open science

Summations over generalized ribbon Feynman diagrams and all genus Gromov-Witten invariants

Serguei Barannikov

To cite this version:

Serguei Barannikov. Summations over generalized ribbon Feynman diagrams and all genus GromovWitten invariants. 2018. hal-01915676

HAL Id: hal-01915676
 https://hal.science/hal-01915676

Preprint submitted on 7 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Summations over generalized ribbon Feynman diagrams and all genus Gromov-Witten invariants.

Skoltech

Serguei Barannikov (Paris VII, NRU HSE)

24/09/2018
$\psi_{i}=c_{1}\left(T_{p_{i}}^{*}\right), \psi_{i} \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$. Consider $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$-valued generating function for products of ψ_{i}

- Theorem (S.B.[2009])

$$
\begin{align*}
& \sum_{\sum d_{i}=d} \psi_{1}^{d_{1}} \ldots \psi_{n}^{d_{n}} \prod_{i=1}^{n} \frac{\left(2 d_{i}-1\right)!!}{\lambda_{i}^{2 d_{i}+1}}= \\
= & {\left[\sum_{[G] \in \Gamma_{g, n}^{d e c}, \text { odd }}(G, o r(G)) \frac{2^{-\chi(G)}}{|\operatorname{Aut}(G)|} \prod_{e \in \operatorname{Edge}(G)} \frac{1}{\lambda_{i(e)}+\lambda_{j(e)}}\right] } \tag{1}
\end{align*}
$$

- the sum on the right is over stable ribbon graphs of genus g with n numbered punctures, with $2 d+n$ edges, and such that the vertices of the graph have cyclically ordered subsets of arbitrary odd cardinality
- In the simplest case, corresponding to the top degree, the cohomology $H^{6 g-6+2 n}\left(\overline{\mathcal{M}}_{g, n}\right)$ is 1-dimensional, the summation is over 3 -valent usual ribbon graphs and this formula then reproduces the main identity from Kontsevich proof of Witten conjecture.

This formula is a byproduct of the construction of cohomology classes from [2006b, 2009]

- I - an odd derivation acting on cyclic associative $/ A_{\infty}$ algebra A, with odd scalar product, in general $I^{2} \neq 0(!)$
- Theorem (S.B.[2006b, 2009]) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$
- Theorem (S.B.[2018]) This construction defines Cohomological Field Theory.
- Theorem (S.B.[2006b, 2009]) This construction applied to "odd matrix algebra" $A=q(N)$, $q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}$, where π-odd involution, $I=[\Xi, \cdot], \quad \Xi$ - odd element \rightarrow the formula (1) for all products of ψ_{i}
- This formula was the first nontrivial computation of categorical all genus Gromov-Witten invariants.

Counterexample to a Theorem of Kontsevich

Another byproduct is a counterexample to the Theorem 1.3 from Kontsevich "Feynman diagrams in low-dimansional topology" (1993)
Dual construction
We describe here a way to produce homology classes on $\mathcal{M}_{g, n}$. The starting ingredient is a finite-dimensional differential associative algebra V with a non degenerate odd scalar product and trivial cohomology.
The right inverse to the scalar product can be considered as an odd element differential that δ is closed. From the triviality of $H(V)$ it follows that there exists $\omega \in V \otimes V$ such that $d \omega=\delta$. We can use ω as a "propagator" and tensors $T_{(k)}: V^{@ k} \rightarrow \mathbf{C}$

Counterexample $A=\langle 1, \xi\rangle / \xi^{2}=1$

- $A=\langle 1, \xi\rangle / \xi^{2}=1, \bar{\zeta}=1, \beta(1, \xi)=1, d(\xi)=1, d^{2}=0$, $w=\xi \otimes \xi$.
- For this data this sum $\sum_{\Gamma} Z(\Gamma) \Gamma$ is nonzero on the boundary of the following ribbon graph $=$ a generator of the dual complex:

Figure: $G: Z_{\overparen{\jmath}}(\partial G) \neq 0$

Cellular decomposition of $\overline{\mathcal{M}}_{g, n} \times \mathbb{R}^{n}$

A stable ribbon graph is a connected graph G (recall: a graph G is a triple $(\operatorname{Flag}(G), \lambda, \sigma)$, where $\operatorname{Flag}(G)$ is a finite set, whose elements are called flags, λ is a partition of $\operatorname{Flag}(G) \leftrightarrow$ vertices, σ is an involution acting on $\operatorname{Flag}(G) \leftrightarrow$ edges/legs) together with:

- partitions of the set of flags adjacent to every vertex into $i(v)$ nonempty subsets

$$
\operatorname{Leg}(v)=\operatorname{Leg}(v)^{(1)} \sqcup \ldots \sqcup \operatorname{Leg}(v)^{(i(v))}, v \in \operatorname{Vert}(G)
$$

