\{X_i\}_i$ X_n is the	$a_{1,,n}$ a series of observations s ast observed point in the dataset.	equentially observe	d.	

Statistically, the problem of change-point detection is to sequentially test for each new observation $n \ge 1$, the hypotheses :

 $\begin{cases} H_{0,n} : v = +\infty & x_i \sim f(x_i) \\ H_{1,n} : v = k , 1 \le k < n & x_i \sim f(x_i) \\ x_i \sim g(x_i) & \forall i = 1, ..., k \\ \forall i = 1, ..., k \\ \forall i = (k+1), ..., n \end{cases}$ (1)

Where ("distribution pre-change") $f \neq g$ ("distribution post-change")

The "instantaneous" likelihood ratio is defined by : $\Lambda_i = \frac{g(X_i)}{f(X_i)}, i \ge 1$

Preamble	Online change-point detection	Contribution 0000000000 00000 00	Simulation results	Perspectives
Hypotheses				

Let $\{X_i\}_{i=1,..,n}$ a series of observations sequentially observed.

 X_n is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation $n\geq 1,$ the hypotheses :

 $\begin{cases} H_{0,n}: v = +\infty & x_i \sim f(x_i) \\ H_{1,n}: v = k , 1 \le k < n & x_i \sim f(x_i) \\ x_i \sim g(x_i) & \forall i = 1, ..., k \\ \forall i = 1, ..., k \\ \forall i = (k+1), ..., n \end{cases}$ (1)

Where ("distribution pre-change") $f \neq g$ ("distribution post-change")

The "instantaneous" likelihood ratio is defined by : $\Lambda_i = \frac{g(X_i)}{f(X_i)}, i \ge 1$

Nassim SAHKI

Preamble	Online change-point detection	Contribution 0000000000 00000 00	Simulation results	Perspectives
Hypotheses				

Let $\{X_i\}_{i=1,..,n}$ a series of observations sequentially observed.

 X_n is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation $n\geq 1,$ the hypotheses :

 $\begin{cases} H_{0,n}: v = +\infty & x_i \sim f(x_i) \\ H_{1,n}: v = k , 1 \le k < n & x_i \sim f(x_i) \\ x_i \sim g(x_i) & \forall i = 1, ..., k \\ \forall i = 1, ..., k \\ \forall i = (k+1), ..., n \end{cases}$ (1)

Where ("distribution pre-change") $f \neq g$ ("distribution post-change")

The "instantaneous" likelihood ratio is defined by : $\Lambda_i = \frac{g(X_i)}{f(X_i)}, i \ge 1$

Nassim SAHKI

Preamble	Online change-point detection ●○ ○○	Contribution 00000000000 00000 00	Simulation results	Perspectives
Recursive detection st	atistics			
Cumulative Sum	"CUSUM"			
	$\Lambda_i = \frac{g(X_i)}{f(X_i)},$	$L_i = \log \Lambda_i, i \ge$	1	
	M statistics is introduced by [E.S.Pa			
		$\prod_{k=+1}^{n} \Lambda_j \qquad n \ge 1$		
	CUSUM detection statistics :			
• CUS	JM detection statistics can be wr	itten recursively at in	nstant n :	
	$W_n = \max\{0, W_{n-1}\}$	$+L_n\}, \qquad n \ge$	$1, W_0 = 0$	(3)
				2 Q C 12/64

Nassim SAHKI

Pream	ole Online change-point d ● ○ ○ ○	etection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Recurs	ive detection statistics				
Cum	nulative Sum "CUSUM"				
		$\Lambda_i = \frac{g(X_i)}{f(X_i)},$	$L_i = \log \Lambda_i, i$	≥ 1	
	The CUSUM statistics is introd	duced by [E.S.Pa	ge(1954)] :		
		$V_n = \max_{1 \le k \le n} \sum_{j}$	$\prod_{=k+1}^n \Lambda_j \qquad n \ge$	<u>≥</u> 1	(2)
	The online CUSUM detection	statistics :			
		$W_n = \max\{0$	$,\log(V_n)\}, n \ge 1$	1	

• CUSUM detection statistics can be written recursively at instant n :

 $W_n = \max\{0, W_{n-1} + L_n\}, \qquad n \ge 1, \quad W_0 = 0 \tag{(11)}$

Nassim SAHKI

Preamble	Online change-point detection ●○ ○○	Contribution 0000000000 00000 00	Simulation results	Perspectives
Recursive detecti	on statistics			
Cumulative S	Sum "CUSUM"			
	$\Lambda_i = \frac{2}{3}$	$\frac{d(X_i)}{f(X_i)}, L_i = \log \Lambda_i,$	$i \ge 1$	

