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INVARIANT PROJECTIONS FOR OPERATORS THAT ARE FREE OVER THE DIAGONAL

Motivated by recent work of Au, Cébron, Dahlqvist, Gabriel, and Male, we study regularity properties of the distribution of a sum of two selfadjoint random variables in a tracial noncommutative probability space which are free over a commutative algebra. We give a characterization of the invariant projections of such a sum in terms of the associated subordination functions.

Introduction

Voiculescu's analytic theory of operator-valued free probability [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF][START_REF] Voiculescu | Analytic subordination consequences of free Markovianity[END_REF] proved numerous times its essential role in the study of operator-valued distributions and freeness with amalgamation, and in their applications to random matrix theory (see, for instance, [START_REF] Shlyakhtenko | Random Gaussian band matrices and freeness with amalgamation[END_REF][START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF][START_REF] Male | The norm of polynomials in large random and deterministic matrices[END_REF][START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF][START_REF] Helton | Operator-valued Semicircular Elements: Solving A Quadratic Matrix Equation with Positivity Constraints[END_REF]). Recently, a new application of freeness with amalgamation to random matrix theory has been found by Au, Cébron, Dahlqvist, Gabriel, and Male: they show in [START_REF] Au | Large permutation invariant random matrices are asymptotically free over the diagonal[END_REF] that independent permutation-invariant matrices are asymptotically free with amalgamation over the diagonal [START_REF] Au | Large permutation invariant random matrices are asymptotically free over the diagonal[END_REF]Theorems 1.2,2.2]. Motivated mainly by this result, we investigate in this short note the free additive convolution of operator-valued distributions with values in a commutative von Neumann algebra.

More specifically, we consider a tracial von Neumann algebra (A, τ ) containing an Abelian von Neumann subalgebra L, and the unique trace-preserving conditional expectation E : A → L. We assume that X = X * , Y = Y * ∈ A are free with amalgamation over L. We assume that X + Y has a nonzero invariant projection: there exists a ∈ R and p = p * = p 2 ∈ A\{0, 1} such that (X +Y )p = p(X +Y ) = ap. We ask whether this hypothesis imposes the existence of an invariant projection of X and/or Y . This question was first answered in the case of scalar-valued distributions (i.e. when L = C • 1) by Bercovici and Voiculescu in [START_REF] Bercovici | Regularity questions for free convolution[END_REF]: the existence of p requires the existence of an invariant projection q for X (Xq = qX = a 1 q) and r for Y (Y r = rY = a 2 r) such that τ (p) + 1 = τ (q) + τ (r) and a = a 1 + a 2 (see [START_REF] Bercovici | Regularity questions for free convolution[END_REF]Theorem 7.4]). The proof uses the analytic subordination functions of Voiculescu and Biane [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory[END_REF][START_REF] Biane | Processes with free increments[END_REF].

In this note, we provide a characterization in terms of boundary properties of Voiculescu's operator-valued subordination functions [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF][START_REF] Voiculescu | Analytic subordination consequences of free Markovianity[END_REF] of elements X, Y for which the above hypothesis is satisfied (see Theorem 3.3 below). Our result is nowhere near as satisfying as [START_REF] Bercovici | Regularity questions for free convolution[END_REF]Theorem 7.4], but one could not reasonably expect it to be: the reader is invited to consider the case when L is isomorphic to the von Neumann algebra L ∞ ([0, 1]) and recall that any two real-valued elements in L are tautologically free, in order to construct a simple example of elements X, Y ∈ L which are not constant on any Borel set of positive measure, but whose sum is constant on any desired Borel set of positive measure.

In recent years there were numerous results on the lack of invariant projections [START_REF] Shlyakhtenko | Freely Independent Random Variables with Non-Atomic Distributions[END_REF][START_REF] Charlesworth | Free entropy dimension and regularity of noncommutative polynomials[END_REF][START_REF] Mai | Absence of algebraic relations and of zero divisors under the assumption of full non-microstates free entropy dimension[END_REF][START_REF] Banna | Hölder Continuity of Cumulative Distribution Functions for Noncommutative Polynomials under Finite Free Fisher Information[END_REF], as well as the occurence of "trivial" (in the above sense) invariant projections [START_REF] Shlyakhtenko | Freely Independent Random Variables with Non-Atomic Distributions[END_REF][START_REF] Mai | The free field: zero divisors, Atiyah property and realizations via unbounded operators[END_REF]. As of now, we are not aware of results that indicate the existence and properties of invariant projections for X, Y .

