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DECOMPOSITION, PURITY AND FIBRATIONS BY NORMAL

CROSSING DIVISORS

FOUAD EL ZEIN, DŨNG TRÁNG LÊ, AND XUANMING YE

Abstract. We give a simple geometric proof of the decomposition theorem
in terms of Thom-Whitney stratifications by reduction to fibrations by normal
crossings divisors over the strata and explain the relation with the local purity
theorem an unpublished result of Deligne and Gabber.
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1. Introduction

Let f : X → V be a projective morphism of complex algebraic varieties. The
decomposition theorem, as proved in [BBDG 83], describes the derived direct image
complex Rf∗j!∗L on V , of an intermediate extension j!∗L ([BBDG 83], 2.1.7 and
proposition 2.1.11) of a geometric local system L on a Zariski open subset of X , as
a direct sum of intermediate extensions of irreducible local systems on Zariski open
subsets of V .

The proof in [BBDG 83] is given first for varieties over an algebraically closed
field with positive characteristic, with coefficients in a pure perverse sheaf on X ,
then deduced for geometric coefficients on complex algebraic varieties.

The decomposition theorem has been preceded by an unpublished note by Deligne
and Gabber [DeG 81] on the local purity theorem. The draft of the proof is dense
and it is established for an algebraic variety over a field with positive characteristic.

According to the general theory of weight this result can be translated into a
local purity theorem in Hodge theory in the transcendental case.

There exists a deep connection between these two results which does not ap-
pear in the existing proofs of the decomposition theorem. The basic innovation
of this article is a combined direct proof of both theorems with coefficients in the
intermediate extension of a polarized variation of Hodge structures (VHS), which
establishes the interaction between local purity and the decomposition and leads
to an overall clarification of the theory in the complex case.

Precise statements are given below (subsection 1.1 Theorem 2 and corollary 1.2).
The proper morphism f can be stratified ([GMacP 88] I, 1.6) by a Thom-

Whitney stratification, in opposition to just Whitney stratification of spaces. The
proof is by induction on the dimension of the strata of a Thom-Whitney stratifica-
tion (section 3.0.1 below). At the center of the inductive step we use a geometric
interpretation of the local purity to obtain the decomposition (see subsections 1.4,
2.3 and 2.4).

The proof given here of the equivalent statement, called the semi-purity (propo-
sition 1.9), is based on the global result of the polarization of the Intersection
cohomology of X . The proof in [DeG 81], when adapted to characteristic 0, is
based on the local invariant cycle theorem.

The second innovation is to introduce a class of projective morphisms which are
fibrations by normal crossing divisors (NCD) over the strata. In the case of such
fibrations by NCD we use Hodge theory only in the case of a complement of a NCD.
We recall that NCD are essential in Deligne’s construction [De 72].

We show in section 3 that any algebraic morphism f : X → V admits a desingu-
larization π of X such that π and f ◦ π are in such class of fibrations, from which
we deduce without further effort the result for all projective morphisms.

We rely in this paper on computations in terms of perverse sheaves and perverse
cohomology as explained in [BBDG 83]. The perverse τ -filtration on a complexK in
the derived category Db

c(X,Q) of constructible Q-sheaves is defined in ([BBDG 83]
proposition 1.3.3 p 29). A recent description of this filtration in [CaMi 10] shows
easily that forK = Rf∗j!∗L the induced perverse filtration on the hypercohomology
of the inverse image of an open algebraic subvariety U of V consists of sub-MHS of
H∗(f−1(U), j!∗L), where we suppose that f−1(U) the complement of a NCD in X
(see subsection 5.3). This is a basic result used in our proof and extended to the
case of a small ball punctured at the center.
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In the case of constant coefficients, the paper of de Cataldo and Migliorini
[CaMi 5] shows the potential of applications of the decomposition theorem in un-
derstanding the topology of algebraic maps. The proof here for coefficients in any
admissible polarized VMHS (definition 4.2) covers all analytic coefficients and has
similar applications. In particular the local purity theorem is essentially equivalent
to Grauert generalized Intersection isomorphism (formula 2.15).

Complex computations by Kashiwara intended to check the admissibility of
(graded) polarized variation of mixed Hodge structures (VMHS) on the comple-
ment of a NCD in codimension one ([Ka 86]), find their natural applications here
to develop Hodge theory with coefficients in the intermediate extension of an ad-
missible polarized VMHS.

Using the decomposition theorem, the full Hodge theory can be developed from
the special case of fibrations by NCD over the strata, which gives an alternative
approach to the development in terms of differential modules [Sa 88]. Our proof is
outlined in the notes [EL 14] and [EL 15].

It should be noted that the polarized VHS on smooth open subsets of irreducible
algebraic subvarieties for which the decomposition theorem is proved here corre-
spond to the holonomic differential Hodge modules on a smooth complex algebraic
variety [Sa 88].

1.0.1. Origin of the theory. The first statement of a decomposition theorem in
the sense of this article appears in the work of Deligne [De 68] as a criteria for a
complex K in the derived category of an abelian category [Ve 77] to be isomorphic

to the direct sum of its shifted cohomology: K
∼
−→ ⊕i∈ZH

i(K)[−i], which means
essentially the degeneration of the spectral sequence with respect to the truncation
functor τ .

The criteria in Deligne’s paper is applied to the complex direct image K :=
Rf∗CX by a smooth projective morphism f : X → V of complex varieties. In this
case the perverse truncation pτ coincides with the truncation τ and the spectral
sequence with respect to the perverse filtration coincides up to indices with Leray’s
spectral sequence where the degeneration is deduced from Hodge and Lefschetz
theorems. The decomposition of K follows.

When X is smooth and f is a projective morphism, f is smooth over the big
strata of a Thom - Whitney stratification of V , so we can apply Deligne’s result.
We shall see that this is the starting point of our inductive proof.

Deligne’s effort to present the proofs in full generality is a prelude to the vast
generalization of the theorem to any projective morphism in [BBDG 83] on a scheme
X of finite type over an algebraically closed field k of characteristic p > 0, for pure
perverse sheaves in the derived category Db

c(X,Ql) of constructible Ql-sheaves for
l 6= p [BBDG 83].

The statements may be transposed in characteristic 0 in terms of Hodge theory
according to a dictionary established by Deligne [De 71].

A procedure to obtain results concerning geometric statements in characteristic 0
from corresponding statements in characteristic p > 0, is described in ([BBDG 83],
6.2). This procedure applies to geometric variations of Hodge structures in opposi-
tion to axiomatic VHS.

The decomposition theorem is related to the existence of a HS on Intersection
cohomology [GMacP 83]. A result known also as a purity result. In the case of a
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complex algebraic curve V , pure HS on the cohomology of V with degenerating co-
efficients, that is an extension of a local system on a Zariski open subset underlying
a polarized VHS, is constructed in [Zu 79]. However the next development waited
until the introduction of the Intersection complex in [GMacP 83].

The introduction of perverse sheaves extends the scope of the theory to cover
algebraic varieties independently of the characteristic of the base field. In this
terminology the Intersection complex is extended to the case of local systems on a
Zariski open subset and it is referred to as the intermediate extension.

Also, the link with Kashiwara’s work on differential modules has been estab-
lished, as perverse sheaves correspond to holonomic modules.

1.0.2. Hodge theory. The development of Hodge theory in terms of logarithmic com-
plexes in the NCD case with coefficients in admissible variation of Hodge structures
(subsection 1.3) is not well documented, according to the referee of the notes, as he
asked to add the note [EY 14] on the subject. Hence we added the sections 4 and
5 at the end to serve as reference to the proof in the first three sections.

Hodge theory allows us to state the local purity theorem 1.8 and to deduce the
decomposition in section 2. By using logarithmic complexes we avoid the elaborate
development of the theory of Hodge modules.

1.0.3. The paper is organized as follows. In the rest of this introduction we give
the main statements of the article and describe the ideas based on a simultaneous
proof of decomposition and local purity by induction along the strata.

Full proofs using logarithmic complexes in section 2 are based on the reduction
to the case of a special fibration in section 3, while Hodge theory on logarithmic
complexes is reviewed in sections 4− 5.

1.1. Statements. We give below the statement of theorem 2 in terms of Thom-
Whitney stratifications and the perverse cohomology sheaves pHi(K) of a complex
K with constructible cohomology sheaves on an algebraic variety V . The perverse
cohomology refers to a cohomology theory with value in the abelian category of
perverse sheaves [BBDG 83].

Let f : X → V be a projective morphism of complex algebraic varieties, L̃
an admissible polarized variation of Hodge structures (VHS) defined over Q on a
smooth open dense subset Ω in X of dimension m and j : Ω → X the embedding.
We denote by L := L̃[m] the complex of sheaves reduced to L̃ in degree−m (referred
to as a shifted VHS), by j!∗L the intermediate extension of L ([BBDG 83], prop.
2.1.11 p. 60, 2.2.7 p. 69) and by K := Rf∗j!∗L the direct image in the derived
category of cohomologically constructible sheaves of Q-vector spaces Db

c(V,Q).
The decomposition theorem consists of two results. First, each perverse coho-

mology sheaf pHi(Rf∗(j!∗L)) decomposes naturally in a direct sum of intermediate
extensions (formula 1.5 below). This decomposition is naturally expressed here in
terms of intersection morphisms (1.1.2 below) which appear naturally in the theory
([BBDG 83] formula 1.4.6.1), and which importance appears with a Thom-Whitney
stratification of f .

The second result is the relative Hard Lefschetz theorem. Let η ∈ R2f∗QX

denote the section of cohomology classes defined by a relative hyperplane section

of f . The corresponding morphism of sheaves K
η
−→ K[2] induces morphisms of

degree 2 on the perverse cohomology. Then, the result states that the i-th iterated
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morphism

(1.1) pH−i(Rf∗j!∗L)
ηi

−→ pHi(Rf∗j!∗L).

is an isomorphism of perverse cohomology sheaves, from which the degeneration of
the perverse Leray spectral sequence is classically deduced.

One consequence is the existence of a non canonical isomorphism in Db
c(V,Q)

of the direct image complex Rf∗j!∗L with its shifted perverse cohomology sheaves
(formula 1.8 below). It is deduced from Hard Lefschetz following the same pattern
as in [De 68].

1.1.1. Thom-Whitney stratification S of f (section 3.0.1 below). Let f : X → V be
a projective morphism on an algebraic variety V of dimension n.

A Thom-Whitney stratification of f is adapted to j!∗L, if the restriction of the
cohomology of j!∗L, to the various strata of the underlying Whitney stratification
S of X , is locally constant. Since we consider only Thom-Whitney stratification
of f adapted to j!∗L, the cohomology of Rf∗(j!∗L) is also locally constant when
restricted to the strata of V . The stratification of X induces a stratification on the
fibers of f adapted to j!∗L.
Let Vj := ∪dimS≤jS denote the union of all strata of dimension ≤ j.

Ideally, we start with a smooth open subset U as the big strata of dimension
n over which f is a topological fibration, and set Vn−1 := V − U the complement
variety. Then, we define S1 as the union of all algebraic smooth connected strata
S of dimension n − 1 over which f is a topological fibration, U1 := U ∪ S1, and
Vn−2 := V − U1.

We continue this construction by induction on the dimension of the strata S of
Vj − Vj−1 over which f is a topological fibration.

However, we may refine the stratification according to our need in the proof.

1.1.2. Intersection morphisms. Let XS := f−1(S) be the inverse image of a strata
S of dimension l ≤ n, iXS

: XS → X , fS : XS → S. The intersection morphism
IS : Ri!XS

j!∗L → i∗XS
j!∗L, is defined on S by the composition of the morphism

iXS∗Ri
!
XS
j!∗L → j!∗L with the restriction morphism j!∗L → iXS∗i

∗
XS
j!∗L. The

image of the induced morphism on cohomology sheaves is a local system LiS on S:

(1.2) LiS := Im

{
R−l+ifS∗(Ri

!
XS
j!∗L)

IS→ R−l+ifS∗(i
∗
XS
j!∗L)

}
,

For a Thom-Whitney stratification adapted to j!∗L, the image LiS of IS is a local
system on each strata S. These local systems are necessarily components of any
eventual decomposition as it follows from the proof of proposition 2.2.

When L is a variation of HS of weight a, the cohomology sheaves with support
R−l+ifS∗(Ri

!
XS
j!∗L) (resp. the restrictions R−l+ifS∗(i

∗
XS
j!∗L)) are VMHS with

weight w ≥ a+ i− l (resp. w ≤ a+ i− l) (corollary 5.9). We deduce that the image
LiSl

of ISl
on each strata Sl of dimension l is a VHS of weight a+ i− l.

1.1.3. The inductive step. The proof is by induction on the dimension of the strata
of the Whitney stratification S of V underlying a Thom-Whitney stratification
of f : X → V . Let V be a complex algebraic variety of dimension n, and S
the stratification of f , Vj := ∪dimS≤jS the union of all strata of dimension ≤ j,
kj : (V − Vj) → V, ij : Vj → V . The immersion of a strata of dimension l in
V ∗
l := Vl − Vl−1 is denoted by iSl

: Sl → V .
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Theorem 1.1 (Inductive step). Let K = Rf∗j!∗L where L is a shifted polarized
variation of Hodge structures (VHS) of weight a, and S a Thom-Whitney stratifi-
cation of f adapted to j!∗L.

We suppose by induction, there is a decomposition of the perverse cohomology

on (V − Vj)
kj

−→ V for all degrees i

(1.3) pHi((K)|V−Vj
)

∼
−→ ⊕

Sl⊂V ∗

l

j<l≤n k∗j iSl !∗L
i
Sl
[l]

into a direct sum of intermediate extensions of polarized VHS LiSl
(formula 1.2) of

weight a+ i− l over the strata Sl for all l > j. Let

· · · → pHi((ij)∗Ri
!
jK)

pαi→ pHi(K)
pρi
→ pHi(Rkj∗K|V−Vj

)
pδi→ · · ·

be the long exact sequence of perverse cohomology associated to the triangle

(ij)∗Ri
!
jK

α
→ K

ρ
→ Rkj∗K|V−Vj

[1]
→.

i) The restriction to V − Vj−1 of the short exact sequences of perverse sheaves

0→ Im pαi →
pHi(K)

pρi
→ Im pρi → 0

is split over V − Vj−1:

pHi(K)|V−Vj−1
= k∗j−1Im

pαi ⊕ k
∗
j−1Im

pρi

k∗j−1Im
pαi = Ker pρi

∼
−→ ⊕Sj⊂V ∗

j
k∗j−1iSj !∗

LiSj

k∗j−1Im
pρi = k∗j−1(kj)!∗k

∗
j

pHi(K)
∼
−→ ⊕

Sl⊂V ∗

l

j<l≤n k∗j−1iSl !∗L
i
Sl
[l].

(1.4)

ii) Hard Lefschetz: If we suppose by induction Lefschetz isomorphisms on the open
subset V − Vj, then ηi extends into an isomorphism over V − Vj−1

ηi : pH−i(K)|V−Vj−1

∼
→ pHi(K)|V−Vj−1

Thus we obtain the following statement of the decomposition theorem proved in
[BBDG 83] in the geometric case and in [Sa 88] for Hodge modules.

Corollary 1.2. Let K = Rf∗j!∗L where L is a shifted polarized variation of Hodge
structures of weight a, and S a Thom-Whitney stratification of f adapted to j!∗L.

i) There exists a decomposition of the perverse cohomology on V in each degree

(1.5) pHi(K)
∼
−→ ⊕

Sl⊂V ∗

l

l≤n iSl !∗L
i
Sl
[l]

into a direct sum of intermediate extensions of shifted polarized VHS LiSl
(formula

1.2) of weight a+ i− l over the strata Sl for all l ≤ n. Moreover,

(1.6) Im

(
pHi(Rkj !k

∗
jK)→ pHi(K)

)
= kj !∗k

∗
j
pHi(K)

On a projective variety V , we have an orthogonal decomposition of a polarized
HS of weight a+ i+ j

(1.7) Gr
pτ
i Hi+j(X, j!∗L) ≃ Hj(V, pHi(K))

∼
−→ ⊕

Sl⊂V ∗

l

l≤n Hj(V, iSl !∗L
i
Sl
[l]).

ii) Hard Lefschetz: The iterated cup-product ηi is an isomorphism over V

ηi : pH−i(K)
∼
→ pHi(K)

Moreover, the perverse cohomology pH−i(K) is dual to pHi(K), and the duality
is compatible with the natural decomposition: the local systems LiSl

are polarized



DECOMPOSITION, PURITY AND FIBRATIONS BY NORMAL CROSSING DIVISORS 7

variation of Hodge structure (VHS) on Sl, L
−i
Sl

is dual to LiSl
, and each ηi induces

an isomorphism L−i
Sl

∼
→ LiSl

for each i and l.

iii) There exists an isomorphism in the derived category of constructible sheaves
on V

(1.8) K ≃ ⊕i∈Z
pHi(K)[−i].

The rest of the article is devoted to the proof.
In summary, the main features of the proof are as follows.

A reduction to the zero dimensional strata (proposition 2.2). We use the local
topological triviality property of a morphism along a strata (subsection 3.0.1).
Indeed, we cut a strata S of V ∗

j by a general normal section Nv to S at a point v,
so that the proof is carried on the restriction to Nv at v.

Hard Lefschetz. We check the proof of Hard Lefschetz isomorphism (1.1) in the
subsection 2.2 on the terms LiS of the explicit formula (1.2). The decomposition in
the formula 1.8 above, follows from Hard Lefschetz by Deligne’s criteria in [De 68].

The duality between L−i
Sl

and LiSl
follows from the auto-duality of j!∗L and

Verdier duality for the projective morphism f .
The polarization follows from the duality and Hard Lefschetz.

Remark 1.3. i) The statement is local on V , hence we may suppose V affine.
However, we may suppose V projective during the proof as follows. We embed
X into a projective variety X , then the intermediate extension j!∗L on X extends
over X. On X the global properties such as the polarization on the Intersection
cohomology apply.

ii) In the special case of a fibration by NCD over the strata (definition 1.4 below),
we use logarithmic complexes to describe mixed Hodge theory. The use of mixed
Hodge theory occurs in the proofs of the three lemma 2.1, 2.4 and 2.5, where the
last two follow from the local purity theorem stating conditions on the MHS on
cohomology of the link at v with value in Rf∗j!∗L (theorem 1.8 and proposition 1.9
below). Then, the proof for any projective morphism f is reduced to the case of
such special fibration.

1.2. Fibration over the strata by normal crossing divisors. Hodge theory
appears in the proof via a local purity statement (theorem 1.8 below). We reduce
the proof to the case where f is a special fibration, hence we only need to develop
Hodge theory on the complement of a NCD (sections 4− 5).

Let π : X̃ → X be a desingularization. The decomposition theorem for f follows
from the case of π and f ◦π ([De 68] proposition 2.16), in particular we can suppose
X smooth. In fact, we will suppose π and f ◦ π fibrations by NCD over the strata
of adequate Thom-Whitney stratifications in the sense below.

Definition 1.4 (topological fibration over the strata by NCD).
i) A morphism f : X → V is a topological fibration by NCD over the strata of

a stratification S = (Sα) of V underlying a Thom-Whitney stratification of f , if X
is smooth and the spaces Vl = ∪dimSα≤lSα satisfy the following properties:

1) The sub-spaces XVi
:= f−1(Vi) are successive sub-NCD embedded in X .

2) The restriction of f to XS := f−1(S) over each strata S of S is a topological
fibration: f| : XS → S.
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3) For each point v ∈ Vi−Vi+1 (hence Vi is smooth at v) and a normal section Nv

to Vi at v in general position, the subvariety f−(Nv) is smooth in X and intersects
the NCD XVi

transversally.
ii) The fibration is adapted to a NCD Y in X , or to a local system L defined on

a Zariski open algebraic set in the complement of Y in X , if in addition, for each
1 ≤ i ≤ n, the union of the sub-spaces XVi

∪ Y are relative NCD over the strata of
V , and the intermediate extension of L is constructible with respect to the strata.

iii) The fibration is adapted to a subspace Z of V , if Z is a union of strata of
the underlying whitney stratification S of V .

1.2.1. Fibration by NCD over the strata. Let X be smooth, and v ∈ Vi − Vi−1 6= ∅
(hence Vi is smooth at v); the inverse image of a normal section Nv to Vi at v in
general position, is a smooth subvariety f−1(Nv) of X intersecting the NCD XVi

transversally, then XVi
∩ f−1(Nv) = f−1(v) is a NCD in f−1(Nv).

We say for simplification, that XVi−Vi−1
:= f−1(Vi − Vi−1) is a relative NCD,

and that the stratification S is admissible for f .
The next proposition, proved in section 3, allows to deduce the decomposition

theorem for any morphism f from the case where f is a fibration by NCD.

Proposition 1.5. Let f : X → V be a projective morphism and Y a closed algebraic
strict subspace containing the singularities of X.

There exists a diagram X
π′

← X ′ f ′

→ V , where X ′ is a non-singular variety, and
Thom-Whitney stratifications of V, X, and X ′ such that π′ and f ′ := f ◦ π′ are
fibrations by relative NCD over the strata, adapted to Y ′ := π′−1(Y ).

Moreover, π′ is a modification of X, and there exists a Zariski open subset U ⊂
f(X) dense in the image f(X) of f such that f is smooth over U , π′ induces

an isomorphism of f ′−1(U) − (f ′−1(U) ∩ Y ′)
∼
−→ f−1(U) − (f−1(U) ∩ Y ), and

f ′−1(U) ∩ Y ′ is a strict relative NCD in the smooth fibers of f eventually empty
(called horizontal or strict in the fibers).

1.2.2. Reduction to the case of zero dimensional strata with NCD fiber. The notion
of relative NCD is used to reduce the proof at a general point v of a strata S, to the
case of a point v in a transversal section Nv to S at v, hence to a point v in a zero
dimensional strata. In such situation we can use logarithmic complexes ([ICTP 14]
section 8.3.3, theorem 8.3.14) since the inverse image of v is a NCD.

1.2.3. Purity of Intersection cohomology on a singular variety (lemma 2.25). As
a consequence of theorem 2 and corollary 1.2, in the case of a shifted polarized
variation of HS L on a smooth Zariski open subset U of a singlular projective
variety X with intermediate extension j!∗L, we deduce a pure HS on Hk(X, j!∗L)
as follows.

Let π : X ′ → X be a desingularization of X , j′ : U → X ′ and j′!∗L the in-
termediate extension on X ′ of L on U . The polarized VHS components LiS of the
decomposition ofRπ∗j

′
!∗L onX are defined on the various strata S of a stratification

S via the Intersection formula 1.2.
The right term of the isomorphism Hk(X, pH0(Rπ∗j

′
!∗L)) ≃ Gr

pτ
0 Hk(X ′, j′!∗L)

carry a HS by the compatibility of the perverse filtration pτ with the HS on
Hk(X ′, j′!∗L). The compatibility of the decomposition Hk(X,⊕Sl∈SL0Sl

[l]) of the

left term with the HS on Gr
pτ
0 Hk(X, j′!∗L) follows from the formula 1.7. The HS

on Hk(X, j!∗L) figures as the component corresponding to the big strata.
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1.2.4. Variation of Hodge structure on LiS over a strata S ⊂ V (corollary 2.10). Let
f : X → V , to illustrate the construction of the variation of HS on a component LiS
over a strata S in the decomposition of Rf∗j!∗L, we consider an adequate diagram

X ′ π
−→ X

f
−→ V with a desingularization X ′ of X and the intermediate extension

j′!∗L on X ′, then j!∗L is a component of the decomposition of pH0(Rπ∗j
′
!∗L) on X .

By intersecting with a general normal section to S at a general point v on S, we
reduce the proof to the case where v is a point in the zero dimensional strata of f .
Then, Hi

Xv
(X, j!∗L) (resp. Hi(Xv, j!∗L)) is a summand of Gr

pτ
0 Hi

X′
v
(X ′, j′!∗L) (resp.

Gr
pτ
0 Hi(X ′

v, j
′
!∗L) ) with induced sub-mixed Hodge structure of weight ≥ a+i (resp.

≤ a + i), hence the image HS on Liv is pure of weight a + i . The polarization of
Liv is the result of Poincaré duality with L−i

v and Hard Lefschetz.

1.3. Logarithmic complexes. We give in section 4 an account of mixed Hodge
theory with coeficients in an admissible variation of mixed Hodge structure (L,W, F )
(definition 4.2) on the complement of a normal crossing divisor Y in a smooth com-
plex projective variety X , using logarithmic complexes.

Moreover, we enlarge the theory to logarithmic complexes asssociated with a NC
subdivisor Z ⊂ Y , which is necessary in the inductive step (subsection 5.1).

Let L̃ be an admissible variation of mixed Hodge structure onX−Y of dimension

m, L := L̃[m] the associated perverse sheaf with the conventional shifted degree,
j := (X − Y )→ X , jZ := (X − Z)→ X , and iZ : Z → X .

We describe logarithmic complexes with weight and Hodge filtrations, obtained
for various functors applied to the intermediate extension of the admissible variation
of MHS L on X − Y as jZ!(j!∗L)|X−Z , RjZ∗(j!∗L)|X−Z , i

∗
ZRjZ∗(j!∗L)|X−Z , i

!
Zj!∗L

and i∗Zj!∗L, defining thus a MHS on the corresponding hypercohomology groups.
(⋆) We refer to such complexes as bifiltered logarithmic complexes.
The starting point is the realization of the direct image RjZ∗(j!∗L)|X−Z as a sub-
complex IC∗L(LogZ) of the logarithmic complex Ω∗L := Ω∗

X(LogY )⊗LX (denoted
as Ω∗(L, Z) in [ICTP 14] definition (8.3.31)).

We refer to a local study by Kashiwara [Ka 86] to construct the weight filtration
with a property of local decomposition.

The details of the constructions are given in the last sections 4 and 5 as they are
not needed earlier. In the first two sections we admit the existence of the weight
filtration and the following general properties of the weight w (corollary 5.9) :
1) the condition w ≤ a+ i on the weight of Hi(Z, j!∗L) for a pure L of weight a.
2) the condition w ≥ a+ i on the weight of Hi

Z(X, j!∗L) for a pure L of weight a.
We need also the existence of the MHS in the statement of the semi-purity

theorem (definition 5.11) in order to prove the local purity conditions on the weight
at the end of section 2.

1.3.1. Compatibility of Hodge structure with perverse filtration. Let f : X → V
be a projective morphism, and K a complex on V with constructible cohomology.
The topological middle perversity truncations on K on V ([BBDG 83] section 2
and prop. 2.1.17) define an increasing perverse filtration pτ on K, from which
we deduce for each closed sub-variety W of V , an increasing filtration pτ on the
hypercohomology:

(1.9) pτiH
k(V −W,K) := Im

{
Hk(V −W, pτiK)→ Hk(V −W,K)

}
.
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Let Z := f−1W := XW ⊂ X , jZ : X − Z → X and K := Rf∗R(jZ)∗j
∗
Zj!∗L. The

perverse filtration pτ on the hypercohomology groups Hk(X − Z, j!∗L) is deduced
by the isomorphism Hk(X − Z, j!∗L) = Hk(V −W,Rf∗j!∗L)

(1.10) pτiH
k(X − Z, j!∗L) := pτiH

k(V −W,Rf∗j!∗L)

Similarly, we define functorially pτ onHk
Z(X, j!∗L),H

k
c (X−Z, j!∗L) andHk(Z, j!∗L),

from pτ on K.
We check that the filtration pτ is a filtration by sub-MHS on the hypercohomol-

ogy of X − Z ([EY 14], theorems 1.1 and 3.2) using a result of [CaMi 10]. We say
simply: the perverse filtration pτ is compatible with the MHS on the hypercoho-
mology of X − Z.