The CUSUM statistics is introduced by [E.S.Page(1954)] :

$$V_n = \max_{1 \le k \le n} \prod_{j=k+1}^n \Lambda_j \qquad n \ge 1$$

The online CUSUM detection statistics :

$$W_n = \max\{0, \log(V_n)\}, \quad n \ge 1$$

• CUSUM detection statistics can be written recursively at instant n :

$$W_n = \max\{0, W_{n-1} + L_n\}, \qquad n \ge 1, \quad W_0 = 0$$
(3)

<ロト (臣) (臣) (臣) 臣) のへで 13/64

(2)

Nassim SAHKI

Preamble	Online change-point detection ○● ○○	Contribution 0000000000 00000 00	Simulation results	Perspectives
Recursive detection statistics				
Non-parame	tric version of statistics			

In practice, the two distributions f and g are unknown.

⇒ [Tartakovsky, A. G. and all (2013)] suggested a non-parametric version by replacing the log likelihood ratio L_n through a score function $S_n = S_n(X_1, ..., X_n)$.

Non-parametric recursive CUSUM detection statistics :

$$W_n = \max\{0, W_{n-1} + S_n\}, \qquad n \ge 1, \quad W_0 = 0 \tag{4}$$

< □ ▶ < 臣 ▶ < 臣 ▶ 臣 の Q @ 14/64

Nassim SAHKI

Preamble	Online change-point detection ○● ○○	Contribution 00000000000 00000 00	Simulation results	Perspectives
Recursive detection statistics				
Non-parametric version of statistics				

In practice, the two distributions f and g are unknown.

⇒ [Tartakovsky, A. G. and all (2013)] suggested a non-parametric version by replacing the log likelihood ratio L_n through a score function $S_n = S_n(X_1, ..., X_n)$.

Non-parametric recursive CUSUM detection statistics :

$$W_n = \max\{0, W_{n-1} + S_n\}, \qquad n \ge 1, \quad W_0 = 0 \tag{4}$$

◆□▶◆臣▶◆臣▶ 臣 のへで

14/64

Nassim SAHKI

Preamble	Online change-point detection ○○ ●○	Contribution 00000000000 00000 00	Simulation results	Perspectives
Stopping rule				
Detection pr	ocedure			

• The statistics is calculated recursively :

 $W_n = \max\{0, W_{n-1} + S_n\}, n \ge 1, W_0 = 0$

Online detection is based on a Stopping Rule :

 $C_h = \min\{n \ge 1 : W_n \ge h\}, h \ge 0$: threshold.

When W exceeds the threshold h:

 \Rightarrow The procedure triggers an alarm (Stopping Time) to signal that a change-point has occurred.

Preamble	Online change-point detection ○○ ○●	Contribution 0000000000 00000 00	Simulation results	Perspectives
Stopping rule				
Stopping time				

Denote T a stopping time, such as : $T = \min_{i \ge 1} \{ W_i \ge h \}$

- $* T \ge v$: detection with a delay (T v).
- * T < v : false alarm.
- $* T = +\infty$: non detection.

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Contribution

▲□▶▲臣▶▲臣▶ 臣 のへで

17/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
<u> </u>				

◆□▶◆臣▶◆臣▶ 臣 のへで

18/64

Our work

We propose an extension of non-parametric detection methods :

- Replacing the constant threshold by an instantaneous threshold;
- Suggest a new configuration through resetting the detection procedure;
- Suggest a new stopping rule by modifying the classical rule.

Preamble	Online change-point detection 00 00	Contribution ●0000000000 0000000000000000000000000	Simulation results	Perspectives
Instantaneous threshold				

CUSUM statistics under H₀

Nassim SAHKI

Preamble	Online change-point detection	Contribution ○●○○○○○○○○○ ○○○○○	Simulation results	Perspectives
Instantaneous thr	eshold			
CUSUM stat	istics under Ho			

 \Rightarrow The behavior of the W-statistics under the pre-change regime H₀ is not stable.

 \Rightarrow Suppose to know the behavior of W-statistic under H₀.