Analytic tools

Consider a tracial von Neumann algebra (A, τ ), and assume that L is an Abelian von Neumann subalgebra of A. We shall assume throughout the paper that A acts on the Hilbert space H := L 2 (A, τ ), which is the completion of A with respect to the inner product ξ, η = τ (η * ξ). It is known (see, for instance, [START_REF] Takesaki | Theory of Operator Algebras I-III[END_REF]) that there exists a unique trace-preserving conditional expectation E : A → L which is the restriction to A of the orthogonal projection from L 2 (A, τ ) onto L 2 (L, τ ). If T ∈ A, we write T ≥ 0 if T = T * and the spectrum σ(T ) ⊆ [0, +∞), and we write T > 0 to signify that T ≥ 0 and σ(T ) ⊆ (0, +∞). For any T ∈ A, there exists a decomposition in real and imaginary parts: T = ℜT + iℑT , where ℜT = T +T * 2 and ℑT = T -T * 2i . We define H + (A) = {T ∈ A : ℑT > 0}, and similar for L and any other von Neumann subalgebra of A.

Assume that X = X * , Y = Y * ∈ A are free over L with respect to E (see [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables[END_REF]). Define the analytic map

G X : H + (L) → H -(L), G X (b) = E (b -X) -1 .
As shown in [START_REF] Voiculescu | Free analysis questions II: The Grassmannian completion and the series expansions at the origin[END_REF], G X is a free noncommutative map in the sense of [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF], whose matricial extension fully encodes the distribution of X with respect to E. It is also known that G X extends to a "neighborhood of infinity:

" if b -1 < X -1 , then G X (b) = ∞ n=0 E b -1 (Xb -1
) n converges in norm, so w → G X (w -1 ) extends as an analytic map to the ball of center zero and radius 1/ X .

Let L X denote the von Neumann algebra generated by L and X. Denote by E X : A → L X the unique trace-preserving conditional expectation from A to L X . It is shown in [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] that there exists a free noncommutative analytic map

ω 1 : H + (L) → H + (L) such that (1) E X (b -X -Y ) -1 = (ω 1 (b) -X) -1 , b ∈ H + (L) or b -1 < X + Y -1 .
A similar statement holds for a map ω 2 , with X and Y interchanged. By applying E to (1) and using Voiculescu's R-transform [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables[END_REF][START_REF] Voiculescu | Free analysis questions II: The Grassmannian completion and the series expansions at the origin[END_REF], it is shown in [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF] that

(2) G X+Y (b) -1 = G X (ω 1 (b)) -1 = G Y (ω 2 (b)) -1 = ω 1 (b)+ ω 2 (b)-b, b ∈ H + (L).
(See [START_REF] Bercovici | Regularity questions for free convolution[END_REF] for the scalar version of this relation.) Obviously, the above relation extends to b such that b -1 < X + Y -1 . It is also shown in [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF][START_REF] Belinschi | Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection[END_REF] that

(3) ℑω j (b) ≥ ℑb, ω j (b * ) = ω j (b) * , b ∈ H + (L), j = 1, 2.
Given that L is a commutative von Neumann algebra, hence isomorphic to an algebra of functions, we shall often write in the following 1/b or 1 b instead of b -1 for multiplicative inverses of elements of L.

As mentioned in the introduction, we shall be concerned with invariant projections for X + Y . In the following, we characterize these objects in terms of resolvents. Thus, assume T = T * ∈ A. Denote by lim z-→a ∢ the limit as z approaches a ∈ R from the complex upper half-plane nontangentially to R. Proof. The essential part of the proof can be found for instance in [START_REF] Bercovici | Regularity questions for free convolution[END_REF]. We sketch it here for convenience. For any vector ξ ∈ H of L 2 -norm equal to one, we write

(z -a)(z -T ) -1 ξ 2 2 = (z -a)(z -T ) -1 ξ, (z -a)(z -T ) -1 ξ = (x -a) 2 + y 2 (x -T ) 2 + y 2 -1 ξ, ξ = R (x -a) 2 + y 2 (x -t) 2 + y 2 dµ ξ,T (t),
where z = x + iy is the decomposition in real and imaginary parts of z and µ ξ,T is the distribution of the selfadjoint random variable T with respect to the expectation (state)

• → •ξ, ξ . The dominated convergence theorem guarantees that lim z-→a ∢ R (x -a) 2 + y 2 (x -t) 2 + y 2 dµ ξ,T (t) = µ ξ,T ({0}),
allowing us to conclude.