Proposition 1.6. Let f : X → V be a projective morphism where X is smooth, j :
X−Y → X the open embedding of the complement of a normal crossing divisor Y in
X, L an admissible variation of MHS on X−Y shifted by dimX, W ⊂ V a closed
algebraic subset of V such that XW := f−1(W ) is a sub-normal crossing divisor
of Y . Then, the perverse filtration pτ on the cohomology H∗(X −XW , j!∗L) (resp.
H∗

XW
(X, j!∗L) and by duality H∗

c(X −XW , j!∗L), H∗(XW , j!∗L)), is a filtration by
sub-MHS.

The proof is carried in terms of logarithmic complexes in subsection (5.3.1).

1.3.2. Mixed Hodge structure (MHS) on the Link. The basic criteria for a complex
K on V to underly a structure of mixed Hodge complex (MHC), is given locally
at a point v ∈ V in terms of the Link at v (proposition 1.7 below). The criteria is
translated into a property of the tubular neighborhood of Xv := f−1(v), in terms
of X∗

Bv
:= XBv

−Xv, the inverse image of a small ball Bv with center v in V minus
the central fiber Xv.

Let jXv
: (X − Xv) → X, iXv

: Xv → X, kv : (V − v) → V and iv : v → V .
We apply the functor i∗vR(kv)∗k

∗
v functorially to the filtration pτ on Rf∗j!∗L to de-

fine the perverse filtration pτi on RΓ(Xv, i
∗
Xv
R(jXv

)∗j
∗
Xv
j!∗L) via the isomorphism

i∗Xv
R(jXv

)∗j
∗
Xv
j!∗L

∼
−→ i∗vR(kv)∗k

∗
vRf∗j!∗L.

The perverse filtration is considered on the hypercohomology Hr(X∗
Bv
, j!∗L),

which coincide with RΓ(Xv, i
∗
Xv
R(jXv

)∗j
∗
Xv
j!∗L) if the radius of Bv is small enough.

Thus, it may look a less abstract object.

Proposition 1.7 (MHS on the Link). Let v be a point in V with fibre Xv := f−1(v).
We suppose Xv and Xv∪Y are NCD in X and L be a shifted polarized VHS defined
on X−Y ; then, for a ball Bv with center v small enough, the perverse filtration on
Hr(X∗

Bv
, j!∗L)

∼
−→ Hr((Xv, i

∗
Xv
R(jXv

)∗j
∗
Xv
j!∗L) is compatible with the MHS (that

is a filtration by sub-MHS).

The proof in subsection 5.3.2 depends on a local version of a result in [CaMi 10]
easy to check. Once the above structure is defined, we can express the notion of
local purity in positive characteristic and give a meaning to the purity theorem
[DeG 81].

1.4. Deligne-Gabber’s local purity. This basic result is stated in positive char-
acteristic in [DeG 81] as follows:
Let K be a pure complex of weight a on an algebraic variety V and Bv a henseliza-
tion of V at a point v in the zero dimensional strata of V . The weight w of the
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cohomology Hi(Bv − {v},K), satisfy:

w ≤ a+ i if i ≤ −1 and w > a+ i if i ≥ 0.

The henselization of a complex algebraic variety at a point v corresponds to a
small neighbourhood of v for the transcendental topology. According to Deligne’s
dictionary between the purity in positive caracteristic and Hodge theory, a pure
complex corresponds in the transcendental case to an intermediate extension k!∗L
of a shifted (as a complex by dim V to the left) polarized VHS on a smooth algebraic
open subset k : V ∗ →֒ V embedded in a complex algebraic variety V .

To state the above result, the first task is to construct a MHS on the hyper-
cohomology H∗(Bv − v, k!∗L) where Bv is a small ball with center v ∈ V , with
coefficients in an intermediate extension of L of a shifted polarized VHS on V , or
more intrinsically on H∗(i∗vR(kv)∗k

∗
vk!∗L). Once we have such MHS we can state

the conditions on the weight as follows:

Theorem 1.8 (local purity). Let L̃ be a polarized variation of Hodge structures
of weight b on the smooth n-dimensional open subset V ∗ of an algebraic variety V ,
k : V ∗ → V the embedding, and let v be a point in the zero dimensional strata of
V , Bv a small ball with center v and a = b+ n.

The weight w of the space Hi(i∗vR(kv)∗k
∗
vk!∗L), isomorphic to the Intersection

cohomology Hi(Bv − {v}, k!∗L) of the Link at v, satisfies the relations:

w ≤ a+ i if i ≤ −1 and w > a+ i if i ≥ 0

(the intermediate extension k!∗L, after the shift L := L̃[n], is a complex of weight
a = b+ n).

1.4.1. Equivalent statement. The MHS is defined in fact along the NCD Xv in X ,
so we prove equivalent conditions on the weight above on X as follows

Proposition 1.9 (Semi purity). Given a (shifted) polarized variation of Hodge
structures j!∗L on X of weight a, the weights of the mixed Hodge structure on the
graded-cohomology spaces

Gr
pτ
i Hr(BXv

−Xv, j!∗L)

satisfy the inequalities: w ≤ a+ r if r − i ≤ −1, w > a+ r if r − i ≥ 0.

The crucial case of the proof is treated in section 2.4. The original proof in
positive characteristic may be adapted to the transcendental case, but we give a
relatively simple new proof based on the inductive hypothesis which assumes Hard
Lefschetz theorem on Bv−v. In fact, both the proposition and Hard Lefschetz theo-
rem (1.1) will be proved simultaneously in section 2, by induction on the decreasing
dimension of the strata of V .

2. Proof of the decomposition theorem

We present here a proof of theorem 2 and corollary 1.2 for projective morphisms,
based on a reduction to a stratification by NCD over the strata (definition 1.4,
proposition 1.5, section 3). Three lemma (2.1, 2.4, 2.5) use Hodge theory for which
we refer to sections 4− 5.

We start the proof with f smooth over the big strata. In this case, Deligne’s
classical proof [De 68] extends to the case of Intersection cohomology on the fibers.
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Next, the proposition 2.2 states the detailed statements of the results in the case
of a zero dimensional strata.
In the paragraph 2.1.4, we give an example of useful calculus with perverse sheaves.
The proof of the local purity theorem is given in subsection 2.3 by reduction to an
hyperplane section via Artin Lefschetz theorem except the crucial case of middle
perverse cohomology.
At the end we deduce the decomposition theorem for a projective morphism from
the case of fibrations by NCD over strata (lemma 2.23 and subsection 5.17).

2.1. Proof of theorem 2. Let f : X → V be a projective morphism of complex
algebraic varieties, S a Thom-Whitney stratification adapted to j!∗L on X and
K := Rf∗j!∗L. Set Vk the union of all strata of V of dimension ≤ k.

2.1.1. The big strata. By construction, the restriction of f to any strata of V is a
topological fibration and the big strata of V is an open smooth set U of dimension
n := dim.V as we suppose the singularities of V contained in Vn−1. The restric-
tions to U of the local cohomology sheaves Hi(K) are locally constant, hence they
coincide with the perverse cohomology sheaves: pHi(K) = Hi(K).

Lemma 2.1 (Initial step). The relative Hard Lefschetz theorem apply to Intersec-
tion cohomology of the fibers of the restriction of the morphism f smooth over the
big strata U of V .

The proof follows from Hodge theory in section 4.6, where we suppose L defined
on the complement of YU an horizontal relative NCD in XU . Then, Rif∗j!∗L
underlies a VHS such that at each point v ∈ U , the fiber (Rif∗j!∗L)v ≃ Hi(Xv, j!∗L)
is isomorphic to the intersection cohomology of the restriction of L to Uv the fiber
of U at v with its HS. The family Rif∗j!∗L in various degrees i satisfy the relative
Hard Lefschetz isomorphisms. Hence, the decomposition theorem for the smooth
induced morphism fU : XU → U follows from the results of Deligne [De 68].

2.1.2. The inductive step. The decomposition theorem is proved by descending in-
duction on the dimension of the strata. We suppose the decomposition proved over
the open subset Uj := V − Vj for some j < n, then we extend the decomposition
to Uj−1 along Vj − Vj−1, that is across the union of smooth strata S of dimension
j. Let Nv denote a general normally embedded section to the strata S at a point
v ∈ S, and fNv

: XNv
→ Nv the restriction of f .

By construction of S, f is locally trivial along S: let Bv be a small ball on the
strata S with center v, then f is locally homeomorphic to fNv

× Id|Bv
: XNv

×
Bv → Nv × Bv (subsection 3.0.1) , and the proof may be reduced to the case of
fNv

: XNv
→ Nv with the induced stratification on Nv; that is the case of an

isolated point v ∈ Nv with j = 0.

2.1.3. The case of zero dimensional strata V0. We prove now the case of the zero
dimensional strata in theorem 2. Since the proof is local, we may suppose V0 = v
reduced to one point v.
Let kv : (V − v)→ V , iv : v → V , and L of weight a on a Zariski open subset of X :

Proposition 2.2. Let K = Rf∗j!∗L denote the higher direct image on the algebraic
variety V of dim.n, S a Whitney stratification of V underlying a Thom stratifica-
tion of f , v ∈ V0 a point in the strata of dimension 0, and suppose the following
conditions on V − v satisfied:
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1) There exists for each i ∈ Z, a decomposition over the open subset V − v into
a direct sum of intermediate extensions of shifted local systems LiSl

[l] (formula 1.2)
on the various strata Sl ⊂ V − v of dimension l ≤ n:

pHi(K)|V−v := k∗v
pHi(K)|V−v

∼
−→ ⊕Sl⊂V−v k∗viSl !∗L

i
Sl
[l]

2) Hard Lefschetz: pH−i(K)|V−v
ηi

→ pHi(K)|V−v is an isomorphism on V − v.
3) The local purity theorem apply to K at v (theorem 1.8, subsection 2.3).

Then the decomposition as well Hard Lefschetz extend over v.
Precisely, let ρ : K → Rkv∗K|V−v and α : iv,∗Ri

!
vK → K, and consider the long

exact sequence of perverse cohomology on V

(2.1)
pδi−1

→ pHi(iv,∗Ri
!
vK)

pαi

→ pHi(K)
pρi

→ pHi(Rkv∗K|V−v)
pδi
→

i) The perverse image of pρi is isomorphic to:

Im pρi
∼
−→ kv !∗k

∗
v

pHi(K)
∼
−→ ⊕Sl

iSl !∗L
i
Sl
[l].

ii) We have pHi(iv,∗Ri
!
vK)

∼
−→ iv,∗H

i(i!vK). Let Liv := Im(Hi(i!vK)→ Hi(i∗vK)),
then Ker pρi = Im pαi ≃ iv,∗Liv is a polarized Hodge structure of weight a+ i.

iii) The perverse cohomology decomposes on V

(2.2) pHi(K)
∼
−→ Ker pρi ⊕ Im pρi.

In particular, we can extract from the sequence (2.1) an exact sub-sequence

(2.3) 0→ ⊕Sl⊂V −v,i−1−j≥0R
i−1−jkv∗k

∗
v(iSl !∗L

j [l]
pδi−1

→ Hi
v(X,K)

pαi

→ iv,∗L
i
v → 0

iv) Hard Lefschetz: pH−i(K)
ηi

→ pHi(K) is an isomorphism on V .

The proof occupy the rest of subsections 2.1 and 2.2.
In fact the third condition on local purity follows from the first condition on the
decomposition on V − v (see subsection 2.3); its proof is just postponed to ease the
exposition. The statement is given in full generality but the proof is given first for
fibrations by NCD from which case it is then deduced in general.

2.1.4. Perverse cohomology of Rkv∗K|V−v and Rkv !K|V−v. In order to compute

successively: Im pρi, Im
pαi and to prove the splitting of pHi(K), we rely on the

next calculus of the perverse cohomology of Rkv∗(K|V−{v}) under the hypothesis
of the decomposition on V − v.

Lemma 2.3. Let i : S → V be a fixed strata of V of dim.l, Lj [l] a family of local
systems on S shifted by l for j ∈ Z, and K ′ := ⊕ji!∗(Lj [l])[−j] the direct sum,
hence pHi(K ′) = i!∗Li[l]. Let v be a point in the closure of S and kv : V − v → V .

i) pHi(Rkv∗k
∗
vi!∗L

j [l]) = Rikv∗(k
∗
vi!∗L

j [l]) for i > 0, vanish for i < 0, and we
have a short exact sequence of perverse sheaves for i = 0

0→ i!∗(L
j [l])→ pH0(Rkv∗k

∗
vi!∗(L

j [l]))
h
→ R0kv∗(k

∗
vi!∗L

j [l])→ 0

in particular H0( pH0(Rkv∗k
∗
vi!∗L

j [l])))
∼
−→ R0kv∗(k

∗
v i!∗L

j [l]), and a morphism of
perverse sheaves ϕ : P → pH0(Rkv∗k

∗
vi!∗L

j [l]) factors through i!∗Lj [l] if and only
if h ◦ ϕ = 0.

ii) We deduce pHi(Rkv∗k
∗
vK

′) = ⊕j≤i
pHi−j(Rkv∗k

∗
vi!∗L

j [l]) = pHi(Rkv∗k
∗
v
pτ≤iK

′)
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and short exact sequences of perverse sheaves for all i

0→ i!∗(L
i[l])→ pHi(Rkv∗k

∗
vK

′)
h
→ ⊕j≤iR

i−jkv∗(k
∗
vi!∗L

j [l])→ 0

where the last term is a sum of vector spaces supported on v in degee zero.

There are isomorphisms of sheaf cohomology concentrated on v in degree 0

H0( pHi(Rkv∗k
∗
vK

′))
∼
−→ ⊕j≤iR

ikv∗(k
∗
v i!∗L

j [l − j])

and a morphism of perverse sheaves ϕ : P → pHi(Rkv∗k
∗
vK

′) factors through
i!∗(Li[l]) if and only if h ◦ ϕ = 0.

iii) Dually, pHi(Rkv!k
∗
vK

′) = ⊕j≥i
pHi−j(Rkv!k

∗
vi!∗L

j [l]) and we have short ex-
act sequences

0→ ⊕j≥iiv∗H
i−j−1(i∗vi!∗L

j
Sl
[l])

h′

→ pHi(Rkv!k
∗
vK

′)→ i!∗L
i[l]→ 0

where the first term is supported on v in degee zero.
A morphism ϕ defined on pHi(Rkv!k

∗
vK

′) factors through i!∗(Li[l]) if and only if
ϕ ◦ h′ = 0.

Proof. In the case of a unique local system K ′ = i!∗L′[l], we have by definition
i!∗L′[l] = τ≤−1Rkv∗k

∗
vi!∗L

′[l]; moreover τ≥0Rkv∗k
∗
vi!∗L

′[l] is supported by v.
Then we have the following exact sequence and isomorphisms

0→ i!∗L
′[l]→ pH0(Rkv∗k

∗
viSl!∗L

′[l])→ iv,∗R
0kv∗k

∗
v(i!∗L

′[l]→ 0

pHi(Rkv∗k
∗
vi!∗L

′[l]) = 0 for i < 0

pHi(Rkv∗k
∗
vi!∗L

′[l]) = Rikv∗k
∗
vi!∗(L

′[l]) for i > 0

H0( pH0(Rkv∗k
∗
vi!∗L

′[l]))
∼
−→ R0kv∗k

∗
v(i!∗L

′[l]

respectively, we have dual statements for Rkv!k
∗
v

0→ iv∗H
−1(i∗v(i!∗L

′[l])→ pH0(Rkv!k
∗
viSl!∗L

′[l])→ i!∗L
′[l]→ 0

pHi(Rkv!k
∗
vi!∗L

′[l]) = 0 for i > 0

iv∗H
i−1(i∗vi!∗L

′[l])
∼
−→ pHi(Rkv!k

∗
vi!∗L

′[l]) for i < 0

iv∗H
−1(i∗v(i!∗L

′[l])
∼
−→ H0( pH0(Rkv!k

∗
vi!∗L

′[l]))

If we set L′ = Lj and since for any complex C, pHi(C[−j]) = pHi−j(C), we
deduce the contribution of the component Lj [l] in the sum in K ′:
pHi(Rkv∗k

∗
vi!∗L

j [l − j]) = Rikv∗(k
∗
vi!∗L

j [l − j]) for i > j,
pHi(Rkv∗k

∗
vi!∗L

j [l − j]) = 0 for i < j, and the dual statements for Rkv!k
∗
v .

Moreover, we deduce a short exact sequence

0→ i!∗Lj [l]→ pHj(Rkv∗k
∗
vi!∗L

j [l − j])
h
−→ Rjkv∗k

∗
vi!∗L

j [l − j]→ 0

and H0( pHj(Rkv∗k
∗
vi!∗L

j [l − j])
∼
−→ Rjkv∗k

∗
vi!∗L

j [l − j]. Dually

0→ iv∗H
j−1(i∗vi!∗L

j [l − j])
h′

→ pHj(Rkv!k
∗
vi!∗L

j [l − j])→ i!∗L
j [l]→ 0

and i∗vH
j−1(i∗vi!∗L

j [l − j])
∼
−→ H0( pHj(Rkv!k

∗
vi!∗L

j [l − j])). �

Proof of the proposition 2.2. Although the statement is for any projective
f , the proof is given first in the case of fibrations by NCD. By the above lemma
(2.3, ii) we have

kv !∗k
∗
v
pHi(K) = ⊕Sl⊂V −viSl !∗L

i
Sl
[l] ⊂ pHi(Rkv∗k

∗
v
pHi(K)[−i]) ⊂ pHi(Rkv∗k

∗
vK)

i) We prove kv !∗k
∗
v
pHi(K) ⊂ Im pρi ⊂ pHi(Rkv∗k

∗
v
pHi(K)[−i]):
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We deduce from the canonical morphism φ : Rkv ! → Rkv∗ and the decomposition
hypothesis k∗vK = ⊕jk

∗
v
pHj(K)[−j] on V − v, the first equality below

Im

(
pHi(Rkv !k

∗
vK)

pφi
−−→ pHi(Rkv∗k

∗
vK)

)
=

⊕jIm

(
pHi(Rkv !

pHj(k∗vK)[−j])
pφj

i−−→ pHi(Rkv∗
pHj(k∗vK)[−j])

)
=

Im

(
pH0(Rkv !k

∗
v
pHi(K))

pφi
i−−→ pH0(Rkv∗k

∗
v
pHi(K))

)
= kv !∗k

∗
v
pHi(K)

In the direct sum over j, only the term for j = i is significant since for j < i
pHi(Rkv !k

∗
viSl !∗L

j
Sl
[l − j]) = 0, and pHi(Rkv∗k

∗
viSl !∗L

j
Sl
[l − j]) = 0 for j > i;

hence the second equality follows. The last equality follows from the construction
of kv !∗k

∗
v
pHi(K) in ([BBDG 83], subsection 2.1.7) as image of the morphism pφii.

Since k∗v
pHi(K) is a component of k∗vK[i], we remark that:

pH0(Rkv∗k
∗
v
pHi(K)) is a component of pH0(Rkv∗k

∗
vK[i]) = pHi(Rkv∗k

∗
vK).

The existing morphism on V − v: k∗v
pHi(K) → k∗vK[i] extends by Rkv∗ and Rkv !

such that pφii is compatible with the factorization

pH0(Rkv !k
∗
vK[i])→ pH0(K[i])

pH0(ρi)
−−−−−→ pH0(Rkv∗k

∗
vK[i])

Since pφii factors through
pHi(K), its image kv !∗k

∗
v
pHi(K) is contained in the image

of pHi(K) (formula 2.1):

kv !∗k
∗
v
pHi(K) = ⊕Sl⊂V−viSl !∗L

i
Sl
[l] ⊂ Im pρi.

ii) To show that pρi factors through ⊕Sl⊂V −viSl !∗L
i
Sl
[l] ⊂ pHi(Rkv∗k

∗
vK), we

prove, in view of lemma (2.3, ii), that the induced morphism ρi0 := H0(i∗v
pρi)

vanish in degree 0.

Lemma 2.4. The morphism ρi0 induced by i∗v
pρi on the cohomology in degree zero

vanish

ρi0 : H0(i∗v
pHi(K))−→H0(i∗v

pHi(Rkv∗k
∗
vK))

This is a basic argument where Hodge theory is needed in the proof. We assume
that f is a fibration by NCD over the strata (section 3), in which case we refer to
section 4 for Hodge theory and to section 1.8 below for the semi-purity theorem
needed here.

First, we remark the following geometrical interpretation in terms of a small ball
Bv ⊂ V and its inverse BXv

⊂ X . By lemma (2.3 i), we have

H0(i∗v
pH0(Rkv∗k

∗
v
pHi(K))) ≃ H0(⊕Sl⊂V −vk

∗
viSl !∗L

i
l [l])

∼
−→ H0(Bv − v, pHi(K))

Second we deduce from the triangle:
pτ<0(K[i])→ pτ≤0(K[i])→ pHi(K)

[1]
−→

an exact sequence:
H0(Bv,

pτ<0(K[i]))→ H0(Bv,
pτ≤0K[i])→ H0(Bv,

pHi(K)) → H1(Bv,
pτ<0K[i])

where Hr(Bv,
pτ<0(K[i])) = 0 for r = 0, 1, hence

H0(Bv,
pτ≤i(K)) ≃ H0(Bv,

pHi(K)) ≃ H0(i∗v
pHi(K))

which enables the factorization of ρi0 as a morphism

H0(i∗v
pτ≤iK) = H0(Bv,

pτ≤iK)→ H0(Bv − v, pτ≤iK) −→ H0(Bv − v, pHi(K)).

In other terms, we have an interpretation of ρi0 as a composition morphism via ρ′

H0(Bv,
pτ≤iK)

ρ′

−→ pτ≤iH
i(BXv

−Xv, j!∗L)−→Gr
pτ
i Hi(BXv

−Xv, j!∗L).
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and through Hi(Xv, j!∗L) as follows:

H0(Bv,
pτ≤iK)→ pτ≤iHi(Xv, j!∗L)→ pτ≤iHi(BXv

−Xv, j!∗L)

where the space Hi(Xv, j!∗L) has weight w ≤ a+ i (corollary 5.9). By assumption
the semi purity apply to Gr

pτ
i Hi(BXv

−Xv, j!∗L) of weight w > a+ i (proposition
1.9), hence we deduce ρi0 = 0.

iii) Proof of Im pαi ∼
−→ iv,∗Liv. We deduce from lemma (2.3 ii) as above:

H0(pHi−1(Rkv∗K|V−{v}))
∼
−→ Ri−1kv∗k

∗
v(

pτ≤i−1K).

We deduce from the formula (2.1) and the computation of pρi−1 above, a sub-exact
sequence of perverse sheaves :

0→ Ri−1kv∗k
∗
v(

pτ≤i−1K)
pδi−1

→ Hi
Xv

(X, j!∗L)
pαi

→ pHi(K)
pρi

→

where the perverse cohomology of i!v(K) coincides with its cohomology pHi(i!vK) =
Hi

Xv
(X, j!∗L) as a complex of vector spaces, hence Im pαi = Coker pδi−1.

On the other hand, by definition Liv is the image of Ii in the exact sequence

(2.4) Hi−1(i∗vRkv∗K|V−{v})
δi−1

→ Hi
v(V,K)

Ii

→ Hi(i∗vK)
ρi

→ Hi(i∗vRkv∗K|V−{v}).

hence Liv := Im Ii = Coker δi−1.
We need to prove Im δi−1 = Im pδi−1, to deduce the result in the form of an

exact sequence

(2.5) 0→ iv,∗L
i
v →

pHi(K)→ ⊕Sl⊂V−viSl !∗L
j
Sl
[l]→ 0.

We deduce from (lemma 2.3 ii) and the decomposition on V − v:

Ri−1kv∗k
∗
v(

pτ≤i−1K)
∼
−→ H0(pHi−1(Rkv∗K|V−{v})) = (pτ≤i−1Hi−1(BXv

−Xv, j!∗L))

and the following interpretation of the image:
pδi−1(Ri−1kv∗k

∗
v(

pτ≤i−1K))
∼
−→ δi−1(pτ≤i−1Hi−1(BXv

−Xv, j!∗L)).

Since Hi−1(i∗vRkv∗K|V−{v}) = Hi−1(BXv
−Xv, j!∗L)), we need to prove

Lemma 2.5. δi−1(pτ≤i−1Hi−1(BXv
−Xv, j!∗L)) = δi−1(Hi−1(BXv

−Xv, j!∗L))

The proof is based again on the semi purity theorem. Indeed, the quotient space
Hi−1(BXv

− Xv, j!∗L))/pτ≤i−1 has weight w < a + i by the semi purity theorem,
hence the image of pδi−1 and δi−1 in Hi

Xv
(X, j!∗L) of weight w ≥ a + i, are the

same.
iv) Proof of the splitting pHi(K)

∼
−→ iv∗Liv ⊕ (⊕Sl⊂V −viSl !∗L

i
Sl
[l]). We consider

the morphisms

(2.6) pHi(Rkv!k
∗
vK)

pβi

→ pHi(K)
pρi

→ Im pρi ⊂ pHi(Rkv∗k
∗
vK)

where βi is dual to ρ−i as β : Rkv!k
∗
vK → K is dual to ρ. We deduce from lemma

(2.3, iii) a dual argument to the proof in ii) above to assert that βi factors through
⊕Sl⊂V−viSl !∗L

i
Sl
[l], hence pρi induces an isomorphism Im pβi → Im pρi ◦ pβi :=

⊕Sl⊂V−viSl !∗L
i
Sl
[l] and defines a splitting.

In the sequence of morphisms: Hi
v(V,K)

pαi

−−→ pHi(K)
pγi

−−→ Hi(i∗vK) we have
Im pαi = Ker pρi and Ker pγi = Im pβi, hence pγi induces on Im pαi an isomorphism
to Im pγi ◦ pαi := iv∗L

i
v.
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Remark 2.6. i) We deduce from the above proof (formula 2.3 and 2.4)

Im pδi−1 ≃ ⊕Sl⊂V−v,i−j>0H
i−j
v (iSl !∗L

j
Sl
[l]), Im pδi−1 = Ker pαi = KerIi = Im δi−1

and the following isomorphism induced by pδi−1:
⊕Sl⊂V−v,i−1−j≥0R

i−1−jkv∗k
∗
viSl !∗L

j [l]
∼
−→ ⊕Sl⊂V−v,i−j>0H

i−j
v (iSl !∗L

j
Sl
[l])

ii) Hodge theory is used in the proof of the three lemmas 2.1, 2.4, 2.5. We
use semi purity at Xv or equivalently local purity at v (section 2.3) to extend the
decomposition property across v.

2.2. Hard Lefschetz. We check for all i ≥ 0, ηi : pH−i(K)
∼
−→ pHi(K) is an

isomorphism. By assumption the restriction of ηi to V − v on k∗v
pH−i(K) is an

isomorphism, hence it remains an isomorphism on the intermediate extension

(kv)!∗k
∗
v
pH−i(K)

∼
−→ ⊕Sl⊂V−v,jiSl !∗L

j
Sl
[l] ⊂ pH−i(K)

across the point v in the strata V0 of dimension 0. It remains to prove Hard

Lefschetz L−i
v

∼
−→ Liv where Liv := Im (Hi

Yv
(X, j!∗L)

Ii

→ Hi(Yv, j!∗L)).

Lemma 2.7. i) The cup-product with the class of an hyperplane section induces
isomorphisms ηi : L−i

v → L
i
v for i > 0.

ii) The HS on Liv is Poincaré dual to L−i
v for i ≥ 0.

In the case of a big strata S, we have a local system LiS = Rif∗j!∗L and the lemma
follows from Hard Lefschetz for intersection cohomology then the decomposition
follows by Deligne’s argument in [De 68] applied to the VHS on LiS = Rif∗j!∗L
(subsection 4.6). The general statement of Verdier duality for proper morphisms

apply to prove the duality between LiS and L−i
S .

