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Abstract—This paper studies online detection of hidden infor-
mation in digital images. By online, it is meant that we inspect a
flow of images that are transmitted sequentially. This has crucial
consequences on the detection of hidden data. By contrast to
the usual detection settings, the delay before detection has to be
considered in the definition of the correct detection probability,
or power function. Similarly, the false alarm probability is
considered with respect to a number of inspected cover images. In
this paper a new sequential detection method is proposed with
the goal to maximize the detection accuracy for a prescribed
detection delay. The study of proposed sequential test allows the
establishing of detection power as a function of detection delay
and also permits us to bound the probability of false alarm for
a given number of cover images.
Numerical results on real image using both the well-known WS
type of detector and the recent ensemble classifier show the
relevance of the proposed approach and the accuracy of the
theoretical findings.

Index Terms—Hypothesis testing theory, Sequential detection,
optimal detection, Pool steganalysis, Steganography.

I. INTRODUCTION

STEGANOGRAPHY is often referred to as the science
of covert communication. On the one hand, the goal of

steganography is to hide secret data within a digital objet to
create an innocuous-like stego-object. On the other hand, the
goal of steganalysis is to inspect digital object in order to
detect the presence of hidden data. Steganography is much
more mature with digital images as cover files, this paper thus
focuses on digital images though the proposed methodology
is general and can be applied for a wide range of steganalysis.

Steganography has been evolving at a fast rate since two
decades. Modern steganographic methods are content adaptive,
that is, the embedding changes are concentrated in areas of the
cover image where they are expected to be the most difficult to
detect. On the other hand, steganalysis methods have also been
remarkably developed to detect with better and better accuracy
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modern steganographic schemes. Four approaches have mainly
been used in steganalysis:

1) Historically, first detectors belong to the class of struc-
tural detectors that focus on the detection of Least Sig-
nificant Bit (LSB) replacement using pixels’ correlation,
see [2] for an overview.

2) Then, the well-known Weighted-Stego image (WS) al-
gorithms has been introduced in [3] and deeply studied
in [4]. While it originally aims at estimating the payload,
or hidden message length, it has been shown in [5], [6]
that the WS detector is closely related to the optimal
Likelihood Ratio Test (LRT) under the assumption that
pixels’ noise is Gaussian.

3) This re-opened the field of optimal detectors, as referred
to in [7], that uses a statistical model of cover and
steganographic images and exploit hypothesis testing
theory to design a test that is optimal for a given
criterion. The first detectors from this category used
simplistic image model [8] and were latter improved
and enlarge for LSB matching detection [9] and JPEG
images [10], [11].

4) Last, most of the modern steganalysis methods are built
by extracting a set of features that reveal the presence
of hidden data and on supervised learning to train a
classifier to distinguish between cover and stego images.
The firsts feature-based steganalysis methods used the
Fisher Linear Discriminant (FLD) analysis and dozens
of features. Soon, more accurate learning algorithms
have been used such as the popular Support Vector Ma-
chine (SVM) and the number of extracted features grew
to more than 30 000 for recent rich models [12]. This im-
provement of feature dimension has been enabled with
the ensemble classifier [13] as an efficient alternative
learning methods for such high dimensionality.

While the “optimal detectors” can not achieve the detection
accuracy of feature-based approaches, they have the indis-
putable advantage to provide a statistical test with analytic
expression of its statistical properties. On the opposite, the
statistical properties of features-based steganalysis methods
are only known empirically. Note that, it has recently been
proposed to formulate the ensemble classifier within the
framework of hypothesis testing [14], [15]. This prior work
models the projection of ensemble base learners as a multi-
variate Gaussian which allows the replacing of majority vote
decision rule by an optimal LRT and to theoretically study the
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performance of the ensemble classifier.
In this paper, the advantage of steganalysis methods with
known statistical properties is used to study their application
in a sequential context, when images are transmitted and
inspected sequentially, one after the other.

