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yi = c1(T ⇤
pi
), yi 2 H2( ¯Mg ,n) . Consider H⇤( ¯Mg ,n)�valued

generating function for products of yi

I Theorem (S.B.[2009])
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I the sum on the right is over stable ribbon graphs of genus g
with n numbered punctures, with 2d + n edges, and such that
the vertices of the graph have cyclically ordered subsets of
arbitrary odd cardinality

I In the simplest case, corresponding to the top degree, the
cohomology H6g�6+2n( ¯Mg ,n) is 1-dimensional, the
summation is over 3-valent usual ribbon graphs and this
formula then reproduces the main identity from Kontsevich
proof of Witten conjecture.



This formula is a byproduct of the construction of cohomology
classes from [2006b, 2009]

I I - an odd derivation acting on cyclic associative /A•�
algebra A, with odd scalar product, in general I 2 6= 0 (!)

I
Theorem (S.B.[2006b, 2009]) This data !Cohomology
classes in H⇤(Mg ,n)

I
Theorem (S.B.[2018]) This construction defines
Cohomological Field Theory.

I
Theorem (S.B.[2006b, 2009]) This construction applied to
“odd matrix algebra” A = q(N),
q(N) = {[X ,p] = 0|X 2 gl(N |N)} , where p�odd
involution, I = [X, ·], X- odd element !the formula (1) for
all products of yi

I This formula was the first nontrivial computation of
categorical all genus Gromov-Witten invariants.



Counterexample to a Theorem of Kontsevich

Another byproduct is a counterexample to the Theorem 1.3 from
Kontsevich “Feynman diagrams in low-dimansional
topology”(1993)

It turns out this sum ÂG Z (G) G is NOT
closed.



Counterexample A = h1, xi /x

2 = 1

I A = h1, xi /x

2 = 1, ¯

x = 1, b(1, x) = 1, d(x) = 1, d2 = 0,
w = x ⌦ x.

I For this data this sum ÂG Z (G)G is nonzero on the boundary
of the following ribbon graph =a generator of the dual
complex:

Figure: G : ZeI (∂G ) 6= 0



Cellular decomposition of ¯Mg ,n ⇥ Rn

A stable ribbon graph is a connected graph G (recall: a graph G is
a triple (Flag(G ),l, s) , where Flag(G ) is a finite set, whose
elements are called flags, l is a partition of Flag(G ) $ vertices , s

is an involution acting on Flag(G ) $ edges/legs ) together with:

I partitions of the set of flags adjacent to every vertex into i(v)
nonempty subsets

Leg(v) = Leg(v)(1) t . . . t Leg(v)(i(v )), v 2 Vert(G )

I fixed cyclic order on every subset Leg(v)(k) ,

I a number g(v) 2 Z�0 such
that|Leg(v)| > 2(2� i(v)� 2g(v)).

I Define an orientation
or (G ) 2 Det(⌦v2Vert(G )(k

Flag (v ) � kCycle(v ))

I �{G}k(G , or (G )) has natural “generalized contraction of

edges” di↵erential dgraph, d

2
graph = 0



Cellular decomposition of ¯Mg ,n ⇥ Rn

A metric on the stable ribbon graph is a function
l : Edge(G ) ! R>0 . Given a stable ribbon graph G w/out legs
and a metric on G one can construct by standard procedure a
punctured Riemann surface S(G ) , which have double points in
general.

I replace every edge by a pair of oriented strips [0, l ]⇥ [0+ i•[
one for each flag and glue them side 0⇥ [0+ i•[ to
l ⇥ [0+ i•[ according to the cyclic order of the cyclically
ordered subsets at each vertex. Then glue the two strips for
each edge [0, l ] $ [l , 0]

I identify points corresponding to 2 subsets at vertices with
g(v) = 0, i(v) = 2 , (double points); for points with
2g(v) + i(v) > 2 remplace the vertex by some Riemann
surface of genus g(v) , which does not contain any marked
point, connected to the rest via i(v) double points.

I This gives an isomorphism of complexes
(�{G}k [(G , or (G )] , dgraph) ! �g ,nC⇤(Mg ,n ⇥ Rn

>0/S
n

)



Example of the formula for products of yi

Example: The class of y1 in H2( ¯Mg ,n) is represented as linear
combination of stable (G , or (G )) with|Edge(G )| = 2+ n. It is
the coe�cient in front of 1

l
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in the formula



Compactifications and yi�classes

I The compactification ¯Mg ,n is a quotent of Deligne-Mumford
compactification ¯MDM

g ,n : the natural map ¯MDM ! ¯Mis the
contraction which forgets complex structure on every
component of singular Riemann surface which does not
contain marked points.

I One can consider ribbon graph decomposition of such
components. This way we get some intermediate
compactification ¯MDM ! ¯M0 ! ¯M. On the boundary of
new stratas again some components must be contracted and
so on.