Preamble	Online change-point detection OO OO	Contribution ○○●○○○○○○○○ ○○	Simulation results	Perspectives
Instantaneous threshol	d			
Construction				

Construct the instantaneous threshold according to empirical quantile of law of the statistic under H_{0} "without change-point".

Construction steps :

Under H₀ : simulate B series of n observations $\{X_i^j\}_{i=1,..,n;\ i=1,..,B}$.

◆□▶◆臣▶◆臣▶ 臣 のへで 21/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution ○○●○○○○○○○ ○○	Simulation results	Perspectives
Instantaneous threshol	d			
Construction				

Construct the instantaneous threshold according to empirical quantile of law of the statistic under H_0 "without change-point".

Construction steps :

Under H₀ : simulate B series of n observations $\{X_i^j\}_{i=1,..,n; j=1,..,B}$.

Preamble	Online change-point detection OO OO	Contribution 000€0000000 00000 00000	Simulation results	Perspectives
Instantaneous threshol	d in the second s			
Construction				

Construct the instantaneous threshold according to empirical quantile of law of the statistic under ${\rm H}_0$ "without change-point".

Construction steps :

- Under H₀ : simulate B series of n observations $\{X_i^j\}_{i=1,..,n; j=1,..,B}$.
- 2 For each series $\{X_i^j\}_{i=1,..,n}$, compute the maximum of statistics until instant i:
 - $\mathsf{M}_i^j = \max_{1 \le k \le i} W_k.$

Preamble	Online change-point detection OO OO	Contribution 0000●000000 00000 00000	Simulation results	Perspectives
Instantaneous threshol	d			
Construction				

Construct the instantaneous threshold according to empirical quantile of law of the statistic under ${\rm H}_0$ "without change-point".

Construction steps :

- Under H₀ : simulate B series of n observations $\{X_i^j\}_{i=1,..,n; j=1,..,B}$.
- 2 For each series $\{X_i^j\}_{i=1,..,n}$, compute the maximum of statistics until instant i:
 - $\mathsf{M}_i^j = \max_{1 \le k \le i} W_k.$

Preamble	Online change-point detection OO OO	Contribution 00000●00000 00000 00	Simulation results	Perspectives
Instantaneous threshol	d i i i i i i i i i i i i i i i i i i i			
Construction				

Construct the instantaneous threshold according to empirical quantile of law of the statistic under H_0 "without change-point".

Construction steps :

- Under H₀: simulate B series of n observations
 {X_i^j}_{i=1,..,n}; j=1,..,B.
- 2 For each series $\{X_i^j\}_{i=1,..,n}$, compute the maximum of statistics until instant i:
 - $\mathsf{M}_i^j = \max_{1 \le k \le i} W_k.$
- The instantaneous thresholds would be the empirical quantile of order (1-α):

$$h_i = \mathbf{q}_{(1-\alpha)} \left[\left(M_i^j \right)_{j=1,.,B} \right], i = 1,.,n$$

24/64

Preamble	Online change-point detection OO OO	Contribution 000000●0000 00000 00	Simulation results	Perspectives
Instantaneous threshol	d			
Online detection	methods			

• Stopping rule : $C_{(h_{\cdot})} = \min_{n \ge 1} \{n; W_n \ge h_n\}, \quad (h_1, .., h_n) \ge 0$: instantaneous threshold.

<□ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 25/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 000000000000 00000 00000	Simulation results	Perspectives
Instantaneous thre	shold			
Online detect	ion methods			

• Stopping rule : $C_{(h_{.})} = \min_{n \ge 1} \{n; W_n \ge h_n\}, (h_1, .., h_n) \ge 0$: instantaneous threshold.

<□ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 26/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000000 000000000000000000000	Simulation results	Perspectives
Instantaneous the	reshold			
Online detec	tion methods			

• Stopping rule : $C_{(h_{.})} = \min_{n \ge 1} \{n; W_n \ge h_n\}, (h_1, .., h_n) \ge 0$: instantaneous threshold.

▲□▶▲≣▶▲≣▶ ≣ のへで

27/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 000000000●0 00000 00	Simulation results	Perspectives
Instantaneous the	reshold			
Online detec	ction methods			

• Stopping rule : $C_{(h_{.})} = \min_{n \ge 1} \{n; W_n \ge h_n\}, (h_1, .., h_n) \ge 0$: instantaneous threshold.