At a point v of a lower dimensional strata, Verdier duality between perverse
cohomology sheaves in degree i and −i is compatible with the decomposition es-
tablished above and apply to (kv)!∗k

∗
v
pHi(K) by induction. The duality between

Liv and L−i
v in ii) is deduced from the duality of Ri!Xv

and Ri∗Xv
and Verdier duality

on Xv in the definition of Liv (formula 1.2).
To prove i) at the point v we consider an hyperplane section H intersecting all

NCD inX normally and proceeds by induction. Let iH denote the closed embedding
of H in X ; the cup product defines a morphism η equal to the composition of

the morphisms j!∗L
ρ
→ iH∗i

∗
Hj!∗L

∼
−→ iH∗Ri

!
H(j!∗L)[2]

G
→ j!∗L[2]. We apply the

functors Ri!Xv
and i∗Xv

to the above morphisms ρ, G, and η as in the commutative
diagram

Hi
Xv

(X, j!∗L)
ρ!
i−→ Hi

Xv∩H(H, j!∗L)
G!

i+2

−−−→ Hi+2
Xv

(X, j!∗L)
Ii↓ IiH↓ Ii+2↓

Hi(Xv, j!∗L)
ρ∗

i−→ Hi(Xv ∩H, j!∗L)
G∗

i+2

−−−→ Hi+2(Xv, j!∗L)

where on the first line: (η!v)i = G!
i+2 ◦ ρ

!
i and on the second line: (η∗v)i = G∗

i+2 ◦ ρ
∗
i

are functorially induced by ρ and G, while by definition Liv := Im Ii, L(H)iv :=
Im IiH , L

i+2
v := Im Ii+2 are the images of the vertical maps induced by I from the

top line to the bottom line.
The morphisms ρ∗i and the dual morphisms G∗

i+2 induce ρ′i and G
′
i+2 below

Liv
ρ′

i−→ L(H)iv
G′

i+2

−−−→ Li+2
v where L(H)iv := Im IiH
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with composition equal to η′ induced by η. The proof continue by induction on H .
A striking point however, there is no crucial case as in (Weil II [De 80], théorème
4.1.1) unless v is on the generic strata.

Lemma 2.8. The induced morphism ρ′i : L
i
v → L(H)iv is an isomorphism for i < 0

and by duality G′
i+2 : L(H)iv → L

i+2
v is an isomorphism for i+ 2 > 0.

We prove first the isomorphisms for i < 0

(2.7) ρ!i : H
i
Xv

(X, j!∗L)→ Hi
Xv∩H(H, j!∗L)

We apply Artin- Lefschetz theorem ([BBDG 83], corollary 4.1.5) to the affine open

subset Xv − (H ∩ Xv) with coefficients in a complex of sheaves K ∈ pD≤0(Xv) to
prove the vanishing of Hi(Xv − (H ∩ Xv),K) for i > 0 and its dual statement:

Hi
c(Xv− (H ∩Xv),K′) = 0 with coefficients in a complex of sheaves K′ ∈ pD≥0(Xv)

for i < 0.
Since i∗Xv

(j!∗L)[−1] ∈ pD≤0(Xv) and its dual i!Xv
(j!∗L)[1] ∈ pD≥0(Xv) we deduce

Hi
c(Xv − (H ∩Xv), i

!
Xv

(j!∗L)[1]) = 0 for i < 0, hence we have for i < 0

Hi
Xv

(X, j!∗L) = Hi−1(Xv, i
!
Xv
j!∗L[1])

ρ!i ↓ ≃ ↓ ≃
Hi

Xv∩H(H, j!∗L) = Hi−1(Xv ∩H, i!Xv
j!∗L[1])

The last equality is the main point and follows from the isomorphisms

i∗Xv∩HRi
!
Xv

(j!∗L)
∼
→ Ri!Xv∩Hi

∗
H(j!∗L), i∗H(j!∗L[−1])

∼
→ jH !∗i

∗
H∩(X−Y )L[−1])

due to the transversality of the intersection of H and Xv.

Proof of the lemma. We extend the diagram above by introducing the kernel of the
Intersection morphisms I to get two columns of short exact sequences

Hi−1(i∗vR(kv)∗K|V−{v})
ρ∗

i−1

−−−→ Hi−1(i∗vR(kv)∗KH |V −{v})

δi−1 ↓ δi−1
H ↓

Hi
v(V,K)

∼
−→ Hi

Xv
(X, j!∗L)

ρ!
i−→ Hi

Xv∩H(H, j!∗L)
∼
−→ Hi

v(V,KH)
Ii ↓ IiH ↓

Liv = Im Ii
ρ′

i−→ L(H)iv = Im IiH

where KH = R(f|H)∗(j|H)!∗j!∗L|H , Liv ⊂ Hi(i∗vK) = Hi(Xv, j!∗L) and L(H)iv ⊂
Hi(Xv ∩H, j!∗L) = Hi(i∗vKH).

On the right column the short exact sequence is defined by the perverse shifted
restriction L|H [−1] of L, for which we suppose Hard Lefschetz by induction.

We prove that for i < 0, the morphism ρ!i, which is an isomorphism by the
lemma, induces isomorphisms

(2.8) ρ!i| : Im δi−1 = Ker Ii
∼
−→ Im δi−1

H = Ker IiH

hence induces isomorphisms: ρ′i : L
i
v

∼
−→ (L|H)iv for i < 0.

Proof of the isomorphism ρ!i| : Ker Ii
∼
−→ Ker IiH . By the remark (2.6 i)

Ker(Ii) = Im(δi−1) = Im(⊕Sl⊂V −v,j<iH
i−1−j(i∗vRkv∗k

∗
viSl !∗L

j
Sl
[l]))

Ker(IiH) = Im(δi−1
H ) = Im(⊕Sl⊂V −v,j<iH

i−1−j(i∗vR(kv)∗k
∗
viSl !∗(L|H)jSl

[l])).

The proof is reduced to the comparison of LjSl
and (L|H)jSl

on each component Sl.
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We consider for each Sl, a normal section Nvl to Sl at a general point vl ∈ Sl,
then:

(R−l+jf∗i
!
XSl

j!∗L)vl
∼
−→ H−l+j

Xvl
(XNvl

, j!∗L)
∼
−→ Hj

Xvl
(XNvl

, j!∗L[−l])

where j!∗L[−l] restricts to a perverse sheaf on XNvl
of dimension dim.X − l. Since

i < 0 and j < i we have j < −1, moreover Xvl − (H ∩ Xvl) is affine, hence the
restriction of ρ!j to XNvl

is an isomorphism by the hyperplane section theorem on

the fibres of f over Sl: ρ
!
j| : H

j
Xvl

(XNvl
, j!∗L[−l]) → Hj

Xvl
∩H(XNvl

∩ H, j!∗L[−l])

where the last term is isomorphic to (R−l+jf∗i
!
H∩XSl

j!∗L|H)vl .

Corollary 2.9. The iterated cup-product with the class of a relative hyperplane
section induces isomorphisms ηi : pH−i(K)→ pHi(K) for i ≥ 0.

Corollary 2.10. For each strata S of V , the local system LiS is a polarized variation
of Hodge structure on the smooth variety S.

We consider here the case of a fibration f : X → V by NCD over the strata
with X smooth, we consider at a point v ∈ S open neighborhoods Bv of v in V
and Sv in S, and a projection pv : Bv → Sv, inducing the identity on Sv, such that
pv ◦ f : XBv

→ Sv is smooth.
The fibers Na := p−1

v (a) at points a ∈ Sv form a family of normal sections to Sv

such that XNa
:= f−1(Na) is a smooth sub-variety of XBv

. By an argument based
on the relative complex Ω∗

XBv/Sv
L as in section 4.6, the families Rkf∗(i

!
XSv

(j!∗L)

(resp. Rkf∗(i
∗
XSv

(j!∗L)) form variations of MHS on S of weight ≥ a+ k + l (resp.

≤ a+ k + l) (corollary 5.9).
Then the image of the Intersection morphisms LkSv

are pure variation of HS of
weight a+ k + l on Sv.

2.3. Proof of the local purity theorem 1.8. We did assume in the statement
of the proposition 2.2 the local purity at v to simplify the exposition. We show now
the local purity at v follows in fact from the decomposition on V − v.

We assume here that f is a fibration by NCD over the strata in order to apply
Hodge theory in sections 4 − 5. We refer precisely to the subsection (5.2.4) for
the construction of the mixed Hodge structure used in this theorem and to the
compatibility with the perverse filtration.

The proof given here of the equivalent statement, called the semi-purity at Xv

(proposition 1.9), is based on the global result of the polarization of the Intersection
cohomology of X . The proof in [DeG 81] is based on the local invariant cycle
theorem.

2.3.1. Inductive hypothesis. Let j!∗L be a shifted polarized VHS of weight a on the
smooth and compact variety X, Xv := f−1(v) the fiber at v ∈ V , and BXv

=
f−1(Bv) the inverse of a small neighborhood Bv of v. We assume by induction the
decomposition theorem on V − v, hence we have an isomorphism:

(2.9) Gr
pτ
i Hr(BXv

−Xv, j!∗L)
∼
−→ Hr−i(Bv − {v},

pHi(Rf∗j!∗L)).

This isomorphism is used to carry the MHS from the left term (subsection 5.3) to
the right.

Under such isomorphism, we prove the following inequalities on the weights w
of the MHS
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i) w > a+ r on pτ≤rHr(BXv
−Xv, j!∗L), and dually:

i’) w ≤ a+ r on Hr(BXv
−Xv, j!∗L)/ pτ≤rHr(BXv

−Xv, j!∗L).
or equivalently for j = r − i:

ii) w > a+ i+ j on Hj(Bv − v, pHi(Rf∗j!∗L)) if j ≥ 0, and dually:
ii’) w ≤ a+ i+ j on Hj(Bv − v,

pHi(Rf∗j!∗L)) if j ≤ −1.

Example. The dual of GrWa+lH
−1(Bv − v, pHi(Rf∗j!∗L)) for all i and l ≤ i− 1 in

the assertion ii’), is GrWa−lH
0(Bv − v, pH−i(Rf∗j!∗L)) for all i and a− l ≥ a− i+1

in the assertion ii); we remark the change of the variable i into the variable −i.

2.3.2. Duality. Let K := Rf∗j!∗L and kv : V − {v} → V . We have:

K(∗v) := i∗vRkv∗k
∗
vK

∼
−→ RΓ(Bv − v,K)

∼
−→ RΓ(BXv

−Xv, j!∗L).

The duality isomorphism D(K(∗v))[1]
∼
−→ K(∗v) where D stands for Verdier dual,

is deduced from the duality between Rkv∗ and Rkv! (resp. i
∗
v and Ri!v) as follows.

We apply to k∗vK two sequences of functors Rkv! → Rkv∗ → iv∗i
∗
vRkv∗ and

Rkv! → Rkv∗ → iv∗Ri
!
vRkv![1], defining dual triangles, from which we deduce

D(K(∗v))[1]
∼
−→ iv∗Ri

!
vRkv!k

∗
vK[1]

∼
−→ K(∗v).

which corresponds to the duality of the Intesection cohomology of the “link”:
∂BXv

= f−1(∂Bv) with coefficients in the restriction of j!∗L.
Since the perverse filtration is compatible with the MHS over V − v, we deduce

D(GrWa−qH
−j(K(∗v)))

∼
−→ GrWa+qH

j(DK(∗v))
∼
−→ GrWa+qH

j−1(K(∗v)).

and since the duality: D( pH−i(K))
∼
−→ pHi(K) follows from the auto-duality of

j!∗L by Verdier’s direct image theorem for f proper, we deduce

D(GrWa−qGr
pτ
−iH

−j(K(∗v)))
∼
−→ GrWa+qGr

pτ
i H

j−1(K(∗v)).

Hence, the proof is reduced by the above duality, to one of the two cases ii) or ii’)
in degree j ≥ 0 or j ≤ −1.

2.3.3. Proof by induction on dim.X. Let H be a general hyperplane section of X
transversal to all strata, iH : H → X and jH : (X −H) → X . The restriction to
H of the intermediate extension i∗Hj!∗L is equal to j!∗(L|H) by transversality.

We assume the local purity theorem for the perverse cohomology sheaves of
Rf∗j!∗(L|H [−1]), and we use Artin-Lefschetz vanishing theorem to deduce the local
purity for the perverse cohomology shaves of K in degree i 6= 0 as follows.

Lemma 2.11. Let Kc = Rf∗(jH)!j
∗
Hj!∗L (resp. K(∗) = Rf∗(jH)∗j

∗
Hj!∗L).

i) The complex Kc ∈ pD≥0
V ( pHi(Kc) = 0 for i < 0).

ii) Dually K(∗) ∈ pD≤0
V ( pHi(K(∗)) = 0 for i > 0).

Proof. Since the morphism f ◦ jH : (X −H)→ X is affine, the functor Rf∗ ◦ jH! =

R(f ◦ jH)! transforms pD≥0
X−H into pD≥0

V (left t-exact, [BBDG 83], corollary 4.1.2).

When applied to Rf∗(jH)!j
∗
Hj!∗L we deduce that Kc ∈

pD≥0
V . The result is a

version of Artin-Lefschetz vanishing theorem. The statement pHi(K(∗)) = 0 for
i > 0 follows by duality. �

Let K = Rf∗j!∗L, and KH = R(f ◦ iH)∗i
∗
Hj!∗L. The restriction morphism

ρ : K → KH , and dually the Gysin morphism: G : KH [−2]→ K, induce morphisms
compatible with the pτ filtration

ρi :
pHi(K)→ pHi(KH), Gi :

pHi−2(KH)→ pHi(K), Li :
pHi(K) −→ pHi+2(K),
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where Li = Gi+2 ◦ ρi (resp. L : K −→ K[2]), is defined by the cup product with
the Chern class c1 of a relative ample bundle.

Corollary 2.12. The restriction ρi :
pHi(Rf∗j!∗L)→ pHi(Rf∗(iH)∗i

∗
Hj!∗L) is an

isomorphism for each integer i < −1 and injective for i = −1.
Dually, the Gysin morphism Gi :

pHi−2(Rf∗(iH)∗i
∗
Hj!∗L)→

pHi(Rf∗j!∗L)
is an isomorphism for i > 1, and it is surjective for i = 1.

We deduce from the triangle (jH)!j
∗
Hj!∗L → j!∗L → iH∗i

∗
Hj!∗L

(1)
−−→, and its

direct image by Rf∗, an exact sequence of perverse cohomology

(2.10) · · · → pHi(Kc)
cani−−−→ pHi(K)

ρi
−→ pHi(KH)

∂i−→ pHi+1(Kc)→ · · ·

The corollary follows from lemma 2.11 as the complex Kc ∈ pD≥0
V , or equivalently

pHi(Kc) = 0 for i < 0.

2.3.4. The crucial case for i = 0. We use the inductive assumptions over V − v.

Lemma 2.13. If we suppose the relative Hard Lefschetz theorem for the restriction
of the morphisms f and f ◦ iH to V − v, then G0 is injective and ρ0 is surjective
on V − v. Moreover, we have a decomposition

(2.11) pH0(Rf∗j!∗L)|V −v
∼
−→ ImG0 ⊕ ker ρ0.

Respectively, ρ−1 is injective, G1 is surjective and we have a decomposition

(2.12) pH−1(Rf∗(iH)∗i
∗
Hj!∗L)|V −v

∼
−→ Im ρ−1 ⊕ ker G1

Moreover G0 : pH−2(Rf∗(iH)∗i
∗
Hj!∗L)|V −v

∼
−→ ImG0 ⊂

pH0(Rf∗j!∗L)|V−v is an
isomorphism onto its image.

Proof. Recall that L is defined on X − Y . Let j′ : (H −H ∩ Y )→ H . We have by

transversality: i∗Hj!∗L
∼
−→ j′!∗(i

∗
HL), hence

pHi(KH) = pHi(Rf∗j
′
!∗(i

∗
HL)). Since

by the inductive hypothesis, Hard Lefschetz theorem apply on V − v to KH [−1],
image of the intermediate extension j′!∗i

∗
HL[−1] of the shifted restriction of L on

H , we deduce that the composition morphism ⌣ c1 = ρ0 ◦G0 in the diagram is an
isomorphism on V − v

pH−2(KH)|V −v
G0−→ pH0(K)|V −v

ρ0
−→ pH0(KH)|V −v

where the first term is pH−1(Rf∗j
′
!∗i

∗
HL[−1]) and the last pH1(Rf∗j

′
!∗i

∗
HL[−1]).

Hence ρ0 is surjevtive, G0 is injective and the decomposition 2.11 follows.
Respectively, the composition morphism ⌣ c1 = G1 ◦ ρ−1 in the diagram

pH−1(K)|V−v
ρ−1

−→ pH−1(KH)|V−v
G1−→ pH1(K)|V−v

is an isomorphism and the decomposition 2.12 follows. �

The next result is based on Hodge theory as in (proposition 1.7, definition 5.11
and lemma 5.13)

Corollary 2.14. If the local purity theorem applies for pHi(KH), then it applies
for pHi(K), except eventually the component (Ker ρ0)|V −v ⊂

pH0(Rf∗j!∗L)|V −v.

Proof. The restriction morphisms ρi are compatible with MHS for all i and j
Hj(Bv − v, pHi(K))→ Hj(Bv − v, pHi(KH))

and they are isomorphisms for i < −1 by the corollary above. Then, the conditions
of local purity on K are satisfied for i < −1, since they are satisfied on KH by
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induction. The dual argument for Gi apply, and we are left with the cases i =
0,−1, 1.

The case i = −1 follows from the decomposition (formula 2.12), as ρ−1 is an
isomorphism onto a direct summand Im ρ−1 of pH−1(Rf∗(iH)∗i

∗
Hj!∗L)|V−v.

By Lefschetz isomorphism on V − v, we deduce the case i = 1 from the case
i = −1. For i = 0, as G0 is an isomorphism by the lemma, the inequality holds for
ImG0. Only the case of Kerρ0 can not be deduced by induction from KH . �

2.4. The crucial case. w ≤ a+ j on Hj(Bv − v, pH0(Rf∗j!∗L)) for j < 0.
The result is local at v, so we can suppose V affine, then choose a projective
embedding to allow the use of the polarization of the cohomology.

The proof is subdivided in many steps. We apply the next lemma for pHi(Rf∗j!∗L),
in the case i = 0, but it is equallly proved for all i .

Lemma 2.15. Let j!∗L be of weight a, then the MHS on

Gr
pτ
i Hi+j(BXv

−Xv, j!∗L) ≃ H
j(Bv − v,

pHi(Rf∗j!∗L))

is of weight ω > a+ i+ j for j > 0 and dually of weight ω ≤ a+ i+ j for j < −1.

Proof. Let H be a general hyperplane section of V containing v, Hv = Bv ∩H and
K = Rf∗j!∗L. We suppose H normally embedded outside v so that the perverse
truncation commutes with the restriction to H−v up to a shift in degrees; We have
a Gysin exact sequence

Hj−2(Hv − {v},
pHi(K))(−1)

Gj

→ Hj(Bv − {v},
pHi(K))→ Hj(Bv −Hv,

pHi(K))

Since pHi(K) is in the category pD≤0
c V , and Bv − Hv is Stein, we apply Artin

Lefshetz hyperplane section theorem to show that Hj(Bv − Hv,
pHi(K)) ≃ 0 for

j > 0. Then Gj is an isomorphism for j > 1 and it is surjective for j = 1.
The smooth strict transform H ′ of H intersects transversally in X the various

subspaces Yl inverse of the strata Sl so that Gysin morphisms are are compatible
with the MHS.

Hence, we deduce the statement for Bv − v in the lemma for j > 0 from the
inductive hypothesis on the local purity of the MHS structure on
Hj−1(Hv − v, pHi(K)[−1]) for j − 1 ≥ 0, since Hj−2(Hv − v, pHi(K))(−1) ≃
Hj−1(Hv − v, pHi(K)[−1]). �

2.4.1. The large inequality: w ≤ a on H−1(Bv − v, pH0(Rf∗j!∗L)). This case also
is easily deduced by induction

Lemma 2.16. i) H0(Bv − {v}, pHi(Rf∗j!∗L)) is of weight ≥ a+ i.
ii) Dually: H−1(Bv − v, pHi(K)) is of weight ≤ a+ i.

Proof. Let kv : (V − v) → V and consider a general hyperplane section H1 not
containing v. We deduce from the triangle of complexes:
Rkv!k

∗
v
pHi(K)→ Rkv∗k

∗
v
pHr(K)→ iv∗i

∗
vRkv∗k

∗
v
pHi(K), the exact sequence

H0(V −H1, Rkv∗k
∗
v
pHi(K))

γ0
−→ H0(i∗vRkv∗k

∗
v
pHi(K))→ H1(V −H1, Rkv!k

∗
v
pHi(K))

which shows that γ0 is surjective, since H1(V − H1, Rkv!k
∗
v
pHi(K)) vanishes as

V −H1 is affine. We deduce the assertion i) since the weights w of the cohomology
H0(V −H1, Rkv∗Rk

∗
v
pHi(K)) of the open set V −H1 satisfy w ≥ a+ i. �
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2.4.2. The crucial step: w 6= a. It remains to exclude the case w = a, which does
not follow by induction, that is

(2.13) GrWa Gr
pτ
0 H−1(BXv

−Xv, j!∗L)
∼
−→ GrWa H−1(Bv − v,

pH0(K))
∼
−→ 0.

from which we deduce by duality GrWa Gr
pτ
0 H0(BXv

−Xv, j!∗L)
∼
−→ 0.

By corollary 2.14, it remains to consider the case of the sub-perverse sheaf
Kerρ0 ⊂ pH0(K) in which case we use the following lifting of cohomology classes

Lemma 2.17. Let B∗
v := Bv − v and H a general hyperplane section of X. The

following map is surjective:
Waτ≤0H−1(B∗

v , Rf∗jH!j
∗
Hj!∗L)→ GrWa Gr

pτ
0 H−1(B∗

v ,Ker ρ0).

The proof relies on Hodge theory appied to cohomology with compact support of
the fibers of f|X−Has follows.

By transversality of H with all strata of X , the restriction to H of j!∗L is defined
in terms of complexes of logarithmic type ρ : (IC∗L, F )→ iH∗i

∗
H(IC∗L, F ), where

(IC∗(L|H [−1]), F )[1] = i∗H(IC∗L, F ) (subsection 4.5.1).
We introduce the mixed cone (C(ρ)[−1],W, F ) satisfying

(GrWi C(ρ)[−1], F ) = GrWi ((IC∗L, F )⊕GrWi+1(iH∗i
∗
H(IC∗L, F )[−1])

Let (Kc, F ) := Rf∗(C(ρ)[−1],W, F ). We deduce the exact sequence of perverse

cohomology (formula 2.10) from the triangle Kc → K → KH
(1)
−−→.

In the local case, we consider a neighborhood Bv of v and the long exact sequence

→ Hi−1(B∗
v ,KH)→ Hi(B∗

v ,Kc)
γ
−→ Hi(B∗

v ,K)→ Hi(B∗
v ,KH)→ · · ·

The terms of this sequence are endowed with MHS (subsection 5.2.4, definition 5.11
and lemma 5.13). Such MHS is compatible with the perverse filtration (proposition
1.7, sections 5.3, 5.3.2), that is the subspaces

Hi(B∗
v ,

pτ≤jK), Hi(B∗
v ,

pτ≤jKH),Hi(B∗
v ,

pHj(K)), and Hi(B∗
v ,

pHj(KH))
underly corresponding MHS, as well Hi(B∗

v ,
pτ≤jKc) and Hi(B∗

v ,
pHj(Kc)).

We apply the previous results to the exact sequence (lemma 2.13)

· · · → H−1(B∗
v ,

pH0(Kc))
γ
−→ H−1(B∗

v ,Kerρ0)
∂
−→ H0(B∗

v ,Cokerρ−1)→

Taking GrWa , we have an exact squence

GrWa H−1(B∗
v ,

pH0(Kc))
γ1
−→ GrWa H−1(B∗

v ,Kerρ0)
∂
−→ GrWa H0(B∗

v ,Cokerρ−1)→

By the inductive hypothesis on H , GrWa H0(B∗
v ,Cokerρ−1) = 0, hence γ1 is surjec-

tive so that elements of GrWa H−1(B∗
v ,Kerρ0) can be lifted to elements in

WaH−1(B∗
v ,

pH0(Kc)). Moreover, τ≤0Kc = pH0(Kc) as τ<0Kc = 0, hence we can
lift the elements to WaH−1(B∗

v , τ≤0Kc). This ends the proof of lemma 2.17.

2.4.3. Polarization. In this step we use the polarization of Intersection cohomology.
The following proof is based on the idea that the cohomology of Bv − v fits in two
exact sequences issued from the two triangles for K := Rf∗j!∗L

(2.14) i∗vRkv!k
∗
vK → i∗vK → i∗vRkv∗k

∗
vK, Rk!vK → i∗vK → i∗vRkv∗k

∗
vK
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from which we deduce the commutative diagram (see also the diagram 5.6)

H−1(BXv
−Xv, j!∗L)

∂

��

γ

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

∂X // H0
c(X −Xv, j!∗L)

αX

��
H0

Xv
(X, j!∗L)

A // H0(X, j!∗L)

Let γ denotes the composition morphisms γ = αX ◦ ∂X = A ◦ ∂.

Lemma 2.18. Let u ∈ GrWa H−1(BXv
−Xv, j!∗L) be in the image of the canonical

morphism GrWa H−1(BXv
−Xv, jH!j

∗
Hj!∗L)

can
−−−→ GrWa H−1(BXv

−Xv, j!∗L), then
γ(u) = 0 in GrWa H0(X, j!∗L) = H0(X, j!∗L).

Proof. 1) γ(u) is primitive. Let B∗
Xv

:= BXv
−Xv, b ∈ GrWa H−1(B∗

Xv
, jH!j

∗
Hj!∗L)

such that u = can(b), and consider the diagram corresponding to an hyperplane
section H

GrWa H−1(B∗
Xv
, jH!j

∗
Hj!∗L)

∂!→ GrWa H0
c(X

∗, jH!j
∗
Hj!∗L)

α!→ GrWa H0(X, jH!j
∗
Hj!∗L)

Let γ! := α! ◦ ∂!, then γ(u) = γ(can b) = can γ!(b), hence the restriction to H :
ρH(γ(u)) = ρH(can γ!(b)) = 0, and γ(u) is a primitive element.

2) γ(u) = 0. We consider the diagram

GrWa H0(X, j!∗L)

A∗

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

GrWa H0
Xv

(X, j!∗L)

A

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧
I // GrWa H0(Xv, j!∗L)

where A∗ is the dual of A. Let P denotes the scalar product defined by Poincaré
duality on H0(X, j!∗L) and C the Weil operator defined by the HS. The polarization
Q on the primitive part of H0(X, j!∗L) is defined by Q(a, b) := P (Ca, b).

A non-degenerate pairing Pv

Pv : GrWa H0
Xv

(X, j!∗L)⊗GrWa H0(Xv, j!∗L)→ C.

is also defined by duality. The duality between A and A∗ is defined for all b ∈
GrWa H0

Xv
(X, j!∗L) and c ∈ GrWa H0(X, j!∗L) by the formula :

P (Ab, c) = Pv(b, A
∗c).

Let C be the Weil operator defined by the HS on GrWa+iH
i
Xv

(X, j!∗L) as well on

GrWa+iH
i(X, j!∗L), then:

P (C.A(∂u), A(∂u)) = Pv(C∂u,A
∗ ◦A(∂u)) = Pv(C.∂(u), I(∂u))

and since I(∂u) = A∗ ◦A ◦ can(b) = 0, we deduce P (C.γ(u), γ(∂u))) =
P (C.A(∂u), A(∂u)) = 0, hence γ(u) = 0 by polarization as γ(u) is primitive. �

2.4.4. The last step of the proof of the crucial case is based on two lemma.

Lemma 2.19. The connecting morphism Hi−1(BXv
−Xv, j!∗L)

∂X→ Hi
c(X−Xv, j!∗L)

induced by the triangles in formula (2.14) is injective on GrWa+i

GrWa+iGr
pτ
i Hi−1(BXv

−Xv, j!∗L)
∂X→ GrWa+iGr

pτ
i Hi

c(X −Xv, j!∗L).