Remark 2.2. The above lemma together with the weak operator continuity of E, E X allows us to conclude that lim

z-→a ∢ (z -a)E (z -T ) -1 = E[p], lim z-→a ∢ (z -a)E X (z -T ) -1 = E X [p],
in the so topology. Similarly, we have so-lim

z-→a ∢ ℜ(z -a)(z -T ) -1 = p, so-lim z-→a ∢ ℑ(z -a)(z -T ) -1 = 0.
In particular, so-lim

yց0 y(a -T ) (a -T ) 2 + y 2 -1 = 0, so-lim yց0 y 2 (a -T ) 2 + y 2 -1 = p.
We need one more (very simple) fact about the functions that behave like ω.

Lemma 2.3. Assume that f : H + (C) → H + (L)
is a free noncommutative function in the sense of [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]. For any a ∈ R, the so limit lim yց0 y ℑf (a + iy) exists and is finite.

Proof. The proof is based on the representation of free noncommutative maps of noncommutative half-planes provided by [START_REF] Popa | Non-commutative functions and the non-commutative free Lévy-Hinčin formula[END_REF][START_REF] Williams | Analytic function theory for operator-valued free probability[END_REF]: there exists a completely positive map ρ : C X → L, an element A = A * and B ≥ 0 in L such that

f (z) = A + zB + ρ (X -z) -1 , z ∈ H + (C). Then ℑf (z) = ℑzB + ρ (X -z) -1 ℑz(X -z) -1 = ℑzB + ρ ℑz (X -ℜz) 2 +(ℑz) 2 .
Here X is a selfadjoint operator. Thus,

y(ℑf (a + iy)) -1 = B + ρ (X -a -iy) -1 (X -a + iy) -1 -1 .
Trivially the map y → (X -a -iy) -1 (X -a + iy) -1 is decreasing. This concludes the proof.

Observe that commutativity of L plays no role in the proof of the previous lemma.

In this paper we shall make use also of the estimate

(ℑf (z)) -1 2 (f (z) -f (w)) (ℑf (w)) -1 (f (z) -f (w)) * (ℑf (z)) -1 2 ≤ (ℑz) -1 2 (z -w) (ℑw) -1 2 2 , (4) 
proven in [3, Proposition 3.1] for an arbitrary free noncommutative map f between two noncommutative upper half-planes of two C * -algebras. Since L is commutative, we sometimes write the above as

(f (z) -f (w))(f (z) -f (w)) * ℑf (z)ℑf (w) ≤ (ℑz) -1 2 (z -w)(ℑw) -1 2 2 .

Invariant projections

Let us re-state our hypotheses: (A, τ ) is a tracial von Neumann algebra (with normal faithful τ ), L ⊂ A is an Abelian von Neumann subalgebra of A, E : A → L is the unique trace-preserving conditional expectation from A to L, and X = X * , Y = Y * ∈ A are two bounded selfadjoint random variables which are free with respect to E over L. Also, L X (respectively L Y ) is the von Neumann algebra generated by L and X (respectively L and Y ), and

E X : A → L X (resp. E Y : A → L Y )
is the unique trace-preserving conditional expectation from A onto L X (resp. L Y ). Finally, A acts (faithfully) on the Hilbert space H := L 2 (A, τ ), which is the completion of A with respect to the inner product ξ, η = τ (η * ξ).