- fixed cyclic order on every subset $\operatorname{Leg}(v)^{(k)}$,
- a number $g(v) \in \mathbb{Z}_{\geq 0}$ such that $|\operatorname{Leg}(v)|>2(2-i(v)-2 g(v))$.
- Define an orientation $\operatorname{or}(G) \in \operatorname{Det}\left(\otimes_{v \in \operatorname{Vert}(G)}\left(k^{\text {Flag }(v)} \oplus k^{\text {Cycle }(v)}\right)\right.$
- $\oplus_{\{G\}} k(G$, or $(G))$ has natural "generalized contraction of edges" differential $\delta_{\text {graph }}, \delta_{\text {graph }}^{2}=0$

Cellular decomposition of $\overline{\mathcal{M}}_{g, n} \times \mathbb{R}^{n}$

A metric on the stable ribbon graph is a function
$I: \operatorname{Edge}(G) \rightarrow \mathbb{R}_{>0}$. Given a stable ribbon graph $G \mathrm{w} /$ out legs and a metric on G one can construct by standard procedure a punctured Riemann surface $\Sigma(G)$, which have double points in general.

- replace every edge by a pair of oriented strips $[0, I] \times[0+i \infty[$ one for each flag and glue them side $0 \times[0+i \infty[$ to $I \times[0+i \infty[$ according to the cyclic order of the cyclically ordered subsets at each vertex. Then glue the two strips for each edge $[0, I] \leftrightarrow[I, 0]$
- identify points corresponding to 2 subsets at vertices with $g(v)=0, i(v)=2$, (double points); for points with $2 g(v)+i(v)>2$ remplace the vertex by some Riemann surface of genus $g(v)$, which does not contain any marked point, connected to the rest via $i(v)$ double points.
- This gives an isomorphism of complexes $\left(\oplus_{\{G\}} k\left[(G\right.\right.$, or $\left.(G)], \delta_{\text {graph }}\right) \rightarrow \oplus_{g, v} C_{*}\left(\overline{\mathcal{M}}_{g, v} \times \mathbb{R}_{>0}^{v} / S_{v}\right)$

Example of the formula for products of ψ_{i}

Example: The class of ψ_{1} in $H^{2}\left(\mathcal{M}_{g, n}\right)$ is represented as linear combination of stable $(G, o r(G))$ with $|\operatorname{Edge}(G)|=2+n$. It is the coefficient in front of $\frac{1}{\lambda_{1}^{3}} \prod_{i=2}^{n} \frac{1}{\lambda_{i}}$ in the formula

Compactifications and ψ_{i}-classes

- The compactification $\overline{\mathcal{M}}_{g, n}$ is a quotent of Deligne-Mumford compactification $\overline{\mathcal{M}}_{g, n}^{D M}$: the natural map $\overline{\mathcal{M}}^{D M} \rightarrow \overline{\mathcal{M}}$ is the contraction which forgets complex structure on every component of singular Riemann surface which does not contain marked points.
- One can consider ribbon graph decomposition of such components. This way we get some intermediate compactification $\overline{\mathcal{M}}^{D M} \rightarrow \overline{\mathcal{M}}^{\prime} \rightarrow \overline{\mathcal{M}}$. On the boundary of new stratas again some components must be contracted and so on.
- The line bundles $T_{p_{i}}$ on $\overline{\mathcal{M}}_{g, n}^{D M}$ are pullbacks of the line bundles $T_{p_{i}}$ on $\overline{\mathcal{M}}_{g, n}$
- hence the ψ_{i}-classes on $\overline{\mathcal{M}}_{g, n}^{D M}$ are pullbacks of the ψ_{i}-classes on $\overline{\mathcal{M}}_{g, n}$

The Quantum Master Equation on Cyclic Cochains

- The stable ribbon graph complex is intimately related with the Quantum Master Equation on Cyclic Cochains (QMCC).
- Let $V=V_{0} \oplus V_{1}$ be $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space, $\operatorname{dim}_{k} V<\infty$, scalar product $\beta: V^{\otimes 2} \rightarrow k[p]$
- $C^{\lambda}=\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, $S \in \operatorname{Sym}\left(C^{\lambda}[1-p]\right)[[h]]$ (symmetric products for odd β, antisymmetric for even β)
- The Quantum Master Equation on Cyclic Cochains / The noncommutative Batalin-Vilkovisky equation (S.B.[2006a])

$$
\begin{gathered}
\hbar \Delta_{N C} S+\frac{1}{2}\{S, S\}=0 \\
S=\sum_{g \geq 0, i>0} \hbar^{2 g-1+i} S_{g, i}, S_{g, i} \in \operatorname{Sym}^{\mathrm{i}}\left(C^{\lambda}[1-p]\right) . \\
\left\{S_{0,1}, S_{0,1}\right\}=0
\end{gathered}
$$

QMCC
$S_{0,1}-A_{\infty}$ - algebra with (even/odd) scalar product, so S multiloop, higher genus generalization of $A_{\infty}-$ algebra.