▲□▶▲≣▶▲≣▶ ≣ のへで

28/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 0000000000● 00000 00	Simulation results	Perspectives
Instantaneous thresh	old			
Online detection	n methods			

CUSUM detection statistics:
$$W_n = \max\{0, W_{n-1} + S_n\}, n \ge 1; W_0 = 0$$

• Stopping rule : $C_{(h_{.})} = \min_{n \ge 1} \{n; W_n \ge h_n\}, (h_1, .., h_n) \ge 0$: instantaneous threshold.

▲□▶▲臣▶▲臣▶ 臣 のへで

29/64

Nassim SAHKI
Preamble	Online change-point detection 00 00	Contribution ○○○○○○○○○○ ○○○○○	Simulation results	Perspectives
Procedure reset				

• □ > < 臣 > < 臣 > <</p>

∃ 990

30/64

Configuration without reset

The instantaneous threshold remains fixed throughout the detection test.

configuration without reset

Preamble	Online change-point detection 00 00	Contribution ○○○○○○○○○○ ○○○○○	Simulation results	Per 00 00
Procedure reset				

Configuration without reset

The instantaneous threshold remains fixed throughout the detection test.

configuration without reset

Configuration with reset

The instantaneous threshold moves whenever the statistical returns to the initial value (0 for W statistics).

Configuration with reset

pectives

Image: A image: A

₹ 9Q@

31/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution ○○○○○○○○○○ ○○ ○○	Simulation results	Pe
Procedure reset				

Configuration without reset

The instantaneous threshold remains fixed throughout the detection test.

Configuration with reset

The instantaneous threshold moves whenever the statistical returns to the initial value (0 for W statistics).

spectives

configuration without reset

(日)

2

32/64

Configuration with reset

Nassim SAHKI

Preamble	Online change-point detection	Contribution ○○○○○○○○○○ ○○	Simulation results
Procedure reset			

Configuration without reset

The instantaneous threshold remains fixed throughout the detection test.

Configuration with reset

The instantaneous threshold moves whenever the statistical returns to the initial value (0 for W statistics).

Perspectives

Configuration with reset

◆□▶◆臣▶◆臣▶ 臣

Nassim SAHKI

Preamble	Online change-point detection	Contribution ○○○○○○○○○○ ○○	Simulation results	Perspectives
Procedure reset				
Online detec	tion mothode			

CUSUM detection statistics : $W_n = \max\{0, W_{n-1} + S_n\}, n \ge 1; W_0 = 0$

• Stopping rule :
$$C_{(h_{\cdot})} = \min_{n \ge 1} \{n; W_n \ge h_{n-k}\}$$

 $\mathbf{k} = \begin{cases} 0 & : \text{fixed threshold} \\ \max_{1 \le i \le n} \{i - 1; W_i = 0\} & : \text{moving threshold.} \end{cases}$

Nassim SAHKI

Preamble	Online change-point detection OO OO	Contribution ○○○○○○○○○○ ●○	Simulation results	Perspectives
Corrected stopping rule				
New stopping rule	9			

Classical stopping rule

signals the existence of a changepoint when the detection statistic exceeds the instantaneous threshold.

Corrected stopping rule

signals the existence of a change-point when the detection statistic exceeds the instantaneous threshold during a time $c\geq 1.$

₹ 9Q@

35/64

Preamble	Online change-point detection	Contribution ○○○○○○○○○○ ○○○○○	Simulation results	Perspectives
Corrected stopping	ng rule			
Online detec	ction methods			

CUSUM detection statistics :
$$W_n = \max\{0, W_{n-1} + S_n\}, n \ge 1; W_0 = 0$$

• Classical stopping rule : $C_{(h_.)} = \min_{n\ge 1}\{n; W_n \ge h_{n-k}\}$
• Corrected stopping rule : $C_{(h_.)} = \min_{n\ge 1}\{n+c-1; \bigcap_{j=n}^{n+c-1} (W_j \ge h_{j-k})\}$
 $k = \begin{cases} 0 & : \text{fixed threshold} \\ \max_{1\le i\le n}\{i-1; W_i = 0\} & : \text{moving threshold}. \end{cases}$

▲□▶▲臺▶▲臺▶ 臺 釣۹@ 36/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Simulation results

▲□▶▲臣▶▲臣▶ 臣 のへで

37/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Empirical estimation

Perform simulations to evaluate our different proposed methods, by estimating the main evaluation parameters :

▲□▶▲臣▶▲臣▶ 臣 のへで

38/64

Parameters evaluated under H₀.