We assume that there exists a ∈ R and p

= p * = p 2 ∈ A \ {0} such that (X + Y )p = p(X + Y ) = ap.
As seen in Lemma 2.1, we have so-lim 

z-→a ∢ (z -a)(z -X -Y ) -1 = p,
∢ (z -a)E (z -X -Y ) -1 = E[p], lim z-→a ∢ (z -a)E X (z -X -Y ) -1 = E X [p].
(Obviously a similar statement holds if we interchange X and Y .) Using (1) and the above,

E X [p] = lim z-→a ∢ (z -a)E X (z -X -Y ) -1 = lim z-→a ∢ (z -a)(ω 1 (z) -X) -1 = lim z-→a ∢ (z -a) ℑω 1 (z) i - 1 ℑω 1 (z) (X -ℜω 1 (z)) 1 ℑω 1 (z) -1 1 ℑω 1 (z) = lim yց0 y ℑω 1 (a + iy) × iy iy - y ℑω 1 (a + iy) (X -ℜω 1 (a + iy)) y ℑω 1 (a + iy) -1 × y ℑω 1 (a + iy) . ( 5 
)
Applying E to the above yields

E[p] = lim yց0 y ℑω 1 (a + iy) × iyE iy - y ℑω 1 (a + iy) (X -ℜω 1 (a + iy)) y ℑω 1 (a + iy) -1 . ( 6 
)
All limits take place in the so topology.

Using again Remark 2.2 and the fact that

ℑ (ω 1 (z) -X) -1 = -ℑω 1 (z) + (X -ℜω 1 (z))(ℑω 1 (z)) -1 (X -ℜω 1 (z)) -1 ,
we obtain

E X [p] = lim yց0 yE X y (a -X -Y ) 2 + y 2 = -lim yց0 yℑE X (a + iy -X -Y ) -1 = -lim yց0 yℑ(ω 1 (a + iy) -X) -1 = lim yց0 y ℑω 1 (a + iy) (7) × 1 + y ℑω 1 (a + iy) (X -ℜω 1 (a + iy)) y ℑω 1 (a + iy) 2 -1 × y ℑω 1 (a + iy) ≤ lim yց0 y ℑω 1 (a + iy) . ( 8 
)
Applying E to the above yields

E[p] ≤ lim yց0 y ℑω 1 (a + iy) .
Remark 3.1. Ideally (as it will become clear from our proof below), we would wish that ker lim yց0 y ℑω1(a+iy) = {0}. That is obviously implied by ker E[p] = {0}. Observe that if 0 = q = q * = q 2 = ker E[p], then E[qpq] = qE[p]q = 0, which implies τ (qpq) = τ (E[qpq]) = τ (0) = 0, so that qpq = 0. Since p is also a projection, we conclude from the faithfulness of τ that pq = qp = 0, so that p ⊥ q, or, equivalently, p ≤ q ⊥ . This means that there exists a nontrivial algebraic relation between an element from L \ C • 1, namely q, and an element from C X + Y \ C • 1, namely p: pq = qp = 0.

Conversely, let us assume that o 1 = ker lim yց0 y ℑω1(a+iy) = {0}. Then ker E X [p] ≥ ker lim yց0 y ℑω1(a+iy) , so that there exists an element

o 1 = o * 1 = o 2 1 ∈ L \ C • 1 such that o 1 and the element E X [p] ∈ C X \ C • 1 satisfy a nontrivial algebraic relation: o 1 E X [p] = E X [p]o 1 = 0.
We study next the nontangential limit of the real part of ω 1 (and thus also of ω 2 ) at a. A few steps in this proof will not depend on the commutativity of L. Fix c ∈ R, c ≥ 2 X + Y and y ′ ∈ (0, +∞). We use inequality (4), applied to f = ω 1 , z = c + iy ′ , w = a + iy in order to write

1 ℑω 1 (c + iy ′ ) 1 2 (ω 1 (c + iy ′ ) -ω 1 (a + iy)) 1 ℑω 1 (a + iy) × (ω 1 (c + iy ′ ) -ω 1 (a + iy)) * 1 ℑω 1 (c + iy ′ ) 1 2 ≤ 1 √ y ′ (c -a + iy -iy ′ ) 1 √ y 2 .
This implies

(ω 1 (c + iy ′ ) -ω 1 (a + iy)) y ℑω 1 (a + iy) (ω 1 (c + iy ′ ) -ω 1 (a + iy)) * ≤ c -a + iy -iy ′ 2 ℑω 1 (c + iy ′ ) y ′ .
We know that ω 1 is analytic around c and takes selfadjoint values, so we may let y ′ → 0 to obtain

(ω 1 (c) -ω 1 (a + iy)) y ℑω 1 (a + iy) (ω 1 (c) -ω 1 (a + iy)) * ≤ c -a + iy 2 ω ′ 1 (c) (1). 
Expanding in real and imaginary parts, we obtain