We prove equivalently GrWa+iH
−1(Bv−v, pHi(K))

∂V→ GrWa+iH
0
c(V −{v},

pHi(K))

(precisely GrWa+i(∂V )) is injective, by considering the long exact sequence:
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H−1(V − {v}, pHi(K))
∂V→ H0

c (V − {v},
pHi(K))→ H0(V − v, pHi(K)).

It is enough to prove that H−1(V − {v}, pHi(K)) is pure of weight a+ i− 1 or by
duality H1

c (V −{v},
pHi(K)) is pure of weight a+ i+1. We consider as above the

hyperplane section H1 not containing v and the exact sequence:

H1
H1

(V,Rkv!k
∗
v
pHi(K))

ϕ
−→ H1(V,Rjkv!k

∗
v
pHi(K)) → H1(V − H1, Rkv!k

∗
v
pHi(K))

where ϕ is surjective since the last term vanish; the space
H−1(H1, Rkv!k

∗
v
pHi(K))(−1)

∼
−→ H1

H1
(V,Rkv!k

∗
v
pHi(K))

is a pure HS of weight a+i+1 (as a sub-quotient of the pure intersection cohomology
of the inverse image H ′

1 smooth in X).

Lemma 2.20. The following morphism is injective

GrWa+iH
i
c(X −Xv, j!∗L)

αX→ GrWa+iH
i(X, j!∗L)

∼
−→ Hi(X, j!∗L).

In the long exact sequence Hi−1(Xv, j!∗L)→ Hi
c(X −Xv, j!∗L)

αX→ Hi(X, j!∗L),
the weight w of Hi−1(Xv, j!∗L) satisfy w < a + i since Xv is closed, then the
morphism αX (precisely GrWa+i(αX)) is injective and Hi(X, j!∗L) is pure of weight
a+ i.

2.4.5. The morphisms ∂X and αX are compatible with pτ and W . We still denote
by ∂X (resp. αX) their restriction to pτ rHr−1(BXv

−Xv, j!∗L) (resp. pτ rHr
c(X −

Xv, j!∗L)), then the composed morphism has value in Hr(X, j!∗L) ( in fact in the
subspace pτr but we avoid the filtration pτ as we have no information at the point
v yet).

Corollary 2.21. GrWa Gr
pτ
0 H−1(BXv

−Xv, j!∗L) = 0.

It is enough to apply the lemma 2.17 to H−1(Bv − v,Ker ρ0), since
GrWa Gr

pτ
0 H−1(BXv

−Xv, j!∗L) ≃ GrWa H−1(Bv − v,Ker ρ0 ⊕ ImG0)
splits ( formula 2.11) and GrWa H−1(Bv − v, ImG0) = 0 by induction.

By lemma 2.17, each element u ∈ Gr
pτ
0 GrWa H−1(B∗

v ,Ker ρ0) is the class modulo
pτ−1 of an element u ∈ ( pτ0 ∩ Wa)H−1(B∗

Xv
, j!∗L), where u = can(b) with b ∈

( pτ0 ∩Wa)H−1(B∗
Xv
, jH!j

∗
Hj!∗L).

We use the commutative diagram to lift the elements as needed

WaH−1(Bv − v, τ≤0Rf∗jH!j
∗
Hj!∗L)

��

can // GrWa H−1(Bv − v,Ker ρ0)

��
Waτ≤0H−1(BXv

−Xv, jH!j
∗
Hj!∗L)

can // GrWa Grτ0H
0(BXv

−Xv, j!∗L)

Since γ(u) = αX(∂Xu) = 0, we deduce ∂Xu = 0 in GrWa H0
c(B

∗
Xv
, j!∗L) by lemma

(2.20), hence the class ∂Xu = 0 in Gr
pτ
0 GrWa H0

c(B
∗
Xv
, j!∗L). Finally, since ∂X(u) =

∂X(u) = 0, we deduce u = 0 by lemma (2.19). This ends the proof of the crucial
case and the proposition 2.2 for f a fibration by NCD.

Remark 2.22. The following relation follows from the proof of the proposition 2.2

Im

(
pHi(Rkv !k

∗
vK)→ pHi(K)

)
= kv !∗k

∗
v
pHi(K)
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2.4.6. The inductive step theorem 2 and most of the corollary 1.2 follow for f a
fibration by NCD. We complete now the proof of equation 1.7.

Lemma 2.23. On a projective variety V , we have an orthogonal decomposition of
a polarized HS of weight a+ i+ j

Gr
pτ
i Hi+j(X, j!∗L) ≃ Hj(V, pHi(Rf∗j!∗L))

∼
−→ ⊕

Sl⊂V ∗

l

l≤n Hj(V, iSl !∗L
i
Sl
[l]).

The proof is by induction on dim.V and for fixed V on dim.X. The case of dim.V
= 1 is clear and may be proved by the technique of the inductive step. We suppose
the result true for dim.V = n − 1. For dim.V = n, by corollary 2.12, the case of
pHi(Rf∗j!∗L) for i < 0 follows from the case pHi(Rf∗(iH)∗i

∗
Hj!∗L) by restriction

to a general ample hyperplane H , and by duality the case for i > 0. It remains to
prove the crucial case of pH0(Rf∗j!∗L). First we prove that for each non generic
component Sl with l < n, the component Hj(V, iSl !∗L

0
Sl
[l]) is a sub HS.

We may suppose there exists a projection π : V → Vl to a projective variety
Vl inducing a finite morphism on Sl. By induction, the property apply for the
decomposition of π ◦ f as dim.Vl < n, which contains the component π∗iSl !∗L

0
Sl
[l].

It follows that the direct sum ⊕
Sl⊂V ∗

l

l<n Hj(V, iSl !∗L
i
Sl
[l]) ⊂ Gr

pτ
0 Hj(X, j!∗L) is

a sub-HS. Then, it is a standard argument to show that its orthogonal subspace,
which coincides with Hj(V, iSn !∗L

i
Sn

[l]) (the generic component) is a sub-HS. This is
a clarification of the proof for constant coefficients in [CaMi 5] and a generalization
to coefficients.

Remark 2.24. For a quasi-projective variety, we must consider MHS. This apply
in general for coefficients in a mixed Hodge complex generalizing the notion of
variation of MHS. The pure case in this paper is the building bloc.

2.4.7. Proof for any projective morphism. The above results establish the case of

fibrations by NCD. Given j!∗L on X and a diagram X ′ π
−→ X

f
−→ V such that the

desingularization π and f ′ := f ◦π are fibrations by NCD over the strata. We apply
the above result to π and the extension j′!∗L on X ′ to deduce the decomposition of
K := Rπ∗j

′
!∗L on X into a direct sum of intermediate extensions.

We indicate here, how we can extend Hodge theory and deduce the structure of
polarized VHS on LiS in all cases without reference to the the special fibration case.

Let L be defined on a smooth open set Ω of X , j : Ω → X and j′ : Ω → X ′ an
open embedding into a desingularization of X .

Lemma 2.25. Let π : X ′ → X be a desingularization defined by a fibration by
NCD over the strata, j′!∗L the intermediate extension of L on X ′. If X is projec-

tive, Hi(X, j!∗L) is a sub-Hodge structure of Gr
pτ
0 Hi(X ′, j′!∗L). The induced Hodge

structure on Hi(X, j!∗L) is independent of the choice of X ′.

Proof. We apply the above result to π : X ′ → X to deduce the decomposition
of pH0(Rπ∗j

′
!∗L) ≃ ⊕S∈SL0S on X into a direct sum consisting of intermediate

extensions of polarized VHS.
It follows from lemma 2.23, that the decomposition

Gr
pτ
0 Hi(X ′, j′!∗L) ≃ Hi(X, pH0(Rπ∗j

′
!∗L)) ≃ ⊕S∈SHi(X, iS !∗L

0
S)

is compatible with HS. Moreover, on the big strata U (as we can suppose V irre-
ducible), we have j!∗L = iU !∗L

0
U ; from which we deduce a HS on Hi(X, j!∗L) as a

a sub-quotient HS of Hi(X ′, j′!∗L).
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The uniqueness is deduced by the method of comparison of the two desingu-
larizations X ′

1 and X ′
2 with a common desingularization X ′ of the fiber product

X ′
1 ×X X ′

2. �

2.4.8. Proof of the corollary 2.10 and lemma 2.23 for any projective morphism.
We describe the underlying structure of polarized VHS on Liv. Let f : X → V ,

π : X ′ → X such that π and f ◦π are fibrations, v ∈ S a general point of a strata S
on V , and Nv a general normal section to S at v such that the inverse image XNv

is normally embedded in X (resp. X ′
Nv

in X ′). By definition the fiber LiS,v is the

image of the Intersection morphism: Hi
Xv

(XNv
, j!∗L)

I
→ Hi(Xv, j!∗L).

By transversality, the perverse truncation pτX on K := Rπ∗j
′
!∗L on X , is com-

patible with the restriction of K to XNv
. Hence, we can suppose v in the zero

dimensional strata. As the decomposition is established for π and f ◦ π, it follows
for f , and Hi

Xv
(X, pH0(K)) = Gr

pτX
0 Hi

X′
v
(X ′, j′!∗L) carry an induced MHS (see

subsection 5.3).
The natural decomposition on pH0(K) induce a decomposition ofHi

Xv
(X, pH0(K))

into direct sum of MHS where Hi
Xv

(X, j!∗L) is a summand, on which the MHS is

realized as sub-quotient of the MHS on Hi
X′

v
(X ′, j′!∗L).

A similar argument puts on Hi(Xv, j!∗L) a MHS as a sub-quotient of the MHS

on Gr
pτX
0 Hi(X ′

v, j
′
!∗L) such that the image MHS of the intersection morphism I is

pure on Liv.
Verdier duality between L−k

S and LkS follows from the auto-duality of j!∗L by
Verdier formula for the proper morphism f . Since Hard Lefschetz isomorphisms
between L−k

S and LkS are also satisfied, we deduce that the VHS LkS are polarized.
Similarly, the decomposition for pHi(Rf∗

pH0(Rπ∗j
′
!∗L)) is part of the decom-

position for pHi(R(f ◦ π)∗j′!∗L) and contains the decomposition of pHi(Rf∗j!∗L).
This ends the proof of lemma 2.23 and altogether the proof of corollary 2.10.

2.5. Local purity and Grauert generalized Intersection isomorphism. Let
v be a point in V and consider the morphisms jXv

: (X−Xv)→ X , iXv
: Xv → X ,

iv : v → V and kv : (V − v) → V . The perverse filtration pτ on K := Rf∗j!∗L on
V induces a filtration pτ on Ri!vK defined functorially by Ri!v

pτK and computed
by i!v-acyclic filtered representative of (K, pτ). Similarly, we define pτ on i∗vK
and i∗vRkv∗k

∗
vK, from which we deduce increasing filtrations pτ on Hi

Xv
(X, j!∗L),

Hi(Xv, j!∗L) and Hi(B∗
Xv
, j!∗L).

Lemma 2.26. The induced perverse filtration pτ satisfy the properties:

pτiH
i
Xv

(X, j!∗L) = Hi
Xv

(X, j!∗L),
pτ i−1H

i(Xv, j!∗L) = 0.

We have converging spectral sequences with respect to the induced filtration pτ

pτE
pq
1 := H2p+q

v (V, pH−p(K))⇒ Gr
pτ
−pH

p+q
Xv

(X, j!∗L)

pτE
pq
1 := H2p+q(v, pH−p(K))⇒ Gr

pτ
−pH

p+q(Xv, j!∗L)

pτE
pq
1 := H2p+q(B∗

v ,
pH−p(K))⇒ Gr

pτ
−pH

p+q(B∗
Xv
, j!∗L).

Since Hi
v(V,

pH−p(K)) = 0 for i < 0 as pH−p(K) is perverse, we have
pτE

pq
1 := H2p+q

v (V, pH−p(K)) for 2p+ q < 0

hence Gr
pτ
j Hi

Xv
(X, j!∗L) = 0 for i < j or pτiHi

Xv
(X, j!∗L) = Hi

Xv
(X, j!∗L).
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Since Hi(v, pH−p(K)) = 0 for i > 0, we deduce similarly pτi−1Hi(Xv, j!∗L) = 0.

Proposition 2.27 (Generalized Grauert Intersection isomorphism).
The following isomorphism induced by the Intersection morphism I for each r,
follows from the local purity theorem (subsection 2.3.1):

(2.15) Gr
pτ
r Hr

Xv
(X, j!∗L)

I≃
−−→ Gr

pτ
r Hr(Xv, j!∗L)

and the induced morphism by I vanish on Gr
pτ
i Hr

Xv
(X, j!∗L) for all indices i 6= r.

Reciprocally, if the spectral sequence with respect to the perverse filtration on
K degenerates at rank 1, we can deduce the local purity theorem from Grauert
isomorphism I.

Lemma 2.28. i) The morphisms of the exact sequence defined by the Intersection
morphism I

Hi−1(B∗
Xv
, j!∗L)

∂i−→ Hi
Xv

(X, j!∗L)
I
−→ Hi(Xv, j!∗L)

γi
−→ Hi(B∗

Xv
, j!∗L)

[1]
−→ · · ·

are strictly compatible with the induced pτ filtrations and we have

Hj(i!v
pHi(K)) ≃ Gr

pτ
i Hi+j

Xv
(X, j!∗L), H

j(i∗v
pHi(K)) ≃ Gr

pτ
i Hi+j(Xv, j!∗L),

Hj(B∗
v ,

pHi(K)) ≃ Gr
pτ
i Hi+j(B∗

Xv
, j!∗L).

ii) In particular, by lemma 2.28, the following induced morphisms ∂pi and γpi on

Gr
pτ
∗ satisfy the relations :
∂pi : Gr

pτ
p Hi−1(B∗

Xv
, j!∗L)→ Gr

pτ
p Hi

Xv
(X, j!∗L) is an isomorphism for p < i− 1

and it is surjective for p = i− 1;
γpi : Gr

pτ
p Hi(Xv, j!∗L) ≃ Gr

pτ
p Hi(B∗

Xv
, j!∗L) is an isomorphism for p > i+1 and

it is injective for p = i+ 1.

The exact sequence is deduced from the following triangle

Ri!Xv
j!∗L

I
−→ i∗Xv

j!∗L−→i
∗
Xv
RjXv∗j

∗
Xv
j!∗L

The strict compatibility follows from the decomposition theorem.
Proof of the proposition. We deduce first Grauert isomorphism (formula 2.15).

The decomposition theorem follows from local purity. We have:
Gr

pτ
r Hr

Xv
(X, j!∗L) ≃ H0(i!v

pHr(K)) ≃ Lrv andGr
pτ
r Hr(Xv, j!∗L) ≃ H0(i∗v

pHr(K)) ≃
Lrv.

Reciprocally, in the exact sequence

Gr
pτ
0 H−1

Xv
(X, j!∗L)→ Gr

pτ
0 H−1(Xv, j!∗L)→ Gr

pτ
0 H−1(B∗

Xv
, j!∗L)→

Gr
pτ
0 H0

Xv
(X, j!∗L)

I
−→ Gr

pτ
0 H0(Xv, j!∗L)

where Gr
pτ
0 H−1

Xv
(X, j!∗L) = 0, if I : Gr

pτ
0 H−1(Xv, j!∗L) ≃ Gr

pτ
0 H−1(B∗

Xv
, j!∗L) is

an isomorphism, then by compatibility with MHS,

0 = GrWa Gr
pτ
0 H−1(Xv, j!∗L) ≃ GrWa Gr

pτ
0 H−1((B∗

Xv
, j!∗L)

which proves the crucial case of the local purity theorem.

Remark 2.29. i) From the duality D : Gr
pτ
−rH

−r
Xv

(X, j!∗L)
∼
−→ Gr

pτ
r Hr(Xv, j!∗L)∗

and Grauert Intersection isomorphism above, we deduce a non degenerate Intersec-
tion form

Gr
pτ
r Hr

Xv
(X, j!∗L)⊗Gr

pτ
−rH

−r
Xv

(X, j!∗L)
IP
−−→ Q, (a, b) 7→ D(b)(I(a))
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When Xv is a NCD on a smooth surface and in the case of Intersection cohomology
with rational coefficients viewed as homology, Grauert contractibility theorem states
that the Intersection form defined on the direct sum of the components of Xv is non
degenerate if and only if Xv contracts to a point v on a normal surface ([BPV 84]
Theorem 2.1). We refer to ([CaMi 5] section 6.3) for more details in the case of
constant coefficients Q and to ([Na 85] proposition 5.1) for the isolated singularity
case.

ii) We remark that the decomposition theorem may be proved directly as in
[BBDG 83] without the assumption of local purity. This argument is sketched in
([CaMi 5] lemma 5.1.1), however it is important to state the semi-simplicity of the
perverse cohomology there, in the category of pure perverse sheaves and not all
perverse sheaves.

3. Fibration by normal crossing divisors

The proof of the decomposition is reduced to the case of a fibration by NCD
(definition 1.4) over the strata, in which case the proof along a strata is reduced
to the zero dimensional strata by intersecting with a normal section, such that we
can rely on logarithmic complexes in all arguments based on Hodge theory.

The proof of the proposition 1.5 is divided into many steps, first we transform
the morphism f and then, simultaneously, a desingularization π : X ′ → X .

3.0.1. Thom-Whitney stratification [GMacP 88]. Let f : X → V be an algebraic
map, and S = (Sα) a Whitney stratification by a family of strata Sα of V . The
subspaces Vl = ∪dimSα≤lSα form an increasing family of closed algebraic sub-sets
of V of dimension ≤ l, with index l ≤ n, where n is the dimension of V ,

V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

The inverse of a sub-space Z ⊂ V , is denoted XZ := f−1(Z). We are interested in
the inverse XS = f−1(S) of strata S of the stratification S.

Let us recall what is a Thom-Whitney stratification:

Definition 3.1. A Thom-Whitney stratification of f consists of two Whitney strat-
ifications one for V and one for X such that the inverse of each stratum S of V
is a union of connected strata of X and the restriction of f to XS is a topological
fibration.

Using Thom-Mather first isotopy theorem ([Mat 12]) and the properties of Whit-
ney stratifications ([GMacP 88]) one can prove the following properties:

• (T) Over a stratum S of V the morphism f| : XS → S induced by f , is a
locally trivial topological fibration.
• (W) The link at any point of a stratum is a locally constant topological
invariant of the stratum [Mat 12], [LeT 83].

We can suppose that the various strata S of V are algebraic and the restriction
of f to a stratum of XS smooth.

Lemma 3.2. Let f : X → V be a projective morphism and Y a closed algebraic
strict subset of X containing the singularities of X. There exists a commutative
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diagram:

X
π1←− X1 · · ·

πi←− Xi · · ·
πk←− Xk

πk+1

←− Xk+1

f ↓ f1 ↓ fi ↓ fk ↓ fk+1 ↓

V
id
←− V · · ·

id
←− V · · ·

id
←− V

id
←− V

where X1 is a desingularization of X by modifications over Y such that Y1 :=
π−1
1 (Y ) is a NCD, such that there exists V 1 ⊂ V and inductively a decreasing

sequence V i for 0 < i ≤ k of closed algebraic subspaces of V of dimension di > 0
such that for j ≤ i, the inverse image f−1

i+1(V
j) are NCD in the non-singular variety

Xi+1, and f
−1
i+1(V

j)− f−1
i+1(V

j+1) is a relative NCD over V j − V j+1.

The morphism πi+1 is a modification over f−1
i (V i) for all i ≥ 1, obtained by

blowing-ups over f−1
i (V i) in Xi and transforms f−1

i (V i) into a NCD such that
πi+1 induces an isomorphism:

(πi+1)| : (Xi+1 − f
−1
i+1(V

i))
∼
−→ Xi − f

−1
i (V i).

The Xi are smooth for i ≥ 1 and fi+1 := fi ◦ πi+1. Moreover, there exists a
Whitney stratification Si of V adapted to V j for j ≤ i, satisfying the following
property: the strata of Si and of Si−1 coincide outside V i.
The open subset Ω := f−1(V − V 1) ⊂ X is dense in X.
Let ρi := π1 ◦ · · · ◦πi for all i ≥ 1. We can suppose that ρi induces an isomorphism
on ρ−1

i (Ω− Y ) ⊂ Xi, and that the morphism fi induces on ρ−1
i (Y ∩Ω) a fibration

by relative NCD over the strata of V − V 1 for i ≥ 1.

Remark 3.3. Let di := dim V i, the union Vdi
of strata of dimension ≤ i is equal

to V i for 0 < i ≤ k and f−1
k+1(Vdi

) is a NCD in Xk+1 fibred by NCD over V i−V i+1.

Moreover, we can suppose that the family of subspaces V i is maximal in the
following sense: the dimension of V i is n− i for 0 < i ≤ k = n.

We refer to the morphism fk+1 : Xk+1 → V as an admissible fibration with
respect to the family V i.

Proof of Lemma 3.2. Since f is projective, we can always suppose V = f(X).
Let π1 : X1 → X be a desingularisation morphism of X with NCD as exceptional
divisor such that Y1 := π−1

1 (Y ), as well as the inverse image of the irreductible
components of Y , are sub-NCD in X1.

Let f1 := f ◦ π1. Since X1 is smooth, there exists an open subset U ⊂ V such
that the restriction of f1 over U is smooth.

If the dimension of f(Y ) is strictly smaller than n := dimV , let U ⊂ V − f(Y )
over which the restriction of f1 is smooth and let V 1 := V − U .

In the case f(Y ) = V , there exists U such that the restriction of f1 to Y1∩f
−1
1 (U)

is a fibration by relative NCD over U . Let V 1 := V − U , then d1 := dim V 1 is
strictly smaller than dim V = n. We can always choose U , hence V 1, such that
d1 = n− 1.

We consider a Thom-Whitney stratification of the morphism f1 : X1 → V ; in
particular the image by f1 of a stratum of X1 is a stratum of V . We suppose also
that the stratification of X1 is compatible with the divisor Y1. Let S0 denotes the
other stratification of V .

We construct the algebraic sub-spaces V i of V , the morphisms fi = Xi → V ,
and πi : Xi → Xi−1 in the lemma by descending induction on dimV i. Let S1

be a Whitney stratification compatible with V 1 which is a refinement of S0. Let
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D1 := f−1
1 (V 1); we introduce the horizontal divisor

Y 1
h := Y1 ∩ f

−1
1 (V − V 1).

We construct π2 : X2 → X1 by blowings-up over D1 such that the inverse image
D2 := π−1

2 (D1) of D1 and the union D2 ∪ Y 2
h with Y 2

h := π−1
2 (Y 1

h ) are NCD in the
smooth variety X2. We can do this construction without modification of X1 −D1

because Y 1
h −D

1 is already a NCD.

Let f2 := f1◦π2, hence D2 := f−1
2 (V 1), the next argument allows us to construct

a subspace V 2 such that D2 ∩ f−1
2 (V 1 − V 2) is a relative NCD over V 1 − V 2.

Lemma 3.4. Let f : X → Z be a projective morphism on a non-singular space X,
T an algebraic subspace of Z such that D := f−1(T ) is a NCD in X as well the
inverse image of each irreductible component of T .

Then, there exists a non singular algebraic subset S0 in T , such that the di-
mension of T − S0 is strictly smaller than dimT and f is a relative NCD over
T − S0.

Proof. i) Let Dβi
denote the components of the divisor D and Dβ1,...,βj

the inter-
section of Dβ1

, . . . , Dβj
. Let d := dimT be the dimension of T ; there exists an open

subset Sβ1,...,βj
complementary of an algebraic sub-space of T of dimension strictly

smaller than d, such that f−1(Sβ1,...,βj
)∩Dβ1,...,βj

is either empty, or a topological
fibration over Sβ1,...,βj

. Over the open subset S′
0 := ∩β1,...,βj

Sβ1,...,βj
, the divisor

D ∩ f−1(S′
0) is a topological fibration. This property is required to obtain the big

stratum of a Whitney stratification over which we have a fibration by NCD and
which satisfies the assertion (2) of the definition 1.4 above.

ii) Still, we need to check the assertion (3) of the definition 1.4 on a dense open
subset of S′

0. Let T1 be an irreductible component of T of dimension d. Since the
inverse image of T1 is also a NCD contained in D by the hypothesis of the Lemma,
there exists a dense open subset S′

1 in T1 with inverse image a sub-NCD of D, by
the above hypothesis. As the argument is local, we consider an open affine subset
U of Z with non empty intersection S1 := T1 ∩U ⊂ S′

1 and a projection q : U → Cd

whose restriction to S1 is a finite projection. There exists an open affine dense
subset U1 of Cd such that q ◦ f induces a smooth morphism over U1.

Considering S′
0 defined in i) above, we notice that f induces over q−1(U1) ∩ S′

0

a fibration by NCD: indeed, let x be a point in q−1(U1) ∩ S′
0 ∩ S1. There exists

an open neighborhood Ux of x in (q−1(U1) ∩ S′
0) ⊂ U , small enough such that the

restriction of q to Ux ∩ S1 is not ramified on its image.
On the other hand, for all y ∈ Ux, we have: f−1(q−1(q(y))∩Ux) is smooth, since

q(y) ∈ U1. The dimension of f−1(q−1(q(y) ∩ Ux) is dimX − d. As x is in S′
0 the

dimension of f−1(y) ∩D is dimX − 1− d and it is a divisor with normal crossings
in f−1(q−1(q(y) ∩ Ux) which has dimension: dimX − d.

We remark that q−1(q(x)) ∩ Ux is a normal section of q−1(U1) ∩ S′
0 at x in Z.

Hence f induces on q−1(U1) ∩ S′
0 a fibration by NCD lying in the normal sections.

The open subset S0 is the union of open subsets q−1(U1) ∩ S′
0 for the various

irreductible components T1 of T of maximal dimension d. The strata which are the
connected component of S0 satisfy the property (3) of the definition 1.4 and this
ends the proof of the lemma 3.4.

End of the proof of Lemma 3.2. Let d1 be the dimension of V 1. According to
lemma 3.4 there exists an open algebraic subset S0 of V 1, over which the restriction
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of f2 induces a relative NCD over S0, moreover, the dimension d2 of the algebraic
set V 2 := V 1 − S0 is d2 < d1 strictly less than d1. If d1 = n − 1, we can always
choose S0 such that d2 = n− 2.

We define a new Whitney stratification S2 of V , compatible with V 2 which
coincides with S1 outside V 1, by keeping the same strata outside V 1 and adding
Thom-Whitney strata including the connected components of S0 just defined and
strata in the complement of V 2 in V 1.

We complete the proof by repeating this argument for the closed algebraic sub-
space V 2 of V 1. This process is the beginning of an inductive argument as follows.

Induction hypothesis: Given projective morphisms fj : Xj → V for 1 ≤ j ≤ i as in
the diagram above, and πj : Xj → Xj−1, fj := fj−1 ◦ πj where Xj is non-singular,
a Whitney stratification Si of V compatible with a family of algebraic sub-spaces
V j ⊂ · · · ⊂ V 1 ⊂ V for j ≤ i such that there exists a Whitney stratification
on Xi stratifying fi, and such that f−1

i−1(V
j) are NCD in Xi, as well the inverse

image of each irreductible component of V j for 1 ≤ j < i, and moreover fi induces
an admissible morphism over V − V i. Also, let Y i

h be a divisor of Xi such that

f−1
i (V 1) ∪ Y i

h is a NCD and Y i
h ∩ (Xi − f

−1
i (V 1)) is a relative NCD.