I The line bundles Tpion ¯MDM
g ,n are pullbacks of the line

bundles Tpion ¯Mg ,n

I hence the yi�classes on ¯MDM
g ,n are pullbacks of the

yi�classes on ¯Mg ,n



The Quantum Master Equation on Cyclic Cochains
I The stable ribbon graph complex is intimately related with the

Quantum Master Equation on Cyclic Cochains (QMCC).
I Let V = V0 � V1 be Z/2Z -graded vector space,

dimk V < • , scalar product b : V⌦2 ! k [p]
I Cl = (�•

j=1Hom((PV⌦j ), k)Z/jZ) ,

S 2 Sym(Cl [1� p])[[ h̄]] (symmetric products for odd b ,
antisymmetric for even b )

I The Quantum Master Equation on Cyclic Cochains / The
noncommutative Batalin-Vilkovisky equation (S.B.[2006a])

h̄DNCS +
1

2
{S , S} = 0 QMCC

S = Âg�0,i>0 h̄2g�1+iSg ,i , Sg ,i 2 Symi(Cl [1� p]) .
I

{S0,1, S0,1} = 0,

S0,1 - A•� algebra with (even/odd) scalar product, so S�
multiloop, higher genus generalization of A•� algebra.



The noncommutative BV di↵erential

I (QMCC) () DNC (exp
1
h̄S) = 0

I The noncommutative BV di↵erential on F = Sym(Cl [1� p])
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I signs are the standard Koszul signs taking into account that
¯(a

r1 . . . a
rr )l = 1� p + Â ā

ri , ai 2 Hom (PV ) .

I
Theorem (S.B.[2006a]) D2

NC = 0



(A,m) is a d-Z/2Z graded associative algebra with odd scalar
product b, dimk A < • .
H is an odd selfadjoint operator H : A ! PA, H_ = H , such that
Id � [d ,H ] = P , dP = 0 , P2 = P . B - the image of P .
Let G be a 3-valent ribbon graph with legs, then put:

I on every vertex v ! the 3-tensors of the cyclic product on A

mv 2 ((PA)⌦3)_

I on every interieur edge e = (↵ 0) ! the two tensor

b

_(H_uf , vf 0), b

_,e
H 2 (PA)⌦2,

I on every leg l 2 Leg(G) ! element al 2 PB

I make the contraction
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The summation over 3-valent ribbon graphs with legs
(cont’d).

I
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S = Â
{G}

h̄1�c(G)WG

I S 2 Sym(�•
j=1Hom((PB⌦j ), k)Z/jZ)[[ h̄]]

I
Theorem (S.B.[2010]) The sum
over ribbon graphs S satisfy the QMCC/noncommutative
Batalin-Vilkovisky equation:

h̄DNCS +
1

2
{S , S} = 0



Let S 2 Sym(Cl [1� p])[[ h̄]] be a solution to the QMCC, with
S0,1,2 = 0 ( dV = 0 ), let G be a stable ribbon graph, then put:

I on every vertex v ! the multi-cyclic tensors

Sv
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I
Theorem (S.B.[2006a]) For any S- a solution to the QMCC
equation the following chain is a cycle in the stable ribbon
graph complex

W (S) = Â
{G}2SRG

h̄1�c(SG)WG [G]

dgraphW (S) = 0,

therefore [W (S)] 2 H⇤
�
M⇤,⇤

�



More constructions of solutions to the QMCC equation

I Conjecture (S.B.[2006a]) Counting of holomorphic curves
(S, ∂S, pi ) ! (M, ‰ Li ,�H⇤(Li

T
Lj )) , with Z/2Z -graded

local systems, gives solution to the QMCC equation.

I
Theorem (S.B. 2013) If A is an A•�infinity algebra with the
degeneration of the Hodge to de Rham spectral sequence,
then the solution to the QMCC is constructed step by step
starting from {S0,1, S0,1} = 0



Homotopy theory of the QMCC equation

I
Theorem (S.B.[2006a]) Solutions to the QMCC are in
one-to-one correspondence with the structure of algebra over

the Feynman transform of [k [Sn]

I
Theorem (S.B.[2006a])(The Feynman transform of
[k [Sn](0,g, n))_'C⇤(Mg,n/S

n

)



Associative algebra plus odd derivation I 2 6= 0.

I A- associative algebra , with odd scalar product

I Assume: I - an odd derivation acting on A, preserving the
scalar product: ,for example I = [L, ·], L 2 Aodd, in general
I 2 6= 0 (!), 9eI , [I ,eI ] = 1, str ([a, ·]) = 0 for any a 2 A.

I
Theorem(S.B.[2006b, 2009]) This data !Cohomology
classes in H⇤(Mg ,n)



“Odd matrix algebra” Q(N)

I Example q(N), q(N) = {[X ,p] = 0|X 2 gl(N |N)} , where
p�odd involution, q(N) has odd trace otr , I = [X, ·], X-
odd element X =

�
0 |diag(l1, . . . ,ln)

�
, ( I 2 6= 0 (!))

I
Theorem (S.B.[2006b, 2009]) This gives the generating
function for products of tautological classes yi = c1(T ⇤

pi
).



I
Conjecture (S.B.[2009]) This construction, applied to
A•�algebra A = End(C ), where C is a generating object of
Db(Coh(Y )), Y is the mirror dual Calabi-Yau manifold to X
!...

I !all genus Gromov-Witten invariants of X



Evidences for the conjecture

I In the case of X = pt the construction reproduces the
all-genus Gromov-Witten descendent potential of the point.

I For projective Calabi-Yau manifolds the summation over
g = 0 generalized ribbon graphs reproduces the summation
over trees giving Frobenius manifold of the •

2 � VHS defined
by the HC�. It coincides with the g = 0 Gromov-Witten of
the mirror dual for hypersurfaces.

I The construction defines a Cohomological Field Theory
(S.B.[2018]).
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