The noncommutative BV differential

- $($ QMCC $) \Longleftrightarrow \Delta_{N C}\left(\exp \frac{1}{\hbar} S\right)=0$
- The noncommutative BV differential on $F=\operatorname{Sym}\left(C^{\lambda}[1-p]\right)$

$$
\begin{aligned}
& \Delta_{N C}\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda}= \\
& \quad=\sum_{p, q}(-1)^{\varepsilon} \beta_{\rho_{p} \tau_{q}}^{\vee}\left(a_{\rho_{1}} \ldots a_{\rho_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{q-1}} a_{\rho_{p+1}} \ldots a_{\rho_{r}}\right)^{\lambda}+ \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} \beta_{\rho_{\rho} \rho_{q}}^{\vee}\left(\ldots a_{\rho_{p-1}} a_{\rho_{q+1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\rho_{p+1}} \ldots a_{\rho_{q-1}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda} \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} \beta_{\tau_{p} \tau_{q}}^{\vee}\left(\ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{t}}\right)^{\lambda}\left(a_{\tau_{p+1}} \ldots a_{\tau_{q-1}}\right)^{\lambda}
\end{aligned}
$$

- signs are the standard Koszul signs taking into account that $\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}=1-p+\sum a_{\rho_{i}}^{-}, a_{i} \in \operatorname{Hom}(\Pi V)$.
- Theorem (S.B.[2006a]) $\Delta_{N C}^{2}=0$
(A, m) is a $d-\mathbb{Z} / 2 \mathbb{Z}$ graded associative algebra with odd scalar product $\beta, \operatorname{dim}_{k} A<\infty$.
H is an odd selfadjoint operator $H: A \rightarrow \Pi A, H^{\vee}=H$, such that $l d-[d, H]=P, d P=0, P^{2}=P . B$ - the image of P.
Let Γ be a 3-valent ribbon graph with legs, then put:
- on every vertex $v \rightarrow$ the 3-tensors of the cyclic product on A

$$
m^{v} \in\left((\Pi A)^{\otimes 3}\right)^{\vee}
$$

- on every interieur edge $e=\left(f f^{\prime}\right) \rightarrow$ the two tensor

$$
\beta^{\vee}\left(H^{\vee} u_{f}, v_{f^{\prime}}\right), \beta_{H}^{\vee, e} \in(\Pi A)^{\otimes 2}
$$

- on every leg $I \in \operatorname{Leg}(\Gamma) \rightarrow$ element $a_{l} \in \Pi B$
- make the contraction

$$
W_{\Gamma}\left(\bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right)=\left\langle\bigotimes_{v \in \operatorname{Vert}(\Gamma)} m^{v},\left(\bigotimes_{e \in \operatorname{Edge}(\Gamma)} \beta_{H}^{\vee, e}\right) \bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right\rangle
$$

The summation over 3-valent ribbon graphs with legs (cont'd).

$$
\begin{gathered}
W_{\Gamma}\left(\bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right)=\left\langle\bigotimes_{v \in \operatorname{Vert}(\Gamma)} m^{v},\left(\bigotimes_{e \in \operatorname{Edge}(\Gamma)} \beta_{H}^{\vee, e}\right) \bigotimes_{l \in \operatorname{Leg}(\Gamma)} a_{l}\right\rangle \\
S=\sum_{\{\Gamma\}} \hbar^{1-\chi(\Gamma)} W_{\Gamma}
\end{gathered}
$$

- $S \in \operatorname{Sym}\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi B^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)[[h]]$
- Theorem (S.B.[2010]) The sum over ribbon graphs S satisfy the QMCC/noncommutative Batalin-Vilkovisky equation:

$$
\hbar \Delta_{N C} S+\frac{1}{2}\{S, S\}=0
$$

Let $S \in \operatorname{Sym}\left(C^{\lambda}[1-p]\right)[[h]]$ be a solution to the QMCC, with $S_{0,1,2}=0\left(d_{V}=0\right)$, let Γ be a stable ribbon graph, then put:

- on every vertex $v \rightarrow$ the multi-cyclic tensors

$$
S_{g, i}^{v} \in \stackrel{i}{\left.\operatorname{Sym}^{i}\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}[1-p]\right), ~\right)}
$$