Inductive step: A sequence of blowings-up centered over f−1
i (V i) leads to the con-

struction of πi+1 : Xi+1 → Xi such that Xi+1 is non-singular and the inverse images
of V j by fi ◦ πi+1, as well as its irreductible components for 1 ≤ j ≤ i, and their
union with Y i+1

h := π−1
i+1(Y

i
h) are NCD in Xi+1.

Let fi+1 := fi ◦ πi+1. The stratification Si of V underlies a Thom-Whitney
stratification of fi+1. It follows from lemma 3.4 that in each maximal strata S of
V i in Si, there exists an open dense subset Si

0(S) over which πi+1 is a relative NCD.
Let V i

0 be the union of all Si
0. The complement V i − V i

0 of V i
0 is a closed algebraic

strict sub-space V i+1 of V i, and fi+1 is admissible over V − V i+1. We construct
a refinement of the stratification Si and then a Thom-Whitney stratification Si+1

compatible with V i+1, keeping the same strata outside V i and introducing as new
strata open subsets of the connected components of the open subset V i

0 of V i, then
completeing by a Thom-Whitney stratification of the complement in V i.

The inductive argument ends when V k+1 = ∅, which occurs after a finite number
of steps since the family V i is decreasing.

Corollary 3.5. Let f : X → V be a projective morphism, there exists a desingu-

larization X
π
←− X ′ of X such that either π or π ◦ f is a fibration by NCD over the

strata for an adequate Thom-Whitney stratification.
Moreover, for any algebraic subspace Y containing the singularities of X, we can

choose π such that Y ′ := π−1(Y ) is a NCD in X ′.

Indeed in the lemma 3.2, the morphism fk+1 is a fibration by NCD over the
strata, moreover we can suppose k = n. To construct π as a fibration by NCD, we
apply the lemma to the case f = Id : X → X .

We will need the following improved version of lemma 3.2

Lemma 3.6 (Fibrations relative to a subspace). With the notations of lemma 3.2,
let Z be a strict algebraic subspace of V . There exists a diagram

X
π′

←− X ′ f ′

−→ V, f ′ := f ◦ π′

and a Thom-Whitney stratification of f ′ compatible with Z such that f ′−1(Z) =
π′−1(f−1(Z)) is a relative NCD over the strata in Z.
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with an index i such that Z ⊂ V i, dimV i = ℓ and Z ′ := f−1
i+1(Z) is a NCD in

Xi+1 relative over V i − V i+1.
proof Let ℓ be the dimension of Z. In the proof of lemma 3.2, we check that

we can add a subspace X i with index i fired by NCD over an open Zariski subset
of a subspace V i ⊃ Z of dimension ℓ. We can suppose that all sub-spaces V r of
dimension dr ≥ ℓ contain Z.

We are interested in V k and V k+1 in the diagram, of dimension dk and dk+1

respectively, such that dk ≥ ℓ > dk+1. If dk = ℓ we set i = k + 1. Otherwise, we
add the space Xi obtained by blowing up the subspace f−1

k (V i := Z∪V k+1) ⊂ Xk.

Hence, we add a sub-diagram Xk
πi←− Xi

πk+1

←−−− Xk+1 where Xk+1 is the blowing up
of f−1

i (V k+1) ⊂ Xi and fi := fk ◦ πi.

Proof of the proposition 1.5 We need to construct a diagram

X ′ π
−→ X

f
−→ V

such that π and f ◦ π are simultaneously fibrations by NCD over the strata.
Going back to the inductive argument for f in the lemma 3.2, we apply at each

step of the induction the corollary 3.5 to construct π. In particular we start with
the desingularization by an admissible modification.

Induction hypothesis. We suppose there exists:
1) A diagram Di of morphisms where π′

i is admissible:

X
π′

i← Xi
fi
→ V, fi = f ◦ π′

i

2) A decreasing family of algebraic subspaces V i ⊂ V j for j < i with inverse
image f−1

i (V j) consisting of NCD in Xi for j < i, and a stratification Si of V

compatible with the family V j , such that the restriction of fi to Xi− f
−1
i (V i) over

V − V i is a fibration by relative NCD over the strata.

Inductive step. Let di (resp. n − i) be the dimension of V i. We want to define
a sub-space V i+1 ⊂ V i of dimension strictly smaller di+1 < di (resp. n − i − 1)
and to extend the diagram over the open subset V i − V i+1, that is, to construct a
diagram Di+1 of morphisms:

X
π′

i+1

← Xi+1
fi+1

→ V, fi+1 = f ◦ π′
i+1

such that:

1) π′
i+1 is admissible and defined as a composition map π′

i+1 : Xi+1
πi+1

→ Xi
π′

i→ X
of π′

i : Xi→X with a modification πi+1 inducing an isomorphism:

Xi+1 − f
−1
i+1(V

i)
∼
−→ Xi − f

−1
i (V i).

2) f−1
i+1(V

i) is a relative NCD over the open subset V i − V i+1.

To achieve this step, we remark that the variety f−1
i (V i) in Xi is over f

−1(V i) in
X . Then, we apply the lemma (3.6 ) to π′

i : Xi → X and f−1(V i) ⊂ X to construct
the admissible morphism π′

i+1

f−1(V i) ⊂ X
π′

i←− Xi
πi+1

←−−− Xi+1, π′
i+1 := π′

i ◦ πi+1 : Xi+1 → X

That is we develop the constructions of the lemma 3.2 to construct π′
i+1 over X by

modification only of sub-spaces over f−1
i (V i) to transform f−1

i (V i) into a NCD,
hence Xi+1 in the diagram Di+1 differs from Xi in the diagram Di only over
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f−1
i (V i). The stratification of X is modified inside the subset f−1(V i), hence
we modify adequately the stratification of X inside the subset V i.

There exists an open algebraic subset U ⊂ Vi in the big strata of Vi over which
fi+1 is a fibration by NCD (lemma 3.4). Let V i+1 := Vi − U of dimension strictly
smaller than di. Then, the Thom-Whitney stratifications of f and π′

i outside Vi
extend over U into Thom-whitney stratifications of f and π′

i+1 . Hence, we deduce
a diagram Di+1 which extend the diagram Di such that fi+1 (resp. π′

i+1) is a

fibration by NCD over the strata of f−1
i+1(V

i − V i+1) (resp. f−1(V i − V i+1).
Thus we complete the construction of the diagram Di+1 and the inductive step.

At the end we define π′
m and fm both admissible for some index m.

Corollary 3.7. The decomposition theorem for f can be deduced from both cases
π′ and f ′ in the proposition 1.5.

Let L be a local system on X−Y , there exists an open algebraic set Ω ⊂ X−Y
dense in X such that Ω′ := π′−1(Ω) ⊂ X ′ is isomorphic to Ω, which carry the local
system L. Let j′ : Ω′ → X ′, then the decomposition theorem for j!∗L with respect
to the orginal proper algebraic morphism f follows from both cases of f ′ and π′

([De 68] proposition 2.16).

4. Logarithmic complexes

We develop the construction of Hodge theory by logarithmic complexes with
coefficients in an admissible graded polarized variation of mixed Hodge structure
(VMHS): (L,W, F ) with singularities along a normal crossing divisor Y . We refer
to [Ka 86] and [EY 14] for basic computations and to [Ka 86, ICTP 14, StZ 85] for
admissibility (definition 4.2 below).

In this section we construct the logarithmic complex Ω∗L in the subsection 4.1
and the sub-complex IC∗L in the subsection 4.3. The theorem 4.3 states the
existence of MHS on H∗(X − Y,L,W, F ). The definition of the weight filtration in
section 4.4 and theorem 4.31 is motivated by a long explanation in the local case.

The admissibility on X∗ := X − Y refers to asymptotic properties of (L,W, F )
along the NCD. Such asymptotic properties are expressed on Deligne’s extension
LX of L⊗QOX∗ , defined in terms of the ”multivalued” horizontal sections of ∇ on
X∗, on which the connection ∇ extends with logarithmic singularities along Y .

The extension LX is a locally free analytic sheaf of modules, hence algebraic
if X is projective. It is uniquely characterized by the residues of the logarithmic
singularities of the connexion ∇, and defined in terms of a choice of the logarithm of
the eigenvalues of the monodromy ([De 70] Théorme d’existence Proposition 5.2).

The fibre of the vector bundle L(x) := LX,x ⊗OX,x
C is viewed as the space of

the ” multivalued” horizontal sections of L at x (sections of a universal covering of
the complementary of Y in a ball Bx at x).

The extension over Y of the Hodge filtration of a polarizable variation of HS
constructed by Schmid [Sc 73, GrSc 73, CaKSc 86] is a fundamental asymptotic
property, that is required by assumption in the case of a graded polarizable variation
of MHS, as a condition to admissibility.

The local monodromy Ti around a component Yi of Y , defines a nilpotent en-
domorphism Ni := Log T u

i logarithm of the unipotent part of T preserving the
extension of the filtration W of L by sub-bundles WX ⊂ LX .
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Deligne pointed out the problem of the existence of the relative monodromy
filtration M(

∑
iNi,W )) in ([De 80], I.8.15). The required properties are proved

in the case of geometric variation of MHS over a punctured disc in [E 83] and
studied axiomatically as conditions of admissibility in [StZ 85]. The definition of
admissibility in [Ka 86] along a NCD is by reduction to the case of a punctured
disc.

Definition 4.1 (Preadmissible VMHS). A variation of mixed Hodge structure
(L,W,F) graded polarizable over the punctured unit discD∗ with local monodromy
T , is called preadmissible if the following conditions are satisfied:

i) The Hodge filtration F ⊂ LOD∗ extends to a filtration F on Deligne’s extension
LOD

by subbundles inducing for each k on GrWk LOD
, Schmid’s extension of the

Hodge filtration.
ii) Let W 0 :=W(0), F0 := F(0) denote the filtrations on the fiber L0 := LOD

(0)
at 0 ∈ D and T the local monodromy at 0, N = logT ; then the following two
conditions must be satisfied:

1) NF p
0 ⊂ F

p−1
0 for all p ∈ Z.

2) The weight filtration M(N,W 0) relative to W 0 exists.

Notice that the extension of the filtration F to LOD
cannot be deduced in general

from the various Schmid extensions to GrWk LOD
.

We remark that the filtrations M := M(N,W 0) and F0 at the origin define an
MHS.

The admissibility property in the next definition by Kashiwara coincides over
D∗ with the above definition in the unipotent case (but not the quasi-unipotent
case) as proved in [Ka 86].

Definition 4.2 (Admissible VMHS). Let X be a complex analytic space and U ⊂
X a nonsingular open subset, complement of a closed analytic subset. A graded
polarizable variation of mixed Hodge structure (L,W,F) on U is called admissible
if for every analytic morphism f : D → X on a unit disc which maps D∗ to U , the
inverse (f|D∗)∗(L,W,F) is a preadmissible variation on D∗.

In the case of locally unipotent admissible VMHS, Kashiwara noticed that pread-
missible VMHS in the unit disc are necessarily admissible.

We construct below the weight filtration directly on the logarithmic complex
(4.1), generalizing the case of constant coefficients in [De 72].

We remark that the construction of the intermediate extension (or the Intersec-
tion complex) of a local system on X−Y (4.3.1), as well the development of mixed
Hodge theory, involve the behaviour at “infinity”, along the NCD Y .

4.0.1. Notations. Let Y := ∪i∈IYi be a NCD, union of smooth irreducible compo-
nents with index I, and for J ⊂ I, set YJ := ∩i∈JYi, Y

∗
J := YJ − ∪i/∈J(Yi ∩ YJ)

(Y ∗
∅ := X∗ = X−Y ). We denote uniformly the various embeddings by j : Y ∗

J → X .
The local system L onX∗ is defined by a connection∇ on the fibre bundle LX∗ =

L⊗QOX∗ with horizontal sections given by a vector space L with monodromy action
Tj for each j ∈ I. The extension of LX∗ with a regular singular connection is a
couple consisting of a fibre bundle LX and a connection ∇ : LX → Ω1

X(LogY )⊗LX
([De 70], [Ma 87] definition 3.1). The residue of ∇ is defined along a component Yi
of the NCD Y as an endomorphism of the restriction ResYi

∇ : LYi
→ LYi

, of LX
to Yi.
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The eigenvalues of the residue are constant along a connected component of Yj
and related to the local monodromy Tj of L at a general point of Yj by the formula:
Log Tj = −2iπResYj

∇ ([De 70], theorem 1.17, proposition 3.11).
The construction of LX is local. Deligne’s idea is to fix the choice of the residues

of the connection by the condition that the eigenvalues of the residue belong to
the image of a section of the projection C → C/Z, determined by fixing the real
part of z : n ≤ R(z) < n + 1, hence fixing the determination of the logarithm
Log : C∗ → C, and forcing the uniqueness of the construction. Hence the local
constructions glue into a global bundle. In Deligne’s extension case n = 0.

Let X(x)
∼
−→ Dn+l be a neighborhood of a point x ∈ Y isomorphic to a product

of complex discs, such thatX(x)∗ = X(x)∩(X−Y )
∼
−→ (D∗)

n×Dl where D∗ is the
disc with the origin deleted. For simplification, we often set l = 0 and we suppose
X := Dn is a ball in Cn with Y defined by y1 · · · yn = 0. The fundamental group
π1(X(x)∗) is a free abelian group generated by n elements representing classes of
closed paths around the hypersurface Yi, defined locally by the equation yi = 0, at
a general point of Yi, one for each index i.

The restriction of the local system L to X(x)∗ corresponds to a representation
of π1(X(x)∗) in a vector space L, hence to the action of commuting automorphisms
Ti of L for i ∈ [1, n] indexed by the local components Yi of Y and called local
monodromy action around Yi.

Classically L is viewed as the fibre of L at the base point of the fundamental
group π1(X

∗), however to represent the fibre of Deligne’s extended bundle at x,
we view L as the vector space of multivalued horizontal sections of L, that is the

sections of the inverse of L on a universal cover π : D̃n → Dn := X(x)∗ defined

for z = (z1, · · · , zn) ∈ D̃n ⊂ Cn by y = π(z) with components yj := e2iπzj , then

L := H0(D̃n, π−1L).
In the case of a VMHS, we suppose L defined over Q. The automorphisms

Ti defined over Q, decompose as a product of semi-simple T s
i and unipotent T u

i

commuting automorphisms Ti = T s
i T

u
i . On the complex vector space L, T s

i is
diagonalizable and represented over C by the diagonal matrix of its eigenvalues.
The logarithm of Ti is defined as the sum Log Ti = Log T s

i + Log T u
i = Di + Ni,

where Di = Log T s
i is diagonalizable over C with entries Log ai on the diagonal

for all eigenvalues ai of T s
i and for a fixed determination of Log on C∗, while

Ni := Log T u
i is a nilpotent endomorphism, defined by Ni = −Σk≥1(1/k)(I − T u

i )
k

as a polynomial function of the nilpotent morphisms (I − T u
i ), where the sum is

finite. At a point x on ∪i∈J⊂IYi a product of closed paths corresponds to a sum of
various Ni.

Locally, at a point x ∈ Y on the intersection of n-components Yi, i ∈ [1, n], a
spectral decomposition into a finite direct sum is defined on L := L(x)

L = ⊕(a.)L
a., La. = ∩i∈[1,n](∪j>0 ker (Ti − aiI)

j
)

with sequences of eigenvalues (a.) as indices, one component ai for each Ti.

4.0.2. For a detailed description of LX at x ∈ Y , let αj ∈ [0, 1[ for j ∈ [1, n] such
that e−2iπαj = aj is an eigenvalue for Tj , then the fiber LX,x is generated as an
OX,x-submodule of (j∗LX∗)x by the image of the embedding of the space L of
multivalued horizontal sections into LX,x by the correspondence v → ṽ, defined for



DECOMPOSITION, PURITY AND FIBRATIONS BY NORMAL CROSSING DIVISORS 37

y near x by

ṽ(y) = (exp(Σj∈J (logyj)(αj−
1

2iπ
Nj))).v = Πj∈Jyj

αj exp(Σj∈J−
1

2iπ
(logyj)Nj).v,

in ([De 70], 5.2.1- 5.2.3), then ṽ(y) is a uniform analytic section on X(x)∗. It is
important to stress that a basis va of L is sent onto a basis ṽa of LX,x, and if
X is projective LX is an algebraic bundle by Serre’s general correspondence. In
the text, we omit in general the analytic notations Xan as we consider projective
varieties. The action of Ni on L determines the connection ([De 70], theorem 1.17,
proposition 3.11) as

∇ṽ = Σj∈J [(̃αjv)−
1

2iπ
(̃Njv)]⊗

dyj
yj
.

4.1. The logarithmic complex Ω∗L := Ω∗
X(LogY )⊗ LX .

Let L̃ be an admissible polarized variation of Hodge structures (VHS) on a
smooth open subset Ω of a smooth complex algebraic variety X of dimension m,
complement of a NCD Y in X and j : Ω → X the embedding. We denote by
L := L̃[m] the complex of sheaves reduced to L̃ in degree−m (referred to as a shifted
VHS). Let (LX ,∇) be Deligne’s (shifted) extension of L ⊗ OΩ with logarithmic
singularities. The connection ∇ : LX → Ω1

X(LogY )⊗ LX extends naturally into a
complex, called the (shifted by m) logarithmic complex Ω∗

X(LogY )⊗ LX .
When L underlies a variation of MHS (L,W, F ), the filtration by sub-local sys-

tems W of L extends as a filtration by canonical sub-analytic bundles WX ⊂ LX .
By the condition of admissibility the filtration FU extends by sub-bundles FX ⊂
LX . Both WX and FX are combined here to define the structure of mixed Hodge
complex.

Theorem 4.3. Let L be a shifted admissible graded polarized variation of MHS on
X − Y . There exists a weight filtration W on the logarithmic complex with coeffi-
cients LX by perverse sheaves, and a Hodge filtration F by complexes of analytic
sub-sheaves such that the bi-filtered complex

(4.1) Ω∗L := (Ω∗
X(LogY )⊗ LX ,W, F )

underly a structure of mixed Hodge complex and induces a canonical MHS on the
cohomology groups Hi(X − Y,L).

The weight is defined by constructible sub-complexes, although it consists in
each degree, of analytic sub-sheaves of Ωi

X(LogY )⊗ LX .
The filtration F is classically deduced on the logarithmic complex from the sub-

bundles Fp
X in LX satisfying Griffith’s transversality:

F p = 0→ FpLX · · · → Ωi
X(LogY )⊗Fp−iLX → · · ·

In the rest of this section the direct definition of the weight filtration W as well its
properties in the case of a NCD is based on the local study in [Ka 86] and [EY 14].

4.2. The direct image Rj∗L ≃ Ω∗L. To represent the complex Rj∗L ⊗ C in the
derived category, we use its de Rham realization Ω∗L := Ω∗

X(LogY ) ⊗ LX . In-

deed, the quasi-isomorphism Rj∗L
∼
−→ Ω∗L follows from Grothendieck’s algebraic

de Rham cohomology [Gro 66] and its generalization to local systems by Deligne
([De 70], definition 3.1).
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We also describe a sub-complex IC∗L representing the intermediate extension
[GMacP 83, Br 82, BBDG 83]. Various related definitions given here in terms of
local coordinates are independent of the choice of coordinates. This approach is fit
for calculus.

4.2.1. The (higher) direct image Rj∗L. The residue of the connection ∇ on the
analytic restriction LYi

of LX decomposes into Jordan sum Di −
1

2iπNi where Ni

is nilpotent and Di diagonal with eigenvalues αi ∈ [0, 1[ such that the eigenvalues
of the monodromy Tj are aj = e(αj) := e−2iπαj . The de Rham complex with
coefficients LX , is quasi-isomorphic to Rj∗L ([De 70], section II.3):

(4.2) Rj∗L
∼
−→ Ω∗L := Ω∗

X(LogY )⊗ LX

Let m = n + l, in the local situation (4.0.1) with Y defined near a point x at the
origin in Dm by y1 · · · yn = 0, the fiber of the complex Rj∗L is quasi-isomorphic to
a Koszul complex. We associate to the component of the spectral decomposition,
a strict simplicial vector space (Le(α.), αiId −

1
2iπNi), i ∈ [1, n]) such that for all

sequences (i.) = (i1 < · · · < ip): L(α., i.) = Le(α.), αij Id−
1

2iπNij : L(α., i.− ij)→
L(α., i.).

The Koszul complex is the sum of this simplicial vector space; it is denoted by
s(Le(α.), αiId−

1
2iπNi)i∈[1,n].

Definition 4.4. The direct sum of the complexes s(Le(α.), αjId −
1

2iπNj)j⊂[1,n]

over all sequences (α.) is denoted by s(L, α.Id− 1
2iπN.).

It is also denoted as an exterior algebra

(4.3) Ω∗L := Ω(L, α.Id−
1

2iπ
N.) = ⊕α.Ω(L

e(α.), αiId−
1

2iπ
Ni), i ∈ [1, n]).

where e(αj) = e−2iπαj = aj is an eigenvalue for Tj.

4.2.2. The tilda embedding. For M ⊂ I of length n := |M | and x ∈ Y ∗
M , the above

correspondence v 7→ ṽ, from L to LX,x, extends to an embedding:

L(i1, . . . , ij)→ (Ω∗
X(LogY )⊗ LX)x by v 7→ ṽ

dyi1

yi1

∧ . . . ∧
dyij

yij

.

It induces quasi-isomorphisms

(4.4) (Rj∗L)x ∼= (Ω∗
X(LogY )⊗ LX)x ∼= Ω∗L ∼= s(L, α. −

1

2iπ
N.).

The endomorphisms αjId and Nj correspond to endomorphisms denoted by the
symbols αjId and Nj on the image sections ṽ in LX)x. We recall below a proof of

the following result: the subcomplex Ω(Le(α.), αiId−
1

2iπNi), i ∈ [1, n]) is acyclic if
there exists an index i such that αi 6= 0.

Proposition 4.5. Let M ⊂ I, x ∈ Y ∗
M be a general smooth point of ∩i∈MYi,

L := LX(x), and Lu ⊂ L the subspace on which the action of each monodromy
Ti is unipotent. The complex of OX,x-modules (Ω∗L)x is quasi-isomorphic to the
complex of exterior algebra Ω∗Lu defined by (Lu, Ti):

Ω∗Lu :=

(
0→ Lu → · · · → ⊕{i1<...<ik−1}L

u → ⊕{i1<...<ik}L
u · · · → 0

)
≃ (Ω∗L)x

with differential in degree k− 1 : (dk−1v•){i1<...<ik}) =
∑

j(−1)
j Nij

2iπ v{i1<...̂ij ...<ik}
.
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Proof. We show that for each power of the maximal ideal mr at x with r > 0, the
subcomplex m

r(Ω∗L)x is acyclic, and for r = 0 only the component Ω∗Lu is not
acyclic. As x is at the intersection of n components of Y , we associate to each
monomial ym. := ym1 · · · ymn of degree r a complex vector subspace sL ⊂ Lx by
the correspondence v → ym.ṽ (4.2.2) to get a complex of vector subspaces Ω∗Lym.

of mr(Ω∗L)x

(4.5) Ω∗Lym. :=

(
0→ sL→ · · · → ⊕{i1<...<ik}y

m.L
dyi1
yi1
∧ · · · ∧

dyik
yik
· · · → 0

)

with differential defined by: ym.ṽ → ym.([(mi+αi)Id−
1

2iπNi].ṽ)⊗
dyi

yi
. The complex

m
r(Ω∗L)x is an inductive limit of the sub-complexes Ω∗Lym. for various sections

ym. such that
∑

imi ≤ r. We show in particular that each complex Ω∗Lym. is
acyclic for r > 0.

Lemma 4.6. For each monomial ym. := ym1 · · · ymn, the sub-complex Ω∗Lym. of
(Ω∗L)x (4.5) is acyclic if the degree r :=

∑
i≤nmi of y

m. is strictly positive, hence
it is quasi-isomorphic to the complex

Ω∗L :=

(
0→ L→ ⊕i∈[1,n]L→ · · · → ⊕{i1<...<ik}L · · · → 0

)

with differential in degree k − 1:

∀v•, dk−1(v•){i1<...<ik} =
∑

j(−1)
j((mij + αij )Id−

1
2iπNij )v{i1<...̂ij ...<ik}

.

Since ∇ym.ṽ =
∑

imiy
m.ṽ⊗ dyi

yi
+ ym.Σi[α̃iv−

1
2iπ Ñiv]⊗

dyi

yi
= ym.[(mi + αi)Id−

1
2iπNi]ṽ ⊗

dyi

yi

The complex Ω∗Lym. is isomorphic to the complex Ω∗L in the lemma where the
differentials appear as given by morphisms (mi+αi)Id−

1
2iπNi : L→ L, hence it is

acyclic if one of such morphisms is an isomorphism, that is at least one mj+αj 6= 0
in which case (mj + αj)Id −

1
2iπNj is an isomorphism of L as Nj is nilpotent;

indeed, the complex may be written as a cone over such morphism. We deduce the
proposition as αj 6∈ Z unless αj = 0, then mj + αj = 0 iff mj = 0 and αj = 0. �

Remark 4.7 (Reduction to the locally unipotent case). It follows from the proposi-
tion that the cohomology of the restriction to Y is determined locally by the unipo-
tent subspace under the monodromy actions. This is a good reason to reduce the
study of the weight filtration to local systems with locally unipotent monodromy.

In particular, if Z ⊂ Y is a component with non locally unipotent monodromy
(the monodromy TZ aroundZ has no eigenvalue equal to 1), then RjZ∗(j!∗L|X−Z) =
jZ!(j!∗L|X−Z) = j!∗L, where jZ : X − Z → X denotes the open embedding. In
general, only the locally unipotent summand of L is interesting.

The above description of (Rj∗L)x is the model for the next description of various
perverse sheaves in the rest of the section.

4.3. The intermediate extension j!∗L ≃ IC∗L. We describe the intermediate
extension j!∗L at a point at “infinity” along the NCD Y , by a sub-complex IC∗L ⊂
Ω∗L containing the submodule Ω∗

X ⊗ LX .
The NCD Y is defined by the ideal IY , product of the ideals of the components

Yi. The complex of IC∗L contains the product IY Ω∗L as an acyclic sub-complex
by lemma 4.6. The quotient complex Ω∗L/IC∗L is supported by Y . We state the
results for locally unipotent local system to simplify the notations (remark 4.7).
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4.3.1. Definition of IC∗L for a locally unipotent local system. In the local situation
(4.0.1), at a general point x ∈ Y ∗

M of the intersection of Yi for i ∈ M , we set for

all K = {i1, . . . , ik} ⊂ M = [1, n], A := Ox
∼
−→ C{{x}} denote the analytic local

ring, yK := yi1 · · · yik and dyK := dyi1 ∧ · · · ∧ dyik . Let L̃ denote the vector space

defined by sections ṽ for all flat vectors v ∈ L, generating the fiber LX,x := AL̃
of the sheaf LX at x. The fiber (Ω∗L)x of the sheaf Ω∗L at x, is generated as an

(Ω∗
X)x-module by

∑
K⊂M AL̃ dyK

yK
.

Let NJ = Πj∈JNj denotes a composition of endomorphisms of L, and consider
the strict simplicial sub-complex of the de Rham logarithmic complex (4.1) defined
by ImNJ := NJL in L(J) = L.

More generally, each subspace V ⊂ L, defines a subspace Ṽ ⊂ L̃ generating an
A-submodule of the fiber at x; for K,B ⊂ M we are interested in the generating
subspaces V = NKL image of NK and V = KerNB the kernel NB.

Definition 4.8 (Stalk of the Intersection complex (IC∗L)x).
Let x ∈ Y ∗

M be a general point in YM and A := Ox. The sub-complex (IC∗L)x ⊂
(Ω∗L)x is generated as an Ω∗

X,x-algebra by the Ox-sub-modules:

∑

B⊂K⊂M

yBA(ÑK−BL)
dyK
yK

sum for all K ⊂M and for each K for all B ⊂ K.