(ω 1 (c) -ℜω 1 (a + iy)) y ℑω 1 (a + iy) (ω 1 (c) -ℜω 1 (a + iy)) + yℑω 1 (a + iy) ≤ c -a + iy 2 ω ′ 1 (c)(1). We conclude that (ω 1 (c) -ℜω 1 (a + iy)) y ℑω 1 (a + iy) 1 2 ≤ c -a + iy ω ′ 1 (c) ,
so that, by elementary properties of the norm, and recalling that y ℑω1(a+iy) ≤ 1, (9) ℜω 1 (a + iy) y ℑω 1 (a + iy)

1 2 ≤ c -a + iy ω ′ 1 (c) + ω 1 (c) ,
independently of y > 0. The bound from the above relation, while necessary, is not sufficient for our purposes. We need to show that lim y→0 y ℑω1(a+iy) 1 2 ℜω 1 (a + Neumann algebra. However, since ω 1 takes values in a commutative algebra, it follows trivially that the third (last) term on the right hand side of the above relation converges also in the so topology to zero, which proves the existence and finiteness of the so limit [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF].

Let us denote

̟ ℜ 1 (a) := lim yց0 y ℑω 1 (a + iy) 1 2
ℜω 1 (a + iy) y ℑω 1 (a + iy) where the limits are in the so topology. We need one more lemma in order to be able to state and complete the proof of our main result. 

-Y n ) -1 = r.
Then ker Y = 0. Moreover, Y r = 0 = rY .

Proof. We claim that Y r = 0. Indeed,

Y r = Y lim n→∞ iy n (iy n -Y n ) -1 = lim n→∞ iy n Y (iy n -Y n ) -1 = lim n→∞ iy n Y n (iy n -Y n ) -1 + iy n (Y -Y n )(iy n -Y n ) -1 .
Since Y n = Y * n and there is an I > 0 such that Y n < I for all n, by continuous functional calculus the first term is bounded in norm by max t∈[-I,I]

iy n t iy n -t = max t∈[-I,I] y n t y 2 n + t 2 = y n I y 2 n + I 2 → 0 as y n ց 0. If ξ, η ∈ H, then iy n (Y -Y n )(iy n -Y n ) -1 ξ, η = iy n (iy n -Y n ) -1 ξ, (Y -Y n )η ≤ iy n iy n -Y n ξ 2 (Y -Y n )η 2 → 0
as y n ց 0, according to our hypothesis that Y n → Y in the so topology. We conclude that Y rξ, η = 0 for all ξ, η ∈ H, so that Y r = 0 in L, as claimed. Since r = 0, any element ξ = 0 which is in the range of r must belong to the kernel of Y . Showing that rY = 0 is similar. We have:

rY = lim n→∞ iy n (iy n -Y n ) -1 Y = lim n→∞ iy n Y n (iy n -Y n ) -1 + iy n (iy n -Y n ) -1 (Y -Y n ).
The first term tends to zero in norm, while the second term, when applied to •ξ, η , is dominated by (Y -Y n )ξ 2 iy n (iy n + Y n ) -1 η 2 , which tends to zero.

Let us state now our main result.

to ker(ω ′ 1 (a) -1 2 (X -ℜω 1 (a))ω ′ 1 (a) -1 2 ) (just here, we agree to denote ω ′ 1 (a)(1) by ω ′ 1 (a)). Indeed,

iℑω 1 (a + iy)G X (ω 1 (a + iy)) -iyE iy -ω ′ 1 (a) -1 2 (X -ℜω 1 (a))ω ′ 1 (a) -1 2 -1
= iℑω 1 (a + iy)G X (ω 1 (a + iy)) -iyω ′ 1 (a)E (iyω ′ 1 (a) -(X -ℜω 1 (a))) Note that, under the very favourable hypothesis on E[p], discussed in Remark 3.1, the result above, and its proof, closely parallels the corresponding result and proof from [START_REF] Bercovici | Regularity questions for free convolution[END_REF]. This seems to justify the statement that the Julia-Carathéodory derivative is an important tool in the understanding of invariant projections for sums of random variables which are free over a von Neumann algebra.

Lemma 2 . 1 .

 21 If there exists a p = p * = p 2 ∈ A \ {0} and a ∈ R such that lim z-→a ∢ (z -a)(z -T ) -1 = p in the strong operator (so) topology, then T p = pT = ap. Conversely, if T p = pT = ap, then so-lim z-→a ∢ (z -a)(z -T ) -1 = p.

y

  ℑω 1 (a + iy) ,

- 1 = 1 .