False Alarm Rate (FAR)

$$\widehat{FAR}_n = \frac{1}{B} \cdot \sum_{j=1}^{B} \mathbf{1}_{\{T_j < +\infty\}}$$
(5)

Average Run length (ARL)

$$\widehat{ARL}_n = \frac{\sum\limits_{j=1}^{B} \mathbf{1}_{\{T_j < +\infty\}} \cdot T_j}{\sum\limits_{j=1}^{B} \mathbf{1}_{\{T_j < +\infty\}}}$$
(6)

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

Empirical estimation

Perform simulations to evaluate our different proposed methods, by estimating the main evaluation parameters :

Parameters evaluated under H₁.

Average Detection Delay (ADD)

$$\widehat{ADD}_{n,v} = \frac{\sum_{j=1}^{B} \mathbf{1}_{\{T_j \ge v\}} \cdot (T_j - v)}{\sum_{j=1}^{B} \mathbf{1}_{\{T_j \ge v\}}}$$
(8)

∃ 990

39/64

< □ > < Ξ > < Ξ > .

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Simulation				

Simulation model 01 :

- Several trajectories with possibility of having a single change-point by trajectory;
- Change-point detection only on the mean (the variance is homogeneous for any series).

◆□▶◆臣▶◆臣▶ 臣 のへで

40/64

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

TABLE - FAR and AR	estimation under H ₀	: B =	10000, n = 10	00
--------------------	---------------------------------	-------	---------------	----

Parame	Parameter False Alarm		Alarm Rate	Average Run Length -
Stopping	rule	c = 1	c = 2 c = 3	c = 1 c = 2 c = 3
Threshold	Fixed	0.25	0.12 0.07	17.96 22.56 25.52
	Moving	0.92	0.62 0.4	30.44 42.40 47.5

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

TABLE - FAR and AR	estimation under H ₀	: B =	10000, n = 10	00
--------------------	---------------------------------	-------	---------------	----

Param	eter	Fal	lse A	larm -	Ra	ite		Aver	ag	e Run I -	Le	ngth
Stoppin	g rule	c = 1	(c = 2		c = 3	T	c = 1		c = 2		c = 3
Threshold	Fixed	0.25	(0.12		0.07	I	17.96		22.56		25.52
	Moving	0.92	(0.62		0.4		30.44		42.40		47.5

Nassim SAHKI

Preamble	Online change-point detection	Contribution	Simulation results	Perspectives
	00 00	0000000000 00000 00		000

TABLE - FAR and AR	estimation under H ₀	: B =	10000, n = 10	00
--------------------	---------------------------------	-------	---------------	----

Param	eter	Fal	se Alarm Rate -	Average Run Length -
Stopping	g rule	c = 1	c = 2 c = 3	c = 1 c = 2 c = 3
Threshold	Fixed	0.25	0.12 0.07	17.96 22.56 25.52
	Moving	0.92	0.62 0.4	30.44 42.40 47.5

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

TABLE - FAR and AR	estimation under H ₀	: B =	10000, n = 200
--------------------	---------------------------------	-------	----------------

Paramet	ter	False Alarm Rate		Average Run Length
Stopping	rule	c = 1	c = 2 c = 3	c = 1 c = 2 c = 3
Threshold	Fixed	0.28	0.14 0.08	28.76 40.16 43.68
	Moving	0.99	0.86 0.63	36.80 70.46 84.81

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

TABLE – PD and ADD estimation under H_1 : B = 10000, n = 100, v = 25

Parame	ter	Ро	we	er to D -	ete	ect		Avera	ge	e Detec -	tio	n Delay
Stopping	rule	c = 1		c = 2		c = 3		c = 1		c = 2		c = 3
Threshold	Fixed	1		1		1	Ţ	8.68		10.34		11.57
	Moving	1		1		1	1	4.40		6.35		8.03

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

TABLE – PD and ADD estimation under H_1 : B = 10000, n = 100, v = 25

Parame	eter	Po	we	er to D -	ete	ect		Averaç	je	e Detec -	tio	n Delay
Stopping	ı rule	c = 1		c = 2		c = 3	Ţ	c = 1		c = 2		c = 3
Threshold	Fixed	1		1		1	I	8.68		10.34		11.57
	Moving	1		1		1	I	4.40		6.35		8.03

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

TABLE – PD and ADD estimation under H_1 : B = 10000, n = 100, v = 50

Paramete	r	Po	ower to Detect -	Average Detection	Delay
Stopping ru	ıle	c = 1	c = 2 c = 3	c = 1 c = 2	c = 3
Threshold	Fixed	0.99	0.99 0.99	9.92 11.54	12.84
	loving	1	0.99 0.99	4.47 6.41	8.10

Nassim SAHKI

Preamble	Online change-point detection 00 00	Contribution 00000000000 00000 00	Simulation results	Perspectives
Simulation				

Simulation model 02 :

- One trajectory over a long period of time;
- Possibility of several change-points {v_k}_{k=1,..,m};
- The mean of the observations can switch between two states (0, 1).