As an OX,x-module, (IC∗L)x is generated by
∑

B⊂K yBA(ÑK−BL)
dyK

yK
∧Ω∗

X,x.

By reduction to a normal section to YM at x in the proof, we skip Ω∗
X,x.

Lemma 4.9 (Independence of the coordinates). The definition of (IC∗L)x is in-
dependent of the choice of the coordinates defining Y .

Proof. We check the independence, after restriction to a normal section, for a one
variable change at a time: zj = fyj for j ∈ K with f invertible at x. We can
suppose j = 1, and we write IC∗L(z1) (resp. IC∗L(y1)) for the stalk at x of the
complex when defined with the coordinate z1 and yj for j > 1 (resp. with the
coordinate y1 instead of z1). We prove IC∗L(z1) ⊂ IC

∗L(y1).
For K ⊂ M = [1, n] of length |K| = k, and Ki ⊂ K of length |Ki| = k − i,

since dz1
z1

= dy1

y1
+ df

f , where df
f is regular at x, a section s ∈ zKi

A( ˜NK−Ki
L)dzKzK

⊂

IC∗L(z1) is transformed into a sum

s = w1 + w2, w1 ∈ IC
∗L(y1), w2 ∈ yKi

A( ˜NK−Ki
L)

df

f
∧j∈K−{1}

dyj
yj

to show that w2 is also in IC∗L(y1), it is enough to check that NK−Ki
L ⊂

NK−1−Ki
L if 1 6∈ Ki, as df

f is regular. The proof of IC∗L(y1) ⊂ IC∗L(z1) is

similar. �

The following proposition is admitted and well known.

Proposition 4.10 (IC∗L). The intersection complex (IC∗L)x at a point x ∈ Y ∗
M ,

for a locally unipotent local system L, is quasi-isomorphic to the complex:
(4.6)

IC∗L :=

(
0→ L→ ⊕i∈[1,n]NiL · · · → ⊕{i1<...<ik⊂[1,n]}N{i1<...<ik}L · · · → 0

)

with differentials induced by the embedding into Ω∗L.
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4.3.2. Local definition of (IC∗L)x for a general local system. We introduce in terms
of the spectral decomposition of L, for each set α., the composition of endomor-
phisms of Le(α.): (α.Id− 1

2iπN.)J = Πj∈J (αjId−
1

2iπNj).
The strict simplicial sub-complex of the de Rham logarithmic complex (4.1) is

defined by Im(α.Id− 1
2iπN.)J in Le(α.)(J) = Le(α.).

Definition 4.11 (IC∗L). The simple complex defined by the above simplicial sub-
vector spaces is the intersection complex IC∗L := ⊕α.IC

∗Le(α.) where

(4.7) IC∗Le(α.) : = s((α.Id−
1

2iπ
N.)JL

e(α.), α.Id −
1

2iπ
N.)J⊂[1,n].

We introduce for each set α. the subset M(α.) ⊂ [1, n] such that j ∈ M(α.)
if and only if αj = 0. Let NJ∩M(α.) = Πj∈J∩M(α.)Nj ( it is the identity if J ∩
M(α.) = ∅). For each J ⊂ [1, n], we have the equality of the image subspaces:
(α.Id− 1

2iπN.)JL
e(α.) = NJ∩M(α.)L

e(α.) since the endomorphism (αjId −
1

2iπNj)

is an isomorphism on Le(α.) whenever αj 6= 0, hence

(4.8) IC∗L ≃ ⊕α.s(NJ∩M(α.)L
e(α.))J⊂M

Lemma 4.12. Let Lu denote the subspace of L such that all local monodromies
are unipotent, then we have quasi-isomorphisms IC∗Lu ≃ IC∗L ≃ (IC∗L)x.

Indeed, if there exists an index k such that αk 6= 0, then IC∗Le(α.) may be
written as a cone over the quasi-isomorphism
αkId−

1
2iπNk : s(NJ∩M(α.)L

e(α.))J⊂M−k → s(NJ∩M(α.)L
e(α.))J⊂M−k.

4.3.3. Global definition of the Intersection complex. The local definition of IC∗L is
well adapted to computations. As it is independent of the local coordinates defining
Y (4.9), we deduce a global defintion of the Intersection complex as follows.

A filtration W of L by sub-local systems, extends to a filtration of LX by sub-
bundles WX . For all subsets M of I, the decomposition of the restriction to YM is

global: LYM
= ⊕(α.)L

e(α.)
YM

. The endomorphisms Ni for i inM are defined on LYM
,

and NM = Πi∈MNi is compatible with the decomposition. The image NMLYM
is

an analytic sub-bundle of LYM
. The residue of the connection ∇ along each Yj

defines an endomorphism αjId−
1

2iπNj on the component L
e(α.)
Yj

of LYj
compatible

with the filtration by sub-analytic bundles WYj
. For subsets J ⊂ I of the set I of

indices of the components of Y , let:

(α.Id −
1

2iπ
N .)J := (αi1Id−

1

2iπ
Ni1) · · · (αij Id−

1

2iπ
Nij ) : L

e(α.)
YJ

→ L
e(α.)
YJ

Definition 4.13. The Intersection complex IC∗L is the sub-analytic complex of
Ω∗

X(LogY )⊗LX ⊃ Ω∗
X ⊗LX whose fibre at a point x ∈ Y ∗

M is defined, in terms of
a set of coordinates yi defining equations of YM for i ∈M , as an Ω∗

X,x sub-module

generated by the sections ṽ ∧j∈J
dyj

yj
for all v ∈ Im (α.Id − 1

2iπN.)J ⊂ ⊕α.L
e(α.)

and J ⊂M where ṽ ∈ LX,x and L = LX(x).

This definition is independent of the choice of coordinates (lemma 4.9) and a
section of IC∗L restricts to a section in IC∗L near x, since (α.Id − 1

2iπN.)JL ⊂

(α.Id− 1
2iπN.)J−iL for all i ∈ J .

For example in the unipotent case, for M = {1, 2} and x ∈ Y ∗
M , the sections in

(IC∗L)x ⊂ (Ω2
X(LogY )⊗LX)x are generated by ṽ dy1

y1
∧ dy2

y2
for v ∈ NML, ṽ

dy1

y1
∧dy2

for v ∈ N1L, ṽdy1 ∧
dy2

y2
for v ∈ N2L and ṽdy1 ∧ dy2 for v ∈ L.
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We remark that the notation IC(X,L) instead of IC∗L is used in ([ICTP 14],
chapter 8). The intermediate extension j!∗L of L is topologically defined by an
explicit formula in terms of the stratification ([Br 82], §3). Locally its fiber (j!∗L)x
at a point x ∈ Y ∗

M is quasi-isomorphic to the above complex IC∗L.

4.4. Weight filtration. The description of the weight filtration on the logarithmic
complex is based on the work of Kashiwara [Ka 86] and [EY 14]. Although the
declared purpose of the paper [Ka 86] is a criteria of admissibility in codimension
one, various local statements and proofs in [Ka 86] are useful to define the weight
filtration ([ICTP 14], ch.8).

We start with a graded polarized variation of MHS on the underlying shifted
local system L on the complement of a NCD Y , satisfying certain asymptotic
properties at points of Y , summarized under the condition of the admissibility
property assuming as axioms the properties of the asymptotic behavior of variation
of MHS of geometric origin. In particular we ask for the filtration F on LX∗ to
extend into a filtration of LX by sub-bundles F , and the existence of the monodromy
filtration relative to the natural extension of the filtration W along Y .

Let x ∈ Y at the intersection of n locally irreducible components with local
monodromy action Ti, and let L := LX(x) = (LX)x ⊗OX,x

C denote the space of
”multiform” sections of L (to emphasize this point the notation L := ψx1

· · ·ψxn
L is

also used). The conditions of admissibility, stated in terms of the extension of F and
the nilpotent endomorphisms Ni := LogT u

i logarithm of the unipotent monodromy
T u
i , are defined by the structure of Infinitesimal mixed Hodge structure (IMHS) on
L, recalled below.

4.4.1. Mixed nilpotent orbit and Infinitesimal mixed Hodge structure (IMHS). We
deduce from a variation of MHS on the complement of a NCD Y , locally at a
point x ∈ Y , the data: (L,W,F,N1, . . . , Nn) with an increasing filtration W s.t.
NjWk ⊂Wk, a Hodge filtration F and its conjugate F with respect to the rational
structure inherited from L. It is called here mixed nilpotent orbit (pre-infinitesimal
mixed Hodge module in ([Ka 86], 4.2).

The filtration W is an extension of the weight W on L. We may call it the finite
filtration in opposition to the relative monodromy filtration to be introduced later
called the limit filtration.

Nilpotent orbit. We consider an integer w and a data (L, F, S;N1, . . . , Nn) where
L is a finite dimensional complex vector space with a Q-structure, F is a decreasing
C-filtration, such that: NjF

p ⊂ F p−1, S is a non-degenerate rational bilinear form
satisfying

S(x, y) = (−1)wS(y, x) forx, y ∈ L and S(F p, F q)) = 0 for p+ q > w.

and Ni are Q-nilpotent endomorphisms for all i, mutually commuting, such that
S(Nix, y) = S(x,Niy) and NiF

p ⊂ F p−1.

Definition 4.14 (Nilpotent orbit). ([Ka 86], 4.1) The above data is called a (po-
larized) nilpotent orbit of weight w if :

i) The monodromy filtration M of the nilpotent endomorphism N =
∑

j tjNj

does not depend on the various tj for tj > 0 and all j.
ii) The data (L,M,F ) is a MHS on L of weight w (a MHS (L,M,F ) is of weight

w, or shifted by w, if (GrMk , F ) is a HS of weight w + k). The bilinear form Sk
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such that Sk(x, y) = S(x,Nky) polarizes the primitive subspace Pk = Ker(Nk+1 :
GrMk → GrM−k−2) with its induced HS of weight w + k.

Henceforth, all nilpotent orbits are polarized.

Remark 4.15 (Nilpotent orbit). i) As Ni acts on F , the exponential morphism
ei

∑
tjNj acts on F for ti ∈ R. The nilpotent orbit theorem proved by Schmid states

that the above definition is equivalent to the statement:
There exists c > 0 such that (L, ei

∑
tjNjF, e−i

∑
tjNjF ) is a Hodge structure of

weight w polarized by S for t > c.
The HS is viewed as variation of HS for variable ti and M is called the limit

MHS.
ii) On this formula, it is clear that for each subset of indices K ⊂ [1, n], the

filtrations FK := ei
∑

j∈K
tjNjF, FK := e−i

∑
j∈K

tjNjF define a variation of HS on
L such that NiF

p
K ⊂ F p−1

K with i 6∈ K. Then (L,W (
∑

i6∈K Ni), FK) is a MHS for
fixed tj , j ∈ K.

Example. In the case of a polarized variation of HS of pure weight w on the
product n-times of a small punctured disc D∗, the limit Hodge filtration exists
on the finite dimensional vector space L := ψx1

· · ·ψxn
L. It defines with the mon-

odromy filtrationM a nilpotent orbit approximating the variation of HS ([CaK 82],
[CaKSc 86]).

Mixed nilpotent orbit. We consider a data (L,W,F,N1, . . . , Nn), where L is a
finite dimensional complex vector space with a Q-structure, Ni are Q-nilpotent
endomorphisms for all i, W (resp. F ) is an increasing Q-filtration (resp. decreasing
C-filtration), such that: NjF

p ⊂ F p−1 and NjWk ⊂Wk.

Definition 4.16 (Mixed nilpotent orbit). The above data is called a mixed nilpo-
tent orbit (graded polarized) if the data with restricted structures

(GrWi L, F|, (N1)|, . . . , (Nn)|)
is a nilpotent orbit for each integer i, of weight i with some polarization Si (it is
called pre-infinitesimal mixed Hodge module in ([Ka 86], 4.2).

Definition 4.17 (IMHS). ([Ka 86], 4.3)
A mixed nilpotent orbit (L,W,F,N1, . . . , Nn) is called an infinitesimal mixed

Hodge structure (IMHS) if the following conditions are satisfied:
i) For each J ⊂ I = {1, . . . , n}, the monodromy filtrationM(J) of

∑
j∈J Nj relative

to W exists and satisfy NjMi(J) ⊂Mi−2(J) for all j ∈ J and i ∈ Z.
ii) The filtrations M(I), F define a graded polarized MHS. The filtrations W and
M(J) are compatible with the MHS and the morphisms Ni are of type (−1,−1).

IMHS are called IMHM in [Ka 86]; Deligne remarked, the fact that if the relative
monodromy filtration M(

∑
i∈I Ni,W ) exists in the case of a mixed nilpotent orbit,

then it is necessarily the weight filtration of a MHS.
Kashiwara proves in ([Ka 86], theorem 4.4.1) the main theorem: it is enough to

check the existence of W (Ni) (in cxdimension 1). Moreover, IMHS form an abelian
category for which the filtrations W,F, and M are strict ([Ka 86], prop. 5.2.6).

The morphism Ni is not an auto-morphism of IMHS as it shifts F but not
W . However, when combined with the descent lemma (lemma 4.25) it leads to an
important application below (subsection 4.4.5).
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4.4.2. Definition of the filtration N ∗W . ([Ka 86], 3.4)
Let (L,W,N) denote an increasing filtrationW on a vector space L with a nilpo-

tent endomorphism N compatible with W s.t. the relative monodromy filtration
M(N,W ) exists. Then a new filtration N ∗ W of L is defined by the formula
([Ka 86], 3.4)

(4.9) (N ∗W )k := NWk+1 +Mk(N,W ) ∩Wk = NWk+1 +Mk(N,W ) ∩Wk+1

where the last equality follows from ([Ka 86], Prop 3.4.1).
The endomorphism N : L→ L and the identity I on L induce morphisms

N :Wk → (N ∗W )k−1, I : (N ∗W )k−1 →Wk.

We mention two important properties of N ∗W ( [Ka 86], lemma 3.4.2):
The monodromy filtration relative to N ∗W exists and M(N,N ∗W ) =M(N,W ).
Moreover, the following decomposition property is satisfied

GrN∗W
k L ≃ Im (N : GrWk+1L→ GrN∗W

k L)⊕ ker (I : GrN∗W
k L→ GrWk+1L)

Im (N : GrWk+1L→ GrN∗W
k L)

∼
−→ Im (N : GrWk+1L→ GrWk+1L).

(4.10)

To refer to this decomposition, the couple (L,N ∗W ) is said to form a (graded)
distinguished pair.

4.4.3. The filtration W J associated to an IMHS. Let (L,W,F,Ni, i ∈ M)
denote the IMHS at x ∈ Y ∗

M and J ⊂M . The relative weight filtration

(4.11) M(J,W ) :=M(N,W ) for N ∈ C(J) := {Σj∈J tjNj, tj > 0},

is well defined by assumption. A basic lemma ([Ka 86], cor. 5.5.4) asserts that:

Lemma 4.18. (L,N1∗W,F,Ni, i ∈M) and (L,M(N1,W ), F,Ni, i 6= 1) are IMHS.

Remark 4.19. Geometrically, N1 ∗W and M(N1,W ) may be viewed on LY1
near

x. In term of the equation z1 of Y1, the filtration N1 ∗W viewed on ψz1L is not a
variation of MHS.
In ([Ka 86], lemma 3.4.2 ii and proposition 5.2.5) the following equality is proved:

M(
∑

i∈M Ni, N1 ∗W ) =M(
∑

i∈M−{1}Ni,M(N1,W )) =M(
∑

i∈M Ni,W ).

We deduce a recursive definition of an increasing filtration W J of L by the star
operation

(4.12) W J := Ni1 ∗ (. . . (Nij ∗W ) . . .) for J = {i1, . . . , ij}

It is denoted by ΨJ ∗W in ([Ka 86], 5.8.2) as it is interpreted as defined repeatedly
on Ψxi

for xi ∈ J in the theory of nearby cycles.
It followws by induction that (L,W J , F,Ni, i ∈ M) is an IMHS. The filtration

W J does not depend on the order of composition of the respective transformations
Nik∗ since Nip ∗ (Niq ∗ W ) = Niq ∗ (Nip ∗ W ) for all ip, iq ∈ J according to a
basic result in ([Ka 86], proposition 5.5.5). The star operation has the following
properties ([Ka 86], formula 5.8.5 and 5.8.6):

∀J1, J2 ⊂M :M(J1,W
J2) =M(J1,W )J2 , ∀J ⊂ K ⊂M :M(K,W J) =M(K,W ).

The filtrations W J fit together to define the weight filtration on Ω∗L:

Definition 4.20. The filtrations W and F on the de Rham complex associated to
an IMHS (L,W,F,Ni, i ∈M) are defined as simplicial complexes

WkΩ
∗L := s(W J

k−|J|, N.)J⊂M , F
pΩ∗L := s(F k−|J|, N.)J⊂M
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Remark 4.21. The induced morphism Ni :W
J
k → (Ni ∗W J)k−1 drops the degree

of the filtration W J . For further use, it is important to add to the above data, the
canonical inclusion I : (Ni ∗W J)k−1 →W J

k .
Beware that the weight filtrations W on L underlying the variation of MHS,

extends as a constant filtration W ′ on Ω∗L. The weight W on Ω∗L is the local
definition of a global weight on the de Rham complex. The relation between W
and W ′ on the terms of Ω∗L is described by ([Ka 86] lemma 3.4.2 iii) and corollary
3.4.3).

4.4.4. Local decomposition of (Ω∗L,W ). The various decompositions in each de-
gree, as in the formula 4.10, result into the decomposition of the whole complex
GrW∗ (Ω∗L). The proof involves the whole de Rham data DR(L) attached to an
IMHS ([Ka 86], section 5.6):

DR(L) := {LJ ,W
J , F J , IJ,K : LJ → LK , NJ−K : LK → LJ}K⊂J⊂M

where for all J ⊂M , LJ := L, FJ := F ,W J is the filtration defined above (formula
4.12), NJ−K :=

∏
i∈J−K Ni and IJ,K := Id : L→ L.

A set of properties of this data stated by Kashiwara in seven formula (5.6.1)-
(5.6.7) follow from results proved in various sections of ([Ka 86]). In particular, for
each J ⊂ M , the data: (LJ ,W

J , FJ , {Nj , j ∈ M}) is an IMHS ([Ka 86], formula
5.6.6), which follows from ([Ka 86], corollary 5.5.4), while formula (5.6.7) with
adapted notations states that for each K ⊂ J ⊂M ,

GrNJ−K : GrW
K

a LK → GrW
J

a−|J−K|LJ , GrIJ,K : GrW
J

a−|J−K|LJ → GrW
K

a LK

form a graded distinguished pair:

GrW
J

a−|J−K|LJ ≃ ImGrNJ−K ⊕KerGrIJ,K .

Now, we are in position to define the ingredients of the local decomposition of Ω∗L

Lemma 4.22 ([Ka 86], proposition 2.3.1 and lemma 5.6.2). i) Set for each J ⊂M

P J
k (L) := ∩K⊂J,K 6=JKer (GrIJ,K : GrW

J

k L→ GrW
K

k+|J−K|L) ⊂ Gr
WJ

k L

then P J
k (L) has pure weight k with respect to the weight filtration M(

∑
j∈J Nj, L).

ii ) We have: GrW
J

k L
∼
−→ ⊕K⊂JNJ−KP

K
k+|J−K|(L).

In the definition of P J
k (L), we can suppose |K| = |J | − 1 in i).

For i ∈ J , let K = J − i, Ni : Gr
WK

k+1L → GrW
J

k L and Ii : Gr
WJ

k L → GrW
K

k+1L,

then Ni on GrW
J

k L is equal to Ni ◦ Ii, hence Ni vanish on P J
k ⊂ Ker Ni for all

i ∈ J , and N :=
∑

i∈J Ni vanish on P J
k . Then the weight filtration W (N) on the

component P J
K(L) of GrW

J

k L coincides with the weight filtration of the morphism

0, hence P J
K(L) ⊂ Gr

W (N)
k Ker N ⊂ Gr

W (N)
k GrW

J

k L is a polarized pure HS.

Remark that W (N)k−1KerN is a subset of the component ImNi ⊂ GrW
J

k L.
The statement (ii) is proved in ([Ka 86], proposition 2.3.1) with a general termi-

nology. We illustrate here the proof in the case of two nilpotent endomorphisms.
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Set W i := Ni ∗W for i = 1, 2, W 12 = N1 ∗N2 ∗W in the following diagram

GrW
1

i L

N ′

2

$$❏
❏❏

❏❏
❏❏

❏❏

GrWi+1L

N1

::✉✉✉✉✉✉✉✉✉✉

N2

$$■
■■

■■
■■

■■
GrW

12

i−1 L

GrW
2

i L

N ′

1

::ttttttttt

GrW
1

i L

I1{{✈✈
✈✈
✈✈
✈✈
✈

GrWi+1 GrW
12

i−1 L

I′

2

dd❏❏❏❏❏❏❏❏❏

I′

1zztt
tt
tt
tt
t

GrW
2

i L

I2

cc❍❍❍❍❍❍❍❍❍

where I ′i and N ′
i are induced by Ii and Ni. The morphisms Ni and Ii (resp. N ′

i

and I ′i ) form distinguished pairs. Let P 12,1
i−1 L := Ker I ′2 : GrW

12

i−1 L→ GrW
1

i L

(resp. P 12,2
i−1 L := Ker I ′1, P

1
i L := Ker I1, P

2
i L := Ker I2), then

GrW
1

i L ≃ N1Gr
W
i+1L⊕ P

1
i L, and Gr

W 2

i L ≃ N2Gr
W
i+1L⊕ P

2
i L

GrW
12

i−1 L ≃ N
′
2Gr

W 1

i L⊕ P 12,1
i−1 L ≃ N

′
2N1Gr

W
i+1L⊕N

′
2P

1
i L⊕ P

12,1
i−1 L, and

GrW
12

i−1 L ≃ N
′
1N2Gr

W
i+1L⊕N

′
1P

2
i L⊕ P

12,2
i−1 L,

Let P 12
i−1L := P 12,2

i−1 L ∩ P
12,1
i−1 L. It remains to prove

P 12,1
i−1 L = N ′

2P
1
i L⊕ P

12
i−1L and P 12,2

i−1 L = N ′
1P

2
i L⊕ P

12
i−1L.

which follows from the linear algebra relations:

I ′2 ◦N
′
1 = N1 ◦ I2, and I2 ◦ I ′1 = I1 ◦ I ′2.

Remark 4.23. In the global decomposition of the logarithmic complex, the HS
P J
k (L) is viewed as a fibre of a VHS on YJ (corollary 4.24 below, and theorem 4.31).

The following corollary is a basic step to check the structure of MHC on the
logarithmic de Rham complex

Corollary 4.24 (local decomposition). The graded vector space of the filtration
W on Ω∗L (definition 4.20) satisfy the decomposition property into a direct sum of
Intersection complexes

(4.13) GrWk (Ω∗L)
∼
−→ ⊕IC∗(PK

k−|K|(L)[−|K|))K⊂M

The corollary is the local statement of the structure of MHC on the logarithmic
de Rham complex.

It follows from the lemma by definition of IC∗ (proposition 4.10) by a general
description of perverse sheaves in the normally crossing divisor case ([Ka 86], section
2). The description is in terms of a family of vector spaces and a diagram of
morphisms. The minimal extensions are characterized by relations of distinguished
pairs as in the formula 4.10.

The family of vector spaces is deduced from a perverse sheaf by repeated appli-
cation of the functors nearby and vanishing cycles with respect to the coordinates.

4.4.5. Decomposition of the Intersection complex IC∗L. We need to prove a similar
decomposition of the Intersection complex IC∗L associated to (L,W,F,Ni, i ∈M)
an IMHS. For each j ∈ M , we consider the data (NjL,Nj ∗ W,F,Ni, i ∈ M)
with induced filtrations from the IMHS (L,Ni ∗W,F,Ni, i ∈ M) (we should write
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(Nj ∗W )|NjL, F|NjL, (Ni)|NjL but the symbol of restriction is erased). We have a
graded exact sequence defined by the induced filtrations on NjL:

0 −→ GrW
j

k NjL −→ GrW
j

k L −→ GrW
j

k L/NjL −→ 0

Lemma 4.25 (descent lemma for IMHS). i) Let (L,W,F,Ni, i ∈M) be an IMHS,
then (NjL,W

j := ((Nj ∗W )|NjL, F,Ni, i ∈M) is an IMHS for all j ∈M .

ii) The couple (L,W,F,Ni)
Nj

−−→ (NjL,W
j , F,Ni) form a graded distinguished

pair: GrW
j

k NjL splits into a direct sum

Im (Nj : Gr
W
k+1L→ GrW

j

k NjL) ⊕ Ker (Ij : Gr
W j

k NjL→ GrWk+1L)

Proof. The filtrationW j is first constructed on L, then induced on NjL. The proof
is simultaneous for i) and ii). We consider the diagram

0 → GrWk+1L = GrWk+1L
↓ N ′

j ↑ I
′
j ↓ Nj ↑ Ij

0 → GrW
j

k NjL
s
−→ GrW

j

k L

where s is injective, N ′
j and I ′j are other symbols for the restriction of Nj and

Ij . Set Pk := ker Ij , ImNj for the image of Nj, ImN ′
j for the image of N ′

j and

Ĩm Nj := Im (Nj : Gr
W
k+1L→ GrWk+1L).

The terms on the right column form a distinguished pair, that is we have a

splitting GrW
j

k L ≃ ImNj ⊕ ker Ij and an isomorphism ImNj ≃ ĨmNj.

Set P ′
k := (GrW

j

k NjL) ∩ Pk. As ImN ′
j ≃ s(ImN ′

j) = ImNj, we deduce the
splitting

GrW
j

k NjL = ImN ′
j ⊕ P

′
k

where P ′
k = ker (I ′j : GrW

j

k NJL → GrW̃k+1NKL). We prove that both components
of this splitting are nilpotent orbits of weight k.

1) We apply the descent lemma ([CaKSc 87] descent lemma 1.16) to ImN ′
j since

it is isomorphic to the image Ĩm Nj (the image of Nj acting on the nilpotent orbit
GrWk+1L). We deduce that the data (ImN ′

j, F,Ni, i ∈ M) is a nilpotent orbit of
weight k.

2) The kernel Pk = Ker Ij ⊂ GrWk+1NjL ⊂ GrWk+1L is compatible with the
action of Ni for all i ∈ M , and since Nj = Nj ◦ Ij vanish on Pk we deduce

that Pk ≃ Gr
W (Nj)
k (Ker Nj) has a pure polarized HS induced by the MHS of

W (Nj) ⊂ GrW
j

k+1L. In particular W (Nj)k−1Ker Nj is in Im Nj ≃ Ĩm Nj which is
consistent with the descent lemma.

Moreover the orthogonal subspace to P ′
k = Ker I ′j ⊂ Pk in the primitive part

Gr
W (Nj)
k Ker Nj (resp. in Gr

W (Nj)
k Ker Nj) defines a splitting compatible with the

action ofNi for all i ∈M as the Ni are infinitesimal isometry of the bilinear product
S : S(Nia, b) + S(a,Nib) = 0, hence P ′

k is a sub-nilpotent orbit of the nilpotent

orbit structure on Gr
W (Nj)
k GrW

j

k+1L. �

Corollary 4.26. i) Let (L,W,F,Ni, i ∈M) be an IMHS, then (NKL,W
K , F,Ni, i ∈

M) is an IMHS for all K ⊂ M , and the embedding (NKL,W
K , F ) ⊂ (L,WK , F )

in the category of IMHS is strict for the filtrations.
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ii) The couple (NKL,W
K , F,Ni)

Nj

−−→ (NJL,W
j, F,Ni) form a graded distin-

guished pair: GrW
j

k NJL splits into a direct sum

Im (Nj : Gr
WK

k+1NKL→ GrW
J

k NJL) ⊕ Ker (Ij : Gr
WJ

k NJL→ GrW
K

k+1NKL)

and the image ImNj is isomorphic to Im (Nj : Gr
WK

k+1NKL→ GrW
K

k+1NKL).