 11 ℑω 1 (a + iy) y -ω ′ 1 (a) iyG X+Y (a + iy)+ ω ′ 1 (a)iyE (ω 1 (a + iy) -X) -1 (iyω ′ 1 (a) -X + ℜω 1 (a) -ℜω 1 (a + iy) -iℑω 1 (a + iy) + X) (iyω ′ 1 (a) -(X -ℜω 1 (a))) -As shown in [3, Theorem 2.2], ℑω1(a+iy) y increases to ω ′ 1 (a) as y ց 0 (convergence in so topology) and iyG X+Y (a + iy) → E[p], so the first term goes to zero. Next,iy (ω 1 (a + iy) -X) -1 ℑω1(a+iy) y -ω ′ 1 (a) iy (iyω ′ 1 (a) -(X -ℜω 1 (a)))-1 has the first and third factors bounded, while the middle one converges to zero in the so topology. Finally, precisely the same statement holds for the last product, namely iy (ω 1 (a + iy) -X)-1 ℜω1(a)-ℜω1(a+iy) iy iy (iyω ′ 1 (a) -(X -ℜω 1 (a))) -1. Thus, the above tends to zero in the so topology, guaranteeing thatker(ω ′ 1 (a) -1 2 (X -ℜω 1 (a))ω ′ 1 (a) -1 2 ) + ker(ω ′ 2 (a) -1 2 (Y -ℜω 2 (a))ω ′ 2 (a) -1 2 ) = 1 + E[p].

  Lemma 3.2. Consider a family {Y n } n∈N ⊂ A of selfadjoint elements uniformly bounded in norm. Assume that so-lim n→∞ Y n = Y and that there exists a sequence {y n } n∈N ⊂ (0, 1) converging to zero and an element r ∈ A \ {0} such that

	wo-lim

n→∞ iy n (iy n

iy)

y ℑω1(a+iy) 1 2 exists in the so topology and is finite. Clearly, this is implied by the existence of [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] so -lim y→0 y ℑω 1 (a + iy) .

We write:

ω 1 (a + iy) y ℑω 1 (a + iy)

(ω 1 (a + iy ′ ) -ω 1 (a + iy)) y ℑω 1 (a + iy)

.

Recalling that

(ω 1 (a + iy ′ ) -ω 1 (a + iy)) y ℑω 1 (a + iy)

assures us that the middle term on the right hand side of the equality above converges in norm to zero as y, y ′ → 0. As shown in Lemma 2.3 above, solim y→0 y ℑω1(a+iy) 1 2 exists and is strictly between 0 and 1. Thus, so -lim

Clearly ω 1 (a+iy) y ℑω1(a+iy)

has been shown to be bounded in [START_REF] Charlesworth | Free entropy dimension and regularity of noncommutative polynomials[END_REF], and yℑω 1 (a + iy) is known to be uniformly bounded as y → 0 by a universal constant depending only on the first two moments of X and Y , it follows that ω 1 (a + iy)

uniformly bounded as y → 0. Generally, if a ι = a * ι → 0 in the so topology and b ι is uniformly bounded in norm, then b ι a ι converges to zero in the so topology. Indeed, for any ξ ∈ H, b ι a ι ξ 2 ≤ b ι a ι ξ 2 ≤ (sup ι b ι ) a ι ξ 2 → 0. This guarantees that the first term on the right hand side of the equality above converges in the so topology to zero as y, y ′ → 0. Finally, under the above assumptions, a ι b ι → 0 in the wo topology:

This guarantees that the last term on the right hand side of the equality above converges in the wo topology to zero as y, y ′ → 0. This shows that the family y ℑω1(a+iy)

is Cauchy, hence convergent in the wo topology. Up to this point, we did not need the fact that L is an Abelian von Theorem 3.3. Let X, Y be selfadjoint, free over the commutative von Neumann algebra L. Assume that there exists a nonzero projection p and a ∈ R such that (X + Y )p = p(X + Y ) = ap. Denote by ω 1 , ω 2 Voiculescu's analytic subordination functions associated to X and Y , respectively. Then:

2 is an operator between 4E[p] 4E[p]+1 and 1. We have Ξ = 1 and equality in the above whenever