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Simulation				

n = 500, m = 20

≡ のへで

49/64

(日)

Simulation		

n = 500, m = 20

∃ ∽ へ (~

50/64

(日)

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Simulation				

n = 500, m = 20

▲□▶▲≣▶▲≣▶ ≣ のへで

51/64

Preamble	Online change-point detection	Contribution 0000000000 00000 00	Simulation results	Perspectives
Simulation				

▲□▶▲≣▶▲≣▶ ≣ のへで

52/64

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Results : under H_1

TABLE – PD and ADD estimation under H_1 : n = 100000, m = 19486

Parame	eter	Power to Detect	Average Detection Delay -		
Stopping	g rule	c = 1 c = 2 c = 3	c = 1 c = 2 c = 3		
Threshold	Fixed	0.97 0.96 0.95	8.64 10.21 11.21		
	Moving	0.93 0.96 0.96	6.44 6.75 7.58		

▲□▶▲臣▶★臣▶ 臣 のへで

53/64

Change-point occurs at least every 25 points.

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives
Results : un	der H1			

TABLE – PD and ADD estimation under H_1 : n = 100000, m = 9445

Parameter Power to D		wer to Detect -		Average	e Detectio -	on Delay	
Stopping	rule	c = 1	c = 2 c =	3	c = 1	c = 2	c = 3
Threshold	Fixed	0.99	0.99 0.9	9	10.21	11.90	13.00
	Moving	0.96	0.96 0.9	7	7.76	8.01	8.26

< □ ▶ < 壹 ▶ < 壹 ▶ Ξ の Q ℃ 54/64

Change-point occurs at least every 50 points.

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Perspectives

▲□▶▲臣▶▲臣▶ 臣 のへで

55/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Perspectives

- Estimation of the data distribution and its parameters under pre-change regime ;
- Use the methods in the multivariate case;
- Thesis framework : prediction of a dreaded event during online monitoring of lung transplant patients.

◆□▶◆臣▶◆臣▶ 臣 のへで

56/64

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Thank you!

▲□▶▲臣▶▲臣▶ 臣 のへで

57/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives

Annex

▲□▶▲≣▶▲≣▶ ≣ のへで 58/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ●○○ ○○○
Score function				
Shiryaev-Rober	rts "SR"			

The SR statistics is defined by :

$$R_n = \sum_{k=1}^n \prod_{j=k+1}^n \Lambda_j \qquad n \ge 1 \tag{9}$$

• SR recursive detection statistics :

$$R_n = (1 + R_{n-1}) \cdot e^{L_n} , \quad n \ge 1; \quad R_0 = 0$$
(10)

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ○●○ ○○○
Score function				
Form and par	ameters			

The S_n score is defined by a quadratic linear form for a mean and variance changepoint detection :

$$S_n = C_1 \cdot Y_n + C_2 \cdot Y_n^2 - C_3 \tag{11}$$

 $Y_n = (X_n - \mu_\infty) / \sigma_\infty$: the centered and standardized data under H₀.

$$C_1 = \delta \cdot q^2, \ C_2 = \frac{1-q^2}{2}, \ C_3 = \frac{\delta^2 \cdot q^2}{2} - \log(q)$$

 $\delta = (\mu_v - \mu_\infty) / \sigma_\infty$ $q = \sigma_\infty / \sigma_v$

• δ : minimum level of change in the mean that is required to be detected.

No changepoint detection on the mean :

 $\mu_{\infty} = \mu_{\nu} \Rightarrow \delta = 0$, therefore $C_1 = 0$.

 q: minimum level of change in the variance that is required to be detected.

No changepoint detection on the variance :

$$\sigma_{\infty} = \sigma_v \Rightarrow q = 1$$
, therefore $C_2 = 0$.