- on every edge $e=\left(f f^{\prime}\right) \rightarrow$ the two tensor

$$
\beta^{\vee}\left(u_{f}, v_{f^{\prime}}\right), \beta^{\vee, e} \in(\Pi V)^{\otimes 2}
$$

- take the contraction $W_{\Gamma}=\left\langle\underset{v \in \operatorname{Vert}(\Gamma)}{\otimes} S_{g, i}^{v},\left(\underset{e \in \operatorname{Edge}(\Gamma)}{\otimes} \beta^{\vee, e}\right)\right\rangle$
- Theorem (S.B.[2006a]) For any S- a solution to the QMCC equation the following chain is a cycle in the stable ribbon graph complex

$$
\begin{gathered}
W(S)=\sum_{\{\Gamma\} \in S R G} \hbar^{1-\chi\left(\Sigma_{\Gamma}\right)} W_{\Gamma}[\Gamma] \\
\delta_{\text {graph }} W(S)=0,
\end{gathered}
$$

therefore $[W(S)] \in H_{*}\left(\overline{\mathcal{M}}_{*, *}\right)$

More constructions of solutions to the QMCC equation

- Conjecture (S.B.[2006a]) Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow\left(M, \amalg L_{i}, \oplus H_{*}\left(L_{i} \cap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the QMCC equation.
- Theorem (S.B. 2013) If A is an A_{∞}-infinity algebra with the degeneration of the Hodge to de Rham spectral sequence, then the solution to the QMCC is constructed step by step starting from $\left\{S_{0,1}, S_{0,1}\right\}=0$

Homotopy theory of the QMCC equation

- Theorem (S.B.[2006a]) Solutions to the QMCC are in one-to-one correspondence with the structure of algebra over the Feynman transform of $\widehat{k\left[\mathrm{~S}_{n}\right]}$
- Theorem (S.B.[2006a])(The Feynman transform of $\left.\widehat{k\left[\mathrm{~S}_{n}\right]}(0, \gamma, v)\right)^{\vee} \simeq C_{*}\left(\overline{\mathcal{M}}_{\gamma, v} / \mathrm{S}_{v}\right)$

Associative algebra plus odd derivation $I^{2} \neq 0$.

- A- associative algebra, with odd scalar product
- Assume: I - an odd derivation acting on A, preserving the scalar product: ,for example $I=[\Lambda, \cdot], \Lambda \in A^{\text {odd }}$, in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem(S.B.[2006b, 2009]) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$

"Odd matrix algebra" $Q(N)$

- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g l(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \Xi$ odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem (S.B.[2006b, 2009]) This gives the generating function for products of tautological classes $\psi_{i}=c_{1}\left(T_{p_{i}}^{*}\right)$.
- Conjecture (S.B.[2009]) This construction, applied to A_{∞}-algebra $A=\operatorname{End}(C)$, where C is a generating object of $D^{b}(\operatorname{Coh}(Y)), Y$ is the mirror dual Calabi-Yau manifold to X $\rightarrow \ldots$
- \rightarrow all genus Gromov-Witten invariants of X

Evidences for the conjecture

- In the case of $X=\mathrm{pt}$ the construction reproduces the all-genus Gromov-Witten descendent potential of the point.
- For projective Calabi-Yau manifolds the summation over $g=0$ generalized ribbon graphs reproduces the summation over trees giving Frobenius manifold of the $\frac{\infty}{2}-$ VHS defined by the HC^{-}. It coincides with the $g=0$ Gromov-Witten of the mirror dual for hypersurfaces.
- The construction defines a Cohomological Field Theory (S.B.[2018]).
[2006a] S.Barannikov Modular operads and Batalin-Vilkovisky geometry. IMRN, Vol. 2007, article ID rnm075. Preprint Max Planck Institute for Mathematics 2006-48
[2006b] S.Barannikov Noncommutative Batalin-Vilkovisky geometry and matrix integrals. ii Comptes rendus Mathematique $i \dot{i}$ of the French Academy of Sciences, arXiv:0912.5484; Preprint NI06043 Isaac Newton Institute for Mathematical Sciences ($09 / 2006$), hal-00102085 (09/2006)
[2009] S.Barannikov Supersymmetry and cohomology of graph complexes. Lett Math.Phys. doi:10.1007/s11005-018-1123-7 hal-00429963 (2009)
[2010] S.Barannikov Solving the noncommutative Batalin-Vilkovisky equation. Letters in Math. Phys., 2013, Vol 103, 6, pp 605-628 arXiv:1004.2253 (2010)
[2018] S.Barannikov Feynman transform and cohomological field theories. hal-01804639 (2018)