We prove the corollary by induction on the length of K. By the lemma, the em-
bedding (NjL,W

j, F,Ni) ⊂ (L,W j , F,Ni) is an injective morphism in the abelian
category of IMHS.

We assume by induction that (NKL,W
K , F,Ni, i ∈ M) is an IMHS, and let

J := K ∪ i for i 6∈ K. First we consider the induced morphism Nj : WK → WK ,
the filtration Nj ∗W

K
|NKL defined by the star operation on NKL and its induced

filtration on NJL ⊂ NKL. There is another filtration obtained from WK on L:
Nj ∗WK on L and its induced filtration on NKL such that we have a diagram

(Nj ∗W
K)|NJL → Nj ∗W

K
|NKL →W J := Nj ∗W

K

By the lemma the first morphism is in the category of IMHS and by the inductive
hypothesis the second morphism is compatible with the IMHS, hence the mor-
phisms are strict and the filtration W J in L induces Nj ∗WK

|NJL
on NJL. Hence

(NJL,W
J , F,Ni, i ∈M) is an IMHS, and the embedding into (L,W J , F,Ni, i ∈M)

is compatible with the IMHS.

4.4.6. Decomposition of IC∗L. As in the case of Ω∗L (subsection 4.4.4) we
introduce the data DR(IC∗(L) :=

{NJL,W
J , F J , IJ,K : NJL→ NKL,NJ−K : NKL→ NJL}K⊂J⊂M

Set for each J ⊂M

P J
k (NJL) := ∩K⊂J,K 6=JKer (GrIJ,K : GrW

J

k NJL→ GrW
K

k+|J−K|NKL) ⊂ Gr
WJ

k L

then P J
k (NJL) = P J

k (L)∩Gr
WJ

k NJL has pure weight k with respect to the weight
filtration M(

∑
j∈J Nj , L) and it is polarized.

Corollary 4.27. i) GrW
J

k NJL
∼
−→ ⊕K⊂JNJ−KP

K
k+|J−K|(NKL).

ii) GrWk (IC∗L)
∼
−→ ⊕K⊂MIC(P

K
k−|K|(NKL)[−|K|].

4.5. Global definition and properties of the weightW . The local study ended
with the local decomposition into Intersection complexes. We develop now the
corresponding global result. The local cohomology of Ω∗L is reduced to L on
X − Y and to the various analytic restrictions LYJ

on Y (proposition 4.5).
In the case of a pure VHS, the weight starts with the subcomplex IC∗L.
Notations in the global case. We suppose L locally unipotent by the remark 4.7 as

other components of the spectral decomposition have acyclic de Rham complexes.

We recall that L := L̃[n] with n := dim.X is a shifted variation of MHS, hence all
complexes and bundles below are already shifted by n to the left. For all J ⊂ I, let
LYJ

denote the restriction of the analytic module LX to YJ . The weight filtration
W on L defines a filtration by sub-bundles WX of LX with restriction WYJ

to
YJ , such that the relative monodromy filtrations of the endomorphism

∑
i∈J Ni of

(LYJ
,WYJ

) exist for all J ⊂ I. We writeM(J,WYJ
) :=M(

∑
i∈J Ni,WYJ

), it is a
filtration by analytic sub-bundles, so that we can define

(Ni∗WYi
)k := NiWYi,k+1+Mk(Ni,WYi

)∩Wk = NiWYi,k+1+Mk(Ni,WYi
)∩Wk+1
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and an increasing filtration WJ of LYJ
is recursively defined by the star operation

WJ := Ni1 ∗ (. . . (Nij ∗W) . . .) for J = {i1, . . . , ij}.

Definition 4.28 (weight W on Ω∗L). Let (L,W, F ) be an admissible variation of
MHS on U := X − Y . The weight filtration by sub-analytic complexes, denoted
also by W on Ω∗L, is defined locally in terms of the various restrictionsWYJ

to the
strata Y ∗

J .
At a point y ∈ Y ∗

M for M ⊂ I, Wr(Ω
∗
X(LogY ) ⊗ LX)y is defined locally in a

neighborhood of y ∈ Y ∗
M , in terms of the IMHS (L,W,F,N.) at y and a set of

coordinates yi for i ∈M (including local equations of Y at y), as follows:
The termWr of the filtration is generated as an Ω∗

X,y− sub-module by the germs

of the sections ṽ ⊗ ∧j∈J
dyj

yj
for J ⊂M and v ∈W J

r−|J|L.

In particular, for M = ∅, at a point y ∈ U , Wr is generated as an Ω∗
X,y−

sub-module by the germs of the sections v ∈WrLy .

The definition of W above is independent of the choice of coordinates on a
neighborhood U(y), since if we change the coordinate into y′i = fyi with f invertible
holomorphic at y, we check first that the submodule W J

r−|J|(LX)y of LX,y defined

by the image of W J
r−|J|L is independent of the coordinates as in the construction

of the canonical extension (see also lemma 4.9). For a fixed α ∈ W J
r−|J|LX,y, as

the difference
dy′

i

y′

i

− dyi

yi
= df

f is holomorphic at y, the difference of the sections

α⊗∧j∈J
dy′

j

y′

j

−α⊗∧j∈J
dyj

yj
is still a section of the Ω∗

X,y−sub-module generated by

the germs of the sections W J
r−|J|(LX)y ⊗ ∧j∈(J−i)

dyj

yj
.

Finally, we remark that the sections defined at y restrict to sections defined on
(U(y)− Y ∗

M ∩ U(y)).

4.5.1. Global statements. The Hodge filtration on the Intersection complex defined
algebraically on IC∗L induces a HS on the Intersection cohomology with coefficients
in a polarized VHS.

Theorem 4.29. Let (L, F ) be a shifted polarized VHS of weight a, then the sub-
complex (IC∗L, F ) of the logarithmic complex with induced filtration F is a Hodge
complex which defines a pure HS of weight a+i on its hypercohomology H(X, IC∗L),
equal to the Intersection cohomology IHi(X,L).

We rely on the proof by Kashiwara ([KaK 86], Theorem 1 and Proposition 3).

Remark 4.30. i) The proof of the local purity theorem here relies on the polar-
ization of the intersection cohomology in the case of the complement of a NCD in
X .

The original proof of the purity theorem is local at v [DeG 81]. As noted by
the referee of the notes, the MHS on the boundary of the exceptional divisor at a
point v ∈ V (definition 5.11, lemma 5.13) is independent of the global variety X
but depends only on the components of the NCD Xv and their embedding in X .

=G-N A. V. Navarro, F. Guillén, Sur le théorème local des cycles invariants. =
It is interesting and possible to adapt such local proof, then the algebraic-geometric
constructions of W and F leads to an alternative construction of Hodge theory as
follows.
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We start with the case of curves studied in [Zu 79], then proceed by induction
on dim.X . We assume the purity of IC∗L in dimension n− 1 in the inductive step.
Given a smooth algebraic variety X of dimension n and a morphism f : X → V to
a smooth curve V , we deduce the decomposition theorem with just a local proof of
purity, from which we deduce that the intersection cohomology Hi(X,L) carries a
pure HS induced by the Hodge filtration.

ii) The subtle proof of the comparison in [KaK 86] is based on the auto-duality
of the Intersection cohomology.

We are not aware of a direct comparison of the filtration F on IC∗L defined
here in an algebro-geometric way, with the filtration F in terms of L2-cohomology
in [KaK 87] and [CaKSc 86].

4.5.2. The bundles PJ
k (LYJ

). Given a subset J ⊂ I, the filtration WJ induces a
filtration by sub-analytic bundles of LYJ

. We introduce the following bundles

PJ
k (LYJ

) := ∩K⊂J,K 6=JKer (GrIJ,K : GrW
J

k LYJ
→ GrW

K

k+|J−K|LYJ
) ⊂ GrW

J

k LYJ

where IJ,K is defined as in the local case.

In particular Y∅ := X , P∅
k (LX) = GrWk LX and PJ

k (LYJ
) = 0 if Y ∗

J = ∅.

Theorem 4.31. i) The weightW is a filtration by sub-complexes of Rj∗L consisting
of perverse sheaves defined over Q.

ii) The bundles PJ
k (LYJ

) are Deligne’s extensions of polarized VHS PJ
k (L) on

Y ∗
J of weight k with respect to the weight induced by M(

∑
j∈J Nj ,LY ∗

J
).

iii) The graded perverse sheaves for the weight filtration, satisfy the decomposition
property into intermediate extensions for all k

GrWk (Ω∗L) := GrWk (Ω∗
X(LogY )⊗ LX)

∼
−→ ⊕J⊂I(iYJ

)∗j!∗P
J
k−|J|(L)[−|J |].

where j denotes uniformly the inclusion of Y ∗
J into YJ for each J ⊂ I.

We remark that PJ
k−|J|(L)[−|J |] are local systems on Y ∗

J shifted by [m − |J |]

the dimension of Y ∗
J . The proof is essentially based on the local study above. The

various graded complexes GrWk (Ω∗
X(LogY ) ⊗ LX) are direct sum of Intersections

complexes defined over Q. In particular, we deduce that the whole filtration Wk

on the de Rham complex is defined over Q, and Wk is perverse with respect to the
stratification defined by Y .
The local rational structure of the complexes Wk glue into a global rational struc-
ture, since perverse sheaves may be glued as the usual sheaves, although they are
not concentrated in a unique degree ([BBDG 83] corollary 2.1.23 and 2.2.19).

Another proof of the existence of the rational structure is based on Verdier’s
specialization [ELM 10].

The next result on weights satisfy a property cited in ([De 80], cor 3.3.5).

Corollary 4.32. The de Rham logarithmic mixed Hodge complex (Ω∗L,W, F ) of
an admissible variation of MHS of weight ω ≥ a induces on the hypercohomolgy
Hi(X − Y,L) a MHS of weight ω ≥ a+ i.

Indeed, Wk = 0 on the logarithmic complex for k ≤ a.

Proposition 4.33. The Intersection complex (IC(X,L),W, F ) of an admissible
variation of MHS, as an embedded sub-complex of (Ω∗L,W, F ) with induced filtra-
tions, is a mixed Hodge complex satisfying for all k:

(IC∗(GrWk L), F ) ≃ (GrWk IC∗L, F )
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The proposition follows from corollary 5.2. In general the intersection complex of
an extension of two local systems, is not the extension of their intersection complex.

4.6. The relative logarithmic complex Ω∗
fL := Ω∗

X/V (LogY )⊗ LX .

Let f : X → V be a smooth proper morphism of smooth complex algebraic
varieties, and let Y be an “horizontal” NCD in X , that is a relative NCD with
smooth components over V . For each point v ∈ V , the fiber Yv is a NCD in the
smooth fiber Xv. In this case, the various intersections Yi1,··· ,ip of p- components
are smooth over V and Y → V is a topological fiber bundle.

Let U := X − Y , j : U → X . The sheaf of modules i∗Xv
LX induced on each

fiber Xv, by the canonical extension LX , is isomorphic to the canonical exten-
sion (i∗Uv

L)Xv
of the induced local system i∗Uv

L. The family of cohomology spaces

Hi(Uv,L) (resp.Hi(Xv, j!∗L)) for v ∈ V , form a variation of MHS. The logarithmic
complex Ω∗

fL := Ω∗
X/V (LogY ) ⊗ LX ([De 70], section 2.22) satisfy, in the case of

an horizontal NCD: i∗Xv
Ω∗

X/V (LogY )⊗ LX ≃ Ω∗
Xv

(LogYv)⊗ (i∗Uv
L)Xv

.

When L underlies an admissible graded polarized variation of MHS (L,W, F ),
its restriction to the open subset Uv in Xv is also admissible.

4.6.1. The relative logarithmic complex with coefficients Ω∗
fL for a smooth f . The

image of the filtrations W and F , by the map Ω∗L → Ω∗
fL := Ω∗

X/V (LogY )⊗ LX

F :=Im(Rif∗FX → Rif∗(Ω
∗
X/V (LogY )⊗ LX)),

W :=Im(Rif∗WX → Rif∗(Ω
∗
X/V (LogY )⊗ LX))

define a variation of MHS on Ri(f ◦ j)∗L inducing at each point v ∈ V the corre-
sponding weight W and Hodge F filtrations of the MHS on (Hi(Uv,L),W, F ).

Proposition 4.34. i) The direct image Ri(f ◦ j)∗L is a local system on V and

Ri(f ◦ j)∗L⊗OV ≃ R
if∗(Ω

∗
X/V (LogY )⊗ LX)

ii) Moreover, the connecting morphism in Katz-Oda’s construction [KaOd 68] co-
incides with the connection on V defined by the local system Ri(f ◦ j)∗L

Rif∗(Ω
∗
X/V (LogY )⊗ LX)

∇V−−→ Ω1
V ⊗R

if∗(Ω
∗
X/V (LogY )⊗ LX)

iii) The filtration F , is horizontal with respect to ∇V , while W is locally constant,
and (Ri(f ◦ j)∗L,W, F ) is a graded polarized variation of MHS on V .

Deligne’s proof of ([De 70], proposition 2.28) extends in (i), as well the connecting
morphism [KaOd 68] in (ii).

Remark 4.35. We refer to the remark 4.30 for the case of a ”vertical” NCD, that
is when f is smooth over the complement of a NCD W ⊂ V and Y := f−1W .

4.6.2. The relative Intersection complex IC∗
fL.

We deduce from the bi-filtered complex (IC∗L,W, F ) the i-th direct image

(Li, F,W ) := (Rif∗j!∗L, Im (Rif∗F → Rif∗IC
∗L), Im (Rif∗W → Rif∗IC

∗L))

To prove that the filtrations W and F defined on Li := Rif∗j!∗L, form a structure
of a graded polarized variation of MHS on V , we consider the image complex of
IC∗L,
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IC∗
fL := Im

(
IC∗L → Ω∗

X/V (LogY )⊗LX

)
with image filtrations W and F , then:

WV := Im(Rif∗W → Rif∗(IC
∗
fL)) is locally constant on V , and

FV := Im(Rif∗F → Rif∗(IC
∗
fL)) on R

if∗j!∗L⊗OV ≃ Rif∗(IC
∗
fL) is horizontal

with respect to ∇V .

Proposition 4.36. i) The direct image Rif∗j!∗L of the intersection complex is a
local system on V and

Rif∗j!∗L ⊗OV ≃ R
if∗(IC

∗
fL)

ii) The connecting morphism in Katz-Oda’s construction coincides with the con-
nection on V defined by the local system Rif∗j!∗L

Rif∗(IC
∗
f j!∗L)

∇V−−→ Ω1
V ⊗R

if∗(IC
∗
fL)

ii) The de Rham complex defined by the connection on (Rif∗IC
∗
fL,WV , FV )

underlies a structure of mixed Hodge complex on V defined by the variation of
MHS induced on Rif∗j!∗L.

iii) The truncation filtration τ induces a filtration on Hi+j(X, j!∗L) compatible
with the MHS and Grτi H

i+j(X, j!∗L) ≃ Hj(V,Rif∗IC
∗
fL).

5. Logarithmic Intersection complex for an open algebraic variety

Let Z = ∪i∈IZ⊂IYi ⊂ Y be a sub-divisor of Y , union of components of Y with
index in a subset IZ of I, jZ := (X − Z)→ X , and iZ : Z → X .

We construct a logarithmic sub-complex IC∗L(LogZ) ⊂ Ω∗L which is a re-
alization of the direct image RjZ∗((j!∗L)|X−Z) (denoted Ω∗(L, Z) in [ICTP 14]
definition 8.3.31); from which we deduce by duality various logarithmic complexes
with weight and Hodge filtrations, realizing cohomological constructions associated
to Z in Y such as the functors:

jZ!((j!∗L)|X−Z), RjZ∗((j!∗L)|X−Z), i
∗
ZRjZ∗((j!∗L)|X−Z), Ri

!
Zj!∗L and i∗Zj!∗L.

We describe a structure of mixed Hodge complexes (MHC) on IC∗L(LogZ) that
is RjZ∗((j!∗L)|X−Z), and iZ∗i

∗
ZRjZ∗((j!∗L)|X−Z) := iZ∗i

∗
ZIC

∗L(LogZ) (def . 5.11
and lemma 5.13 on cohomology of the boundary of a tubular neighborhood of Z).

5.1. IC∗L(LogZ) ≃ RjZ∗((j!∗L)|X−Z).
We suppose L locally unipotent as we refer to the remark 4.7 in general. The

subcomplex of analytic sheaves IC∗L(LogZ) of the logarithmic de Rham complex
Ω∗

X(LogY ) ⊗ LX is defined below locally at a point x ∈ Y ∗
M in terms of a set of

coordinates yi for i ∈M defining a set of equations of YM .

5.1.1. The Logarithmic Intersection complex: IC∗L(LogZ).
Given an IMHS (L,W,F,Ni, i ∈M) and a subsetMZ ⊂M , we consider for each

J ⊂ M the subsets JZ := J ∩MZ and J ′
Z = J − JZ such that J = JZ ∪ J ′

Z , in
particular M ′

Z :=M −MZ .
The correspondence which attach to each index J ⊂ M the subset NJ′

Z
L of L,

define a sub-complex IC∗L(LogZ) of Ω∗L as a sum over J ⊂M

(5.1) IC∗L(LogZ) := s(NJ′

Z
L)J⊂M ⊂ Ω∗L
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Example. On the 3-dimensional disc D3 ⊂ C3, let Y = Y1 ∪ Y2 ∪ Y3 be the NCD
defined by the coordinates y1y2y3 = 0. A unipotent local system L is defined by a
vector space L with the action of 3 nilpotent endomorphisms (L,Ni, i ∈ [1, 3]).

Let Z = Y1 ∪ Y2 be defined by y1y2 = 0 and MZ = {1, 2}, then IC∗(LogZ) is
defined by the diagram:

L
N1,N2
−−−−→ L⊕ L

N1,N2
−−−−→ L

↓ N3 ↓ N3 ↓ N3

N3L
N1,N2
−−−−→ N3L⊕N3L

N1,N2
−−−−→ N3L

with differentials defined byNi with + or - sign. Then, we have a quasi-isomorphism
RΓ(D3 − (D3 ∩ Z), j!∗L) ≃ IC∗L(LogZ).

5.1.2. Weight filtration.

Definition 5.1. The filtrationW J on the term NJ′

Z
L of index J in IC∗L(LogZ) ⊂

Ω∗L (formula 5.1) is induced by the embedding (NJ′

Z
L,W J) ⊂ (L,W J)

IC∗L(LogZ) := s(NJ′

Z
L)J⊂M , WkIC

∗L(LogZ) := s(W J
k−|J|NJ′

Z
L)J⊂M .

As in the case of Ω∗L and IC∗L, to compute GrWk IC∗L(LogZ) we introduce
the data DR(IC∗L(LogZ) :=

{NJ′

Z
L,W J , F J , IJ,K : NJ′

Z
L→ NK′

Z
L,NJ−K : NK′

Z
L→ NJ′

Z
L}K⊂J⊂M

satisfying various properties as in the subsection 4.4.4, including the properties
of distinguished pairs for consecutive terms Ni : NK′

Z
L → NJ′

Z
L for J = K ∪ i

(corollary 4.26). Set for each J ⊂M

P J
k (NJ′

Z
L) := ∩K⊂J,K 6=JKer (GrIJ,K : GrW

J

k NJ′

Z
L→ GrW

K

k+|J−K|NK′

Z
L)

then P J
k (NJ′

Z
L) ⊂ GrW

J

k NJ′

Z
L has pure weight k with respect to the weight filtra-

tion M(
∑

j∈J Nj, L) and it is polarized.

Corollary 5.2. We have: GrW
J

k NJ′

Z
L

∼
−→ ⊕K⊂JNJ−KP

K
k+|J−K|(NK′

Z
L),

and GrWk (IC∗L(LogZ))
∼
−→ ⊕K⊂MIC(P

K
k−|K|(NK′

Z
L)[−|K|].

5.1.3. Global statements. In terms of the diagram (X − Y )
j′

−→ (X − Z)
jZ
−→ X ,

j = jZ ◦ j′ such that RjZ∗((j!∗L)|X−Z) ≃ RjZ∗j
′
!∗L.

Definition 5.3 (IC∗L(LogZ)). For J ⊂ M , let JZ = J ∩ IZ , J ′
Z = J − JZ . The

fiber of IC∗L(LogZ) is generated at x ⊂ Y ∗
M as an Ω∗

X,x-submodule, by the sections

ṽ ∧j∈J
dyj

yj
for J ⊂M for all v ∈ NJ′

Z
L.

Here N∅ = Id. In other terms, in degree k, for each subset K ⊂ M of length
|K| = k, let K ′ = (I − IZ) ∩ K, and Ki ⊂ K ′ denote a subset of length |Ki| =
k − i and A := OX,x, the subcomplex IC∗L(LogZ)x ⊂ Ω∗Lx is defined with the
notations of (4.3.1), as the Ω∗

X,x-submodule:

⊕|K|=k

(
yK′AL̃

dyK
yK

+ · · ·+
∑

Ki⊂K′

yKi
A( ˜NK′−Ki

L)
dyK
yK

+ · · ·

)

Next we check the isomorphism (RjZ∗j
′
!∗L)x ≃ IC

∗L(LogZ) of the fiber at a point
x ⊂ Y ∗

M .

Lemma 5.4. We have: (RjZ∗(j!∗L)|X−Z)x
∼
−→ IC∗L(LogZ)x
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We check the proof on the terms of the spectral sequence with respect to the
truncation filtration on j′!∗L, that is Ep,q

2 = RpjZ∗H
q((j′!∗L)x) (in classical nota-

tions, after décalage in Deligne’s notations) converging to Hp+q((RjZ∗j
′
!∗L)x).

Indeed, the complex IC∗L(LogZ) may be described as the exterior algebra de-
fined by the action of Ni, i ∈ MZ on the Koszul complex s(NJ′

Z
L)J′

Z
⊂M ′

Z
. That is

the simple complex associated to the double complex s(s(NJ′

Z
L)J′

Z
⊂M ′

Z
, Ni)i∈MZ

IC∗L(LogZ) := s(Ω(NJ′

Z
L,Ni, i ∈MZ)J′

Z
⊂M ′

Z
= Ω(IC∗(L,Ni, i ∈M

′
Z), Ni, i ∈MZ)

then the spectral sequence is associated to the double complex converging to the
cohomology of the associated simple complex Hp+q(IC∗L(LogZ)).

We define as well the modules P J
k (NJ′

Z
L) and the corresponding global sheaves

NJ′

Z
L with support on Y ∗

J′

Z
as well PJ

k (NJ′

Z
L) with support on YJ′

Z
∩ YJZ

∩ Y ∗
M .

We deduce from the above corollary 5.2

Proposition 5.5. The induced filtrations W and F on IC∗L(LogZ) form a struc-
ture of MHC such that the graded perverse sheaves for the weight filtration, satisfy
the decomposition property into intermediate extensions for all k (corollary 5.2)

GrWk IC∗L(LogZ)
∼
−→ ⊕J⊂I(iYJ

)∗j!∗P
J
k−|J|(NJ′

Z
L)[−|J |].

where Z := ∪i∈IZYi, J
′
Z := J − (J ∩ IZ), YJ′

Z
:= ∩i∈J′

Z
Yi, NJ′

Z
L on Y ∗

J′

Z
, NJ′

Z
the

composition of Ni, i ∈ J ′
Z and j denotes uniformly the inclusion of Y ∗

J into YJ for
each J ⊂ I. In particular for J = ∅, Y∅ = X and we have j!∗Gr

W
k L; otherwise the

summands are supported by YJ .
The MHS on H∗(X − Z, j!∗L) is defined by (IC∗L(LogZ),W, F ).

We remark that PJ
k−|J|(NJ′

Z
L)[−m] are local systems in degree 0 on Y ∗

J shifted in

the formula by [m − |J |] the dimension of Y ∗
J and associated with the image of L

by the endomorphism NJ′

Z
on Y ∗

J′

Z
.

Remark 5.6. For any NCD Z such that Z ∪ Y is still a NCD, we may always
suppose that L is a variation of MHS on X− (Y ∪Z) (by enlarging Y ) and consider
Z equal to a union of components of Y ∪ Z.

5.1.4. Thom-Gysin isomorphism. Let H be a smooth hypersurface intersecting
transversally Y such thatH∪Y is a NCD, iH : H → X, jH : H−(Y ∩H)→ H , then
i∗Hj!∗L is isomorphic to the (shifted) intermediate extension (jH)!∗(i

∗
HL) of the re-

striction of L toH , with abuse of notations as we should write ((jH)!∗((i
∗
HL)[−1]))[1].

The residue with respect to H , RH : i∗H(IC∗L(LogH)/IC∗L)
∼
−→ i∗HIC

∗L[−1] in-
duce an isomorphism, inverse to Thom-Gysin isomorphism

i∗Hj!∗L[−1]
∼
−→ i!Hj!∗L[1]

∼
−→ i∗H(IC∗L(LogH)/IC∗L).

Moreover, if H intersects transversally Y ∪Z such that H ∪ Y ∪Z is a NCD, we
have a triangle

(iH)∗Ri
!
HIC

∗L(LogZ)→ IC∗L(LogZ)→ IC∗L(LogZ ∪H)
[1]
→

then we deduce an isomorphism of the quotient complex with the cohomology with
support: (IC∗L(LogZ∪H)/IC∗L(LogZ))

∼
−→ Ri!HIC

∗L(LogZ)[1], induced by the
connecting isomorphism.

We have also an isomorphism of the restriction i∗HIC
∗L(LogZ) with the complex

IC∗(i∗HL)(LogZ ∩H) constructed directly on H .
The residue with respect to H : IC∗L(LogZ ∪H)[1]→ iH∗IC

∗i∗HL(LogZ ∩H)
vanish on IC∗L(LogZ) and induces an inverse to the Thom-Gysin isomorphism
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i∗HIC
∗L(LogZ)

∼
−→ Ri!HIC

∗L(LogZ)[2]. The above constructions are compatible
with the filtrations up to a shift in degrees.

5.2. Duality and hypercohomlogy of the link. The link at a point v ∈ V refers
to the boundary of a ball with center v intersecting transversally the strata in a
small neighborhood of v. It is a topological invariant, hence its hypercohomology
is well defined. In the case of a proper morphism f : X → V , we refer to the
hypercohomology of the boundary of a tubular neighboorhood of Z := f−1(v),
that is the inverse image of the link at v.

The duality functor D in the derived category of sheaves of vector spaces over
Q (resp. C) is used here (see [BBDG 83] and the references there), as well the cone
construction, to deduce various logarithmic complexes from the structure of mixed
Hodge complex on IC∗L(LogZ).

5.2.1. Duality. To develop a comprehensive theory of weights, we recall some con-
ventions. The fields Q and C form a HS of weight 0. If H is a HS of weight a, we
write H(r) for the HS of weight a− 2r.

i) A Hodge complexK of Q−vector spaces is of weight a if its cohomologyHi(K)
is a HS of weight a+ i. We set Q[r] for the complex with Q in degree −r and zero
otherwise, then H−r(Q[r]) = Q is a HS of weight 0, hence Q[r] must be a HC of
weight r.

On a smooth proper variety X , the dual of Hi(X,Q) has weight −i, while
H2n−i(X,Q) = H−i(X,Q[2n]) has weight 2n− i. We write Poincaré duality with
value in Q[2n](n) of weight 0 , such that H2n−i(X,Q(n)) = H−i(X,Q[2n](n)) with
weight −i corresponds to the dual HS on Hi(X,Q).