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ○○● ○○○
Score function				
Form and pa	rameters			

To define the score function, let first :

 $\mu_{\infty} = \mathbb{E}_{\infty}(X_n), \ \ \sigma_{\infty}^2 = \mathbb{V}_{\infty}(X_n) : \text{average and variance pre change (under H_0), } n \geq 1.$

 $\mu_v = \mathbb{E}_v(X_n), \quad \sigma_v^2 = \mathbb{V}_v(X_n) \text{ : average and variance port change (under H_1), } n \geq v.$

Note

The score function can only be used to the knowledge of the parameters average and variance of pre change data $\mu_\infty,\sigma_\infty.$

- Use a portion of observed data on the normal state without breaking
 - \Rightarrow Estimate μ_{∞} et σ_{∞} .
- Depending on the objective (mean and/or variance) and level of changepoint detection

 \Rightarrow Determine μ_v et σ_v that one would like to detect with some risk.

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ○○● ○○○
Score function				
Form and pa	rameters			

To define the score function, let first :

 $\mu_{\infty} = \mathbb{E}_{\infty}(X_n), \ \ \sigma_{\infty}^2 = \mathbb{V}_{\infty}(X_n) : \text{average and variance pre change (under H_0), } n \geq 1.$

 $\mu_v = \mathbb{E}_v(X_n), \quad \sigma_v^2 = \mathbb{V}_v(X_n) \text{ : average and variance port change (under H_1), } n \geq v.$

Note

The score function can only be used to the knowledge of the parameters average and variance of pre change data $\mu_\infty,\sigma_\infty.$

Use a portion of observed data on the normal state without breaking

 \Rightarrow Estimate μ_{∞} et σ_{∞} .

• Depending on the objective (mean and/or variance) and level of changepoint detection

 \Rightarrow Determine μ_v et σ_v that one would like to detect with some risk.

Nassim SAHKI

Preamble	Online change-point detection OO OO	Contribution 00000000000 00000 00	Simulation results	Perspectives ○○○ ●○○
Evaluation criteria				

Let $\mathbb{P}_{\infty}[.], \mathbb{E}_{\infty}[.]$: respectively the probability and the average under H₀.

Evaluation criteria evaluated under H₀.

False Alarme Rate (FAR)

is the probability of signaling a changepoint, while it did not occur. It is given by :

$$FAR(T) = \mathbb{P}_{\infty} \left(T < +\infty \right) \tag{12}$$

Average Run Length (ARL)

the average number of observations that the procedure samples before it triggers a false alarm.

$$ARL(T) = \mathbb{E}_{\infty} [T] \tag{13}$$

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ○○○ ○●○
Evaluation criteria				

Let $\mathbb{P}_{v}[.], \mathbb{E}_{v}[.]$: respectively the probability and the average under H₁.

Evaluation criteria evaluated under H₁.

Power to Detect (PD)

is the ability of a procedure to detect the existence of a changepoint at a given moment.

$$PD_v(T) = \mathbb{P}_v(T \ge v), \quad 1 \le v < +\infty$$
(14)

Average Delay to Detect (ADD)

$$ADD_{v}(T) = \mathbb{E}_{v} \left[T - v \right| T \ge v \right], \quad 1 \le v < +\infty$$
(15)

▲□▶▲臣▶▲臣▶ 臣 のへで

63/64

Nassim SAHKI

Preamble	Online change-point detection	Contribution 00000000000 00000 00	Simulation results	Perspectives ○○○ ○○●
Evaluation criteria				
Results : under	H ₁			

Under H1	Parameter	False Alarm Rate	Power to Detect	Average Detection Dela
	n=100000	Stopping rule	Stopping rule	Stopping rule
	Threshold	c = 1 c = 2 c = 3	c = 1 c = 2 c = 3	c = 1 c = 2 c = 3
np=10	Fixed	0.01 0.004 0.004	0.76 0.70 0.64	6.02 7.23 7.87
	Moving	0.02 0.01 0.007	0.86 0.82 0.80	4.40 5.54 6.24
np=25	Fixed	0.01 0.003 0.001	0.97 0.96 0.95	8.64 10.21 11.21
	Moving	0.03 0.01 0.008	0.93 0.96 0.96	6.44 6.75 7.58
np=50	Fixed	0.006 0.002 0.001	0.99 0.99 0.99	10.21 11.90 13.00
	Moving	0.03 0.01 0.01	0.96 0.96 0.97	9.76 8.01 8.26