Proof. Let us return to equality (5): we have

As shown above,

so-convergence to a bounded selfadjoint element. We have also seen that the family y ℑω1(a+iy) (X-ℜω 1 (a+iy)) y ℑω1(a+iy) is uniformly bounded in norm as y ∈ (0, 1). Since in the above relation [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF], 0 ≤ E X [p] = 0 and y ℑω1(a+iy) , y > 0, is bounded from below by the positive nonzero element E[p], it follows that the middle factor in the right hand side cannot converge to zero. Also, if ker

. Indeed, we may write

ℜω 1 (a + iy) y ℑω 1 (a + iy)

.

We recall from (9) that ℜω 1 (a + iy) y ℑω1(a+iy)

is uniformly bounded as y → 0. Elementary operator theory informs us that the norm of an operator on a Hilbert space dominates its spectral radius, with equality for normal elements. Since σ ℜω 1 (a + iy) y ℑω1(a+iy)

∪ {0}, it follows that the spectral radius, and hence the norm, of the right-hand side, selfadjoint, operator is uniformly bounded as y → 0. Since the kernel of a positive operator equals the kernel of any of its positive powers, we conclude that if

in a von Neumann algebra, there exists a sequence y n converging to zero so that the above converges in the weak operator (wo) topology. Choose such a limit point and call it r. (Note that, in this particular case, the adjoint of the above also converges, and necessarily to r * .) We have established above that ker(

. If this inequality were an equality, then the inequality ran(r) ≤ ker(

) provided by Lemma 3.2, would imply ran(r) ≤ ker ̟ ℑ 1 (a). In particular, we would obtain that the right-hand side of (5) converges to zero 1 , contradicting the fact that p, and hence E X [p], is non-zero. Thus, necessarily ker

This way, we conclude that

The statement for ω 2 and Y follows the same way. Let us establish next the relation between the kernels from items (1) and ( 2). Let us take the imaginary part in (2) (we use commutativity of L in an essential way):

(Recall that ℑG X+Y (a + iy) < 0.) We multiply with -ℑG X+Y (a + iy) to obtain

1 If the bounded sequence rn converges wo to r and the positive sequence xn converges so to It is easy to verify that the right hand side converges when y ց 0, at least along a subsequence. Let us analyze each of the two terms on the left hand side separately:

We recognize under the expectation the square of the selfadjoint shown to soconverge to ̟ ℑ 1 (a)X ̟ ℑ 1 (a)-̟ ℜ 1 (a), and which has been shown to be uniformly norm-bounded in y. Since the square of a bounded family of selfadjoints converges whenever the family converges 2 , we obtain that so-lim

The family

, y > 0, is uniformly bounded from above by 1 and positive in the von Neumann algebra L X . Pick, as before, a subsequence y n ց 0 such that Z yn converges wo to an element s 1 ≥ 0 in L X . As in the proof of Lemma 3.2, we have (

It is quite clear that s 1 = 0. Indeed, that follows from (7) the same way as above. In particular, we have ker

the inequality in item (3) of our theorem follows from the monotonicity of E. The limit in the right hand side is easily seen to be between 4E[p] 4E[p]+1 and 1. Finally, if E[p] > 0, then ℜω 1 (a + iy) converges as y → 0 to a selfadjoint ω 1 (a) (see [START_REF] Belinschi | A noncommutative version of the Julia-Wolff-Carathéodory theorem[END_REF]Theorem 2.2]), and, according to [START_REF] Belinschi | A noncommutative version of the Julia-Wolff-Carathéodory theorem[END_REF]Relation (4.2)], (ℜω 1 (a + iy) -ω 1 (a))/y → 0 as y → 0. Then (2) yields ω 1 (a)+ω 2 (a) = a and thus (ω 1 (a+iy)-ω 1 (a))G X (ω 1 (a+ iy)) + (ω 2 (a + iy) -ω 2 (a))G Y (ω 2 (a + iy)) = iyG X+Y (a + iy) + 1. We write (ω 1 (a + iy) -ω 1 (a))G X (ω 1 (a + iy)) = iyG X+Y (a + iy)(ℜω 1 (a + iy) -ω 1 (a))/y + iℑω 1 (a + iy)G X (ω 1 (a+iy)). The first term tends to zero. We claim that the second converges