Hence, it is convenient to set ωX := QX [2n](n) for the dualizing complex in the
category of sheaves of Q−HS.

ii) A pure variation of HS L̃ on a Zariski open subset U ⊂ X of weight w(L̃) = b,

has a dual variation L̃∗ of HS of weight w(L̃∗) = −b. A polarization on L̃ induces an

isomorphism defined by the underlying non degenerate bilinear product S : L̃
∼
−→

L̃∗(−b).

As a complex of sheaves, L := L̃[n] has weight w = a = b + n. Its dual in the

derived category DL := Hom(L,QX [2n](n))
∼
−→ L̃∗(n)[n], has weight w = −b +

n− 2n = −a. Then, the polarization induces an isomorphism S : L
∼
−→ DL(−a).

In the category of topological constructible sheaves, this isomorphism extends into:
j!∗L ≃ j!∗(DL(−a))

∼
−→ D(j!∗L)(−a) := RHom(j!∗L,QX [2n])(−a).

Lemma 5.7. For X compact and a shifted polarized variation of HS L of weight
a, we have the auto-duality isomorphism with equal weights

(5.2) Hi(X, j!∗L)
∗ ∼
−→ H−i(X, j!∗L)(a)

where w(Hi(X, j!∗L)
∗) = −(a+ i) and w(H−i(X, j!∗L)(a)) = a− i− 2a.

The lemma follows from the polarization S : j!∗L
∼
−→ D(j!∗L)(−a) and the duality

Hi(X, j!∗L)
∗ = H−i(Hom(RΓ(X, j!∗L),Q)

∼
→ H−i(X,D(j!∗L))

∼
→ H−i(X, j!∗L)(a)

iii) Dual filtrations. The dual of a variation of MHS (L̃,W, F ) on a smooth Zariski

open subset U , is a variation of MHS (L̃∗,W, F ), with filtrations dual to W and F

on L, such that GrW−i(L̃
∗) ≃ (GrWi L̃)

∗.
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In the bifiltered derived category of an abelian category with a dualizing functor
D, the dual of a bifiltered complex (K,W,F ), is denoted by (DK,W,F ) with dual
filtrations defined by:

W−iDK := D(K/Wi−1), F
−iDK := D(K/F i+1)

such that: DGrWi K
∼
−→ GrW−iDK and DGriFK

∼
−→ Gr−i

F DK.

As a complex of sheaves, (L := L̃[n],W, F ) has its weight increased by n, such

that W i(L) := W i−n(L̃)[n], and Fi(L) := Fi(L̃)[n]. Thus the filtration on its

cohomology H−n(L), decreased by n, satisfy (H−n(L),W ) = (L̃,W ).
The dual in the bifiltered derived category

D(L,W, F ) := RHom((L,W, F ),QU [2n](n)),

is a shifted variation of MHS (DL,W, F ) such that: GrW−i(DL, F ) ≃ D(GrWi L, F ).
Thus, the dual of a mixed Hodge complex on a variety X is a MHC.
A graded polarization on a variation of MHS is defined by a family of polariza-

tions Si on (GrWi L, F ). It induces isomorphisms:

(GrWi L, F )
∼
−→ D(GrWi L, F )(−i)

∼
−→ (GrW−iDL, F )(−i)

5.2.2. Structure of mixed Hodge complex on Ri!Zj!∗L, i
∗
Zj!∗L and jZ!(j!∗L|X−Z).

We use the duality DRi!Zj!∗L ≃ i∗ZDj!∗L ≃ i∗Zj!∗L(a) to deduce the weight filtra-
tions on i∗Zj!∗L.

Definition 5.8 (Dual filtrations). Let L be a shifted polarized VHS of weight a
on a Zariski open subset U := X − Y where Y is a NCD in a smooth projective
variety X , and Z a closed sub-NCD of Y .

i) The filtrations on Ri!Zj!∗L are defined by the isomorphism

(Ri!Zj!∗L,W, F ) ≃ i
∗
Z(IC

∗L(LogZ)/IC∗L,W, F )[−1].
such that Wi(iZ∗Ri

!
Zj!∗L) =Wi+1(IC

∗L(LogZ)/IC∗L)[−1].

ii) The filtrations on the complex i∗Zj!∗L are deduced by duality

(i∗Zj!∗L,W, F ) ≃ D(i!Zj!∗L(a),W, F )

iii) The filtrations on jZ!(j!∗L|X−Z) are deduced by duality:

(jZ!((j!∗L)|X−Z),W, F ) ≃ D(IC∗L(a)(LogZ),W, F )

Corollary 5.9. The weights w satisfy the following inequalities:

wHi(X − Z, j!∗L) ≥ a+ i, wHi
Z(X, j!∗L) ≥ a+ i

wHi(Z, j!∗L) ≤ a+ i, wHi
c(X − Z, j!∗L) ≤ a+ i

The weights of IC∗L(LogZ) as a MHC, are ≥ a by construction. The weights
of Ri!ZL as a MHC, are ≥ a since the weights of IC∗L(LogZ)/IC∗L are ≥ a+ 1.
We use duality computations for the weights of Hi(Z, j!∗L):
Hi(Z,GrWj i∗Zj!∗L) ≃ Hi(Z,GrWj Di!Zj!∗L(a)) ≃ Hi(Z,D(GrW−j i

!
Zj!∗L(a))(−j)) ≃

H−i(Z, (GrW−j i
!
Zj!∗L(a))(−j))

∗

wherew(GrW−j i
!
Zj!∗L(a))(−j)) = −a−j+2j, hence wH−i(Z, (GrW−j i

!
Zj!∗L(a))(−j))

∗ =
a+ i− j ≤ a+ i since it vanishes for j < 0.

Lemma 5.10. Let L be a polarized VHS of weight a on a Zariski open subset X−Y
and Z a closed subvariety of X projective.
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i) There exists a long exact sequence of MHS

(5.3) · · · → Hi
Z(X, j!∗L)→ Hi(X, j!∗L)→ Hi(X−Z, j!∗L)→ Hi+1

Z (X, j!∗L)→ · · ·

with weights
w(Hi

Z(X, j!∗L)) ≥ a+ i, w(Hi(X, j!∗L)) = a+ i, w(Hi(X − Z, j!∗L)) ≥ a+ i.
ii) We have a dual exact sequence of MHS

(5.4) → Hi
c(X−Z, j!∗L)→ Hi(X, j!∗L)→ Hi(Z, j!∗L)→ Hi+1

c (X−Z, j!∗L)→ · · ·

with weights
w(Hi

c(X − Z, j!∗L)) ≤ a+ i, w(Hi(X, j!∗L)) = a+ i, w(Hi(Z, j!∗L)) ≤ a+ i.

The lemma is proved first for X smooth projective, Y a NCD and Z ⊂ Y a
sub-NCD. The exact sequence is associated to the triangle Ri!Zj!∗L → j!∗L →
RjZ∗(L|X−Z) and the inequalities on the weights follow from the corollary above.

In the general case, the lemma is deduced from the case of NCD by application
of the decomposition theorem as in the subsection 5.17.

Example. i) For a pure L of weight a, iZ∗Ri
!
Zj!∗L, is supported by Z, of weights

wi ≥ a, and iZ∗i
∗
Zj!∗L has weights wi ≤ a. The Intersection morphism I induces:

GrWi iZ∗Ri
!
Zj!∗L → GrWi j!∗L → GrWi iZ∗i

∗
Zj!∗L for i = a and 0 for i 6= a.

ii) A polarized VHS on C∗ corresponds to the action of a nilpotent endomorphism
N on L. The duality in the assertion ii) at 0 between GrW−r+1i

∗
Z(j!∗L))[−1] and

GrWr i∗Z(IC
∗L(LogZ)/IC∗L) corresponds to the duality between GrW−r+1KerN and

GrWr−1L/NL. For higher dimension, one may introduce strict simplicial coverings
of a NCD to have such interpretation.

5.2.3. Mixed cone. We set Wj+1(K[1]) := (WjK)[1]. The mixed cone over a mor-
phism f : (K,W,F )→ (K ′,W ′, F ′) is the cone (C(f),W, F ) with the corresponding
filtrations on K[1]⊕K ′.

5.2.4. Weight filtration on iZ∗i
∗
ZRjZ∗((j!∗L)|X−Z) and on the cohomology of the

boundary of a tubular neighborhood of Z.
Let K := (j!∗L)|X−Z , we have the following triangles

(5.5) jZ!K
can
−→ RjZ∗K−→iZ∗i

∗
ZRjZ∗K, Ri!Zj!∗L

I
−→ i∗Zj!∗L−→i

∗
ZRjZ∗K

where can is the composition of jZ!K
p
−→ j!∗L

i
−→ RjZ∗K and I is the restriction to Z

of the composition of iZ∗Ri
!
Zj!∗L

q
→ j!∗L

r
→ iZ∗i

∗
ZRjZ∗K. From which we deduce

two descriptions of the complex i∗ZRjZ∗K, as the restriction of the cone complex
over the morphism can or as the cone over I.

We remark that the morphism p is a morphism of perverse sheaves. We have a
triangle

i∗ZRjZ∗K[−1]→ jZ!K
p
−→ j!∗L

[1]
−→

where Ker p ≃ iZ∗i
∗
ZRjZ∗K[−1] is dual to IC∗L(LogZ)/IC∗L. In particular we

put on Ker p the dual filtrations W and F .

Definition 5.11 (iZ∗i
∗
ZRjZ∗(j!∗L|X−Z)). Let can be defined as a bifiltered mor-

phism of complexes with their filtrations W and F
can : jZ!(j!∗L|X−Z)→RjZ∗(j!∗L|X−Z)

The MHS on RΓ(Z, i∗ZRjZ∗(j!∗L)|X−Z is defined by the mixed cone C(can).
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Remark 5.12. Let BZ be a neighborhood of Z, small enough to be a defor-
mation retract of Z. The mixed cone C(I) over the Intersection morphism I :

iZ∗Ri
!
Zj!∗L

I
−→ iZ∗i

∗
Zj!∗L is quasi-isomorphic to iZ∗i

∗
ZRjZ∗(j!∗L)|X−Z and define

a MHS on the hypercohomology of B∗
Z := BZ − Z with Z ∈ BZ deleted.

Hi(Z, iZ∗i
∗
ZRjZ∗((j!∗L)|X−Z)) ≃ Hi(B∗

Z , j!∗L)

We have an exact sequence of MHS

· · · → Hi(X − Z, j!∗L)→ Hi(B∗
Z , j!∗L)→ Hi+1(X, j!(j!∗L|X−Z))→ · · ·

The cone depends only on the neighborhood of Z and not on X , and we have a
duality isomorphism

i∗ZRjZ∗(j!∗L|X−Z)[−1]
∼
−→ D(i∗ZRjZ∗(j!∗L|X−Z)).

To realize the morphism I, we introduce the shifted cone C(i)[−1] over the
embedding i : IC∗L → IC∗L(LogZ). We have an isomorphism C(i)[−1] ≃
iXv∗Ri

!
Zj!∗L such that the projection C(i)[−1] → IC∗L is well defined and com-

patible with the filtrations; then I is the composition with the restriction map
IC∗L → iZ∗i

∗
ZIC

∗L.
The MHS on the hypercohomology of B∗

Z is defined equivalently by the mixed
cone over the morphism can or the Intersection morphism I

Lemma 5.13. There exist an isomorphism of mixed cones C(I)
∼
−→ C(can) com-

patible with both filtrations W and F .

The isomorphism is constructed by comparison with the cone over the morphism
jZ!(j!∗L|X−Z)⊕ iZ∗Ri

!
Zj!∗L → j!∗L, such that we have a diagram with coefficients

in j!∗L where X∗ = X − Z, relating two exact sequences denoted by (1) and (2)

(5.6)

Hr
Z(X)

1
−→ Hr(Z) Hr+1

Z (X)
ց ր ց 1 ր 1

Hr(X) Hr(B∗
Z)

ր ց ր 2 ց 2

Hr
c(X

∗)
2
−→ Hr(X∗) Hr+1

c (X∗)

5.3. Compatibility of the perverse filtration with MHS. Let V be a quasi-
projective variety and K ∈ Db

c(V,Q) a complex with constructible cohomology
sheaves. The perverse filtration pτ on K induces a perverse filtration pτ on the
hypercohomology groups Hk(V,K). This topological filtration is described by
algebraic-geometric techniques in [CaMi 10] as follows.

Let V ⊂ PN be an affine embedding and n := dimV . We consider two families
of hyperplanes Λ∗ := Λi and Λ′

∗ := Λ′
i for 1 ≤ i ≤ n in PN , intersecting V in

two families H∗ and W∗ of increasing closed sub-varieties of V , where H−r :=
∩1≤i≤rΛi ∩ V and W−r := ∩1≤i≤rΛ

′
i ∩ V :

(5.7) H∗ : V = H0 ⊃ H−1 ⊃ . . . ⊃ H−n, W∗ : V =W0 ⊃W−1 ⊃ . . . ⊃W−n

and H−n−1 = ∅ = W−n−1. Let hi : (V −Hi−1)→ V denote the open embeddings
with indices in [−n, 0] . The following decreasing filtration δ

(5.8) δpH∗(V,K) := Im

(
⊕i+j=pH

∗
W−j

(V, (hi)!h
∗
iK)→ H∗(V,K)

)
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defined in ([CaMi 10], remark 3.6.6) is well adapted to computation in Hodge the-
ory. We have ([CaMi 10], Theorem 4.2.1)

Proposition 5.14. For an affine embedding of V into a projective space and for
a general choice of both families H∗ and W∗ depending on K and the embedding of
V , the filtration δ is equal to the perverse filtration pτ up to a change in indices.
Precisely

δiH∗(V,K) = pτ−i+lH
l(V,K)

5.3.1. Proof of the proposition 1.6. In the case of a projective morphism f : X → V
of complex varieties where V is projective, let Y ⊂ X be a closed subvariety, L a
local system on X − Y , j : (X − Y )→ X , W a closed subvariety of V , Z := f−1W
the inverse image of W and jZ : (X − Z)→ X .

We apply the above result to K := Rf∗R(jZ)∗(jZ) ∗ j!∗L (including Z = Y
or Z = ∅) (the case Rf∗(jZ)!(jZ) ∗ j!∗L is dual). The perverse filtration pτ on
Hk(X − Z, j!∗L) is defined via the isomorphism Hk(X −Z, j!∗L) ≃ Hk(V −W,K).

When Z is a NCD inX , we check that the induced filtration pτ onHk(X−Z, j!∗L)
is compatible with the MHS (that is a filtration by sub-MHS) as stated in the
proposition 1.6.

We suppose f a fibration by NCD over the strata, Y a NCD in X and L an
admissible variation of MHS on X − Y , W union of strata such that Z := f−1W
and Z ∪ Y are NCD.

Starting with the complex (IC∗L(LogZ),W, F ) (4.3.1), the system of trunca-
tions maps · · · → pτ≤−iRf∗IC

∗L(LogZ) → pτ≤−i+1Rf∗IC
∗L(LogZ) · · · is de-

fined over Q and it is isomorphic in Db
c(V,C) to a system of inclusions maps

· · · → P iK → P i−1K · · · where P iK ≃ pτ≤−iRf∗IC
∗L(LogZ) is decreasing and

where we suppose K, all P iK and GriPK injective complexes ([BBDG 83], 3.1.2.7)
defined over Q.

The filtration P on K is defined up to unique isomorphism in the category
of filtered complexes. Moreover, we represent the filtrations W and F by acyclic
resolutions for the global sections functor Γ(V, ∗) on the same complex (K,P,W,F )
representative of (Rf∗IC

∗L(LogZ), P,W, F ).
To prove that Γ(V,GrPi K,W,F ) is a MHC and Hr(V,GrPi K,W,F ) has an in-

duced MHS, it is enough to check the following lemma

Lemma 5.15. Let f : X → V be a fibration by NCD over the strata, and W
a closed subvariety of V such that Z := f−1(W ) is a NCD in X. The induced
filtration δ (5.8) on Hj(X − Z, j!∗L) corresponds to a filtration δ′ by sub-MHS on
Hj(X, IC∗L(LogZ)). Consequently the perverse filtration pτ on Hj(X − Z), j!∗L)
is compatible with the MHS.

Proof. We reduce the proof to the case of an affine embedding of U := V −W . Let

π : Ṽ → V be a blowing up of W such that the embedding of U →֒ Ṽ is affine.
Since f−1(W ) is a NCD in X , the morphism f : X → V factors as π ◦ g with

g : X → Ṽ .

We apply the proposition 5.14 to the embedding of U in Ṽ , to construct the

families H∗ and W∗ in Ṽ as intersection with two general families of hyperplanes
Λ∗ and Λ′

∗ in the ambient projective space with inverse image H ′
∗ := g−1H∗ and

W ′
∗ := g−1W∗ in X , such that the various intersections H ′

i ∩W
′
j are transversal

and intersect transversally the various strata in X . Let h′i : (X − H ′
i) → X ,
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iH′

i
: H ′

i → X and K ′ := IC∗L(LogZ). The filtration in the formula 5.8 is written
on X as

(5.9) δpH∗(X,K ′) := Im(⊕i+j=pH
∗
W ′

−j
(X, (h′i)!h

′∗
i K

′)→ H∗(X,K ′))

Since the inverse imageH ′
∗ andW

′
∗ are transversal inX and not critical for L, the

construction of the intermediate extension j!∗L of a shifted VHS onX−Y , commute
with the restriction to each H ′

i for various indices i. In particular, (h′i)!h
′∗
i K

′ is the
mixed cone C(ρ′) over the canonical morphism ρ′ : K ′ → iH′

i
∗ i∗H′

i
K ′.

Since W ′
−j is not an hypersurface, we introduce the blowing up π−j : X̃ → X

of W ′
−j in X such that W̃ ′

−j := π−1
−j (W

′
−j) is a smooth hypersurface. Then, we

construct the bifiltered logarithmic complex K ′′ := IC∗L(Log(π−1
j Z)∪W̃ ′

−j) on X̃

and the cone C(ρ′′) over the morphism ρ′′ : Rπ−j∗K
′′ → iW ′

−j
∗i

∗
W ′

−j
K ′, such that

C(ρ′′) ≃ i!W ′

−j
K ′. This construction apply similarly to iH′

i
∗ i∗H′

i
K ′, hence we define

ρ′′ : C(ρ′) → C(ρ′) on the cone C(ρ′) and form the mixed cone C(ρ′′) to put the

structure of bifiltered logarithmic complex on Ri!W ′

−j
(h′i)!h

′∗
i K

′. �

5.3.2. The proof of the proposition 1.7 is similar but does not follow from [CaMi 10].
We resume the notations of the proposition 1.7 and consider a local embedding of
V at a point v in a ball B ∈ CN , inducing a Stein neighborhood Bv := B ∩ V of
v. We check that the proof of the proposition 5.14 in the case of an algebraic open
subset, can be adapted to the case of the punctured ball B∗

v := Bv − {v}.
We consider two families of hyperplanes Λ∗ and Λ′

∗ containing v in general posi-
tion in CN , and define by intersecting with Bv two families of sections H∗ and W∗

on Bv where H−r := ∩1≤i≤rΛi ∩Bv and W−r := ∩1≤i≤rΛ
′
i ∩Bv:

(5.10) H∗ : V = H0 ⊃ H−1 ⊃ . . . ⊃ H−n, W∗ : V =W0 ⊃W−1 ⊃ . . . ⊃W−n

with negative indices −i for i ∈ [0, n] and let H−n−1 = ∅ =W−n−1.
To get an affine embedding, we consider the blow up π : Bv → Bv of v ∈ Bv.

The two families of sections lift strictly into two families H∗ and W ∗ in Bv.

Let B̃∗
v := Bv−π−1(v), H̃i := Hi ∩ B̃∗

v and W̃i :=W i∩ B̃∗
v such that B̃∗

v − H̃i ≃

Bv −Hi (resp. B̃
∗
v − W̃i ≃ Bv −Wi) is Stein for each index i. This Stein condition

with the general position arguments are sufficient for the proof.

5.3.3. Set h′j : (B̃∗
v − H̃j) → B̃∗

v and i
W̃j

: W̃j → B̃∗
v . Let K ∈ Db

c(B
∗
v ,Q) be a

complex on B∗
v or equivalently on the isomorphic space B̃∗

v and define after H∗ and
W∗ two decreasing filtrations F and G on K by

F pK := (h′p−1)!h
′
p−1

∗
K for p ∈ [−n, 0] where F−nK = K.

GpK := (i!
W̃−p

)K for p ∈ [0, n] where G0K = K.

The filtration δ := δ(F,G) is the diagonal filtration

δp :=
∑

i+j=p F
iK ∩GjK for [−n, n].

Let Dec(δ) denote the filtration décalé of δ [De 72]. By construction the spectral

sequences of the induced filtrations δ and Dec(δ) on RΓ(B̃∗
v ,K) are related as

follows:

Epq
r (RΓ(B̃∗

v ,K), Dec(δ)) ≃ E2p+q,−p
r+1 (RΓ(B̃∗

v ,K), δ)
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Proposition 5.16. There exist an isomorphism of filtered complexes

(RΓ(B̃∗
v ,K), P ) ≃ (RΓ(B̃∗

v ,K), Dec(δ))

Equivalently, there exists a convergent spectral sequence

E2p+q,−p
1 (RΓ(B̃∗

v ,K), δ)) =⇒ Gr
pτ
−pH

p+q(B̃∗
v ,K).

Dec(δ)pHl(B̃∗
v ,K) = δp+lHl(B̃∗

v ,K) = pτ−pH
l(B̃∗

v ,K)

5.3.4. Proof of the proposition. We introduce the morphisms h′′i : (H̃i−H̃i−1)→ B̃∗
v

and i′′j : (W̃−j − W̃−j−1)→ B̃∗
v to construct the spectral sequences attached to the

filtrations. The main argument in the proof is to find conditions on the families H∗

and W ∗ in Bv to have the following equality

(5.11) h′′i! h
′′∗
i−1 i

′′!
j K = i

′′!
j h′′i! h

′′∗
i−1K

To this purpose, we state in terms of Stein open sub-manifolds, a result stated in
terms of affine open sub-varieties [CaMi 10] theorem 5.1.2) which seems to go back
to an unpublished letter of Deligne [Ar 5].

Lemma 5.17. Let j : (B̃∗
v − H̃) → B̃∗

v , and j′ : (B̃∗
v − H̃ ′) → B̃∗

v . For any

two hypersurface sections H and H
′
in general position depending on the Stein

embedding B̃∗
v → Bv and the perverse sheaf K on B̃∗

v , we have:

Hr(B̃∗
v , j!j

∗j′∗(j
′)!K = 0, for r 6= 0.

We consider an adequate stratification of Bv adapted to K on B̃∗
v (the restriction

of the cohomology sheaves of K are locally constant on the strata) such that π−1(v)
is a union of strata.

The condition on the families to be in general position is defined by the condi-
tions on the families H∗,W ∗ to intersect transversally and to intersect all strata
transversally, then, by ([CaMi 10] lemma 6.1.5)

Hr(B∗
v , Gr

a
δGr

b
PRΓ(B

∗
v ,K) = 0, ∀r 6= a− b.

Indeed, this group is equal to Hr(B∗
v ,⊕i+j=ah

′′
i! h

′′∗
i−1(i

′′!
j

pH−p(K)[p])) by ([CaMi 10]

subsection 3.4, assertion 9) and vanish for r 6= a−b by ([CaMi 10] lemma 6.1.1 iii′).
Finally, we apply the following criteria ([CaMi 10] prop 5.6.1) to deduce the propo-
sition:

Let A be an abelian category with enough injectives and (L, P, F ) a bifiltered
complex bounded below such that

(5.12) Hr(GraFGr
b
PL) = 0, ∀r 6= a− b.

Then, there is a natural isomorphism in the filtered derived category (L, P ) ≃
(L,DecF ) that induces the identity on L. Hence, there is a natural isomorphism of
spectral sequences associated with (L, P ) and (L,DecF ) inducing the identity on
the abutments (H∗(L), P ) ≃ (H∗(L), DecF ).

5.3.5. End of the proof of proposition 1.7. The inverse image f−1(v) := Xv is a
NCD in BXv

:= f−1(Bv). LetB
∗
Xv

: BXv
−Xv, jXv

: B∗
Xv
→ X andK ′ := j!∗L|B∗

Xv
.

The restriction f ′ : B∗
Xv
→ B∗

v of the morphism f factors through g′ : B∗
Xv
→ B̃∗

v .

We apply the above results to K := Rg′∗K
′ ≃ Rf ′

∗K
′ on B̃∗

v ≃ B
∗
v .
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The inverse image of H̃∗ and W̃∗ are two families H ′
∗ and W ′

∗ in B∗
Xv

. Set
h′j : (B∗

Xv
− H ′

j) → B∗
Xv

and iW ′

j
: W ′

j → B∗
Xv

. We define after H ′
∗ and W ′

∗ two

decreasing filtrations F and G on K ′ by

F pK ′ := (h′p−1)!h
′
p−1

∗
K ′ for p ∈ [−n, 0] where F−nK ′ = K ′.

GpK ′ := (i!W ′

−p
)K ′ for p ∈ [0, n] where G0K ′ = K ′.

The filtration δ := δ(F,G) is the diagonal filtration

δp :=
∑

i+j=p F
iK ′ ∩GjK ′ for [−n, n].

Then the induced filtration δ on H∗(B∗
Xv
, j!∗L), defined by

(5.13) δpH∗(B∗
Xv
,K ′) := Im

(
⊕i+j=pH

∗
W ′

−j
(B∗

Xv
, (h′i)!h

′∗
i K

′)→ H∗(B∗
Xv
,K ′)

)

is equal to the perverse filtration up to indices.

5.3.6. Filtration by sub-MHS. We prove that δ is a filtration by sub-MHS.
The restriction of the morphism f to BXv

, factors through g : BXv
→ Bv. The

inverse imageH
′
∗ := g−1H∗ andW

′
∗ := g−1W ∗ form two families in BXv

whose mu-
tual intersections are transversal to Xv and the strata of the stratification induced
on BXv

.

In particular, W
′
j , H

′
i and W

′
j ∩H

′
i intersect Xv transversally in BXv

.
The hypercohomology of B∗

Xv
with coefficients in j!∗L is defined by the mixed

cone C(I) over the morphism I : i!Xv
IC∗L(LogXv) → i∗Xv

IC∗L(LogXv), as C(I)
is quasi-isomorphic to iXv∗i

∗
Xv
RjXv∗j!∗L|X−Xv

(definition 5.11, remark 5.12, and
lemma 5.13).

From now on the proof is similar to the proof of lemma 5.15. Let hi : (BXv
−

Hj)→ BXv
, iHi

: Hi → BXv
and iW−j

:W−j → BXv
.

We construct a bifiltered logarithmic cone C(ρ′) ≃ (hj)!h
∗
j (IC

∗L(LogXv)|BXv
),

then a bifiltered logarithmic cone C(ρ′′) ≃ Ri!W−j
(hj)!h

∗
j (IC

∗L(LogXv)|BXv
by

introducing the blowing up of W−j in BXv
and finally the bifiltered logarithmic

cone C(I) over an intersection morphism I : i!Xv
C(ρ′′) → i∗Xv

C(ρ′′) such that

H∗(Xv, C(I)) ≃ H∗
W ′

−j
(B∗

Xv
, (h′i)!h

′∗
i IC

∗L) has a MHS.
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Lelong, Paris,1971.
[E 74] F. El Zein, Comparaison des résidus de Grothendieck et de Herrera, C.R.Acad.Sci. Paris,

Ser. A, 278, 863–866, 1974.
[E 78] F. El Zein, Complexe dualisant, Bull. Amer. Math. Soc., .
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Paris, Ser. I, 352: 1051–1055, 2014.
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Institut de Mathématiques de Jussieu., Paris, France

E-mail address: fouad.elzein@imj-prg.fr, elzein@free.fr
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