A. Contribution and Organization of this Paper

As noted in [7], the moving of steganalysis “from labora-
tories to the real life” implies several challenging problems
among which the problem of pooled steganalysis received
little attention. One of few notable prior work that studies a
similar problem [17] proposed to gather images from different
users and to identify those who transmit steganographic image,
without prior reference, or cover dataset.
By contrast, in this paper, it is proposed to study the prob-
lem of online steganalysis, when users are sending images
sequentially, one after the other, and when a cover dataset
reference is possibly available. The problem is cast within the
framework of optimal detection, that is by using hypothesis
testing methods, we propose a sequential statistical test for
which the probability of false alarm and the detection accuracy
are known. It is important to note that, the definition of false
alarm and correct detection has to be reformulated to match
the problem of sequential steganalysis of several images.

The main contributions of this paper are the following:
1) First the problem of sequential steganalysis for inspec-

tion of a flow of images is stated. A general framework
is proposed regardless of the strategy used for spreading
the hidden data within several images.

2) Then a sequential detection method is proposed and its
statistical performance is analytical established. While
usual sequential methods focus on mean detection and
mean time to false alarm, the proposed approach focuses
on maximizing the probability of correct detection under
the constraint of a maximal detection delay.

3) Last, and not least, numerical results on real images
show the sharpness of the theoretical results.

The present paper is organized as follows. Section II cast
the problem of sequential analysis from a flow of transmitted
images within the framework of hypothesis testing theory. This
first section also presents the definition of detection accuracy
used in sequential analysis and recalls the usual methods for
sequential detection. Then Section III presents the proposed
sequential test and studies its statistical properties, that is false
alarm probability for a fixed analysis run length and detection
power as a function of detection delay. Section IV presents
numerical results that show the relevance of the proposed
methodology for different type of steganalysis method and
for both spatial and JPEG domain steganographic methods.
Finally, Section V summarizes the present work and concludes
the paper.

II. ONLINE STEGANALYSIS: PROBLEM STATEMENT

In this paper we do not make any assumption on the ste-
ganalysis method used by the warden, as well on the strategy
used by steganographer for spreading hidden information over

several images. The general framework for representing the
warden considers that each image, after have been analyzed,
is reduced to a scalar xi. Let us suppose that the warden has
observed N images, then has a sequence {xn}Nn=1. In the
present paper, the sequential detection problem is modeled as
follows: after having sent an unknown number ν − 1 of cover
images, the steganographer starts embedding hidden message
within the following images, with, by Kerckhoff’s principle, a
known embedding algorithm. Hence the sequence x1, . . . , xN
can be modeled as:{

xn ∼ P0 , ∀n < ν,

xn ∼ Pθn , ∀n ≥ ν , θn ≥ 0.
(1)

Here, in Equation (1), it is assumed that before the ν-th
image, the steganalysis results xn are i.i.d (independent and
identically distributed) with distribution P0. On the opposite,
the embedding of hidden information, that starts at image
number ν changes the distribution of warden analysis results’
xn ∼ Pθn where θn represents a parameter of the distribution
that, without loss of generality, is increased by the use of
steganography. Note that it is possible that the steganographer
does not use all the images after ν; without loss of generality,
it is assumed that ∀n ≥ ν , θn ≥ 0 with the inequality being
an equality if no data is hidden within an image.
Finally, it should be emphasized that the present paper focus
on the case in which the statistical distribution of xn is
established, before and after embedding starts. However, the
proposed can be extended when xn is a decision result that,
for instance, takes value in {0; 1}. In such a case xn would
be drawn from a Bernouilli trial with a, possibly unknown,
probability p that xn is 1. In fact in both cases, the problem
of the warden can be modeled as a sequential detection of a
change of the distribution parameter θn.

A. Criterion of Optimality

When dealing with sequential detection, as presented in
Equation (1), the goal is to detect the image number at which
embedding starts ν as quickly as possible. This problem is
known in the literature as the quickest changepoint detection.
Formally, a sequential test is a mapping δN : RN → {0; 1}
which, based on the observations x1, . . . , xN decide between
the two following hypotheses:

H0 : xn ∼ P0 , ∀n ∈ {1, . . . , N}, (2)

Hn : xn ∼

{
P0 , ∀n < ν,

Pθn , ∀n ≥ ν , θn ≥ 0
. (3)

The stopping time T of a sequential changepoint detection is
the smallest image index n for which δn(x1, . . . , xn) = 1.
When embedding is detected this can be erroneous if T < ν
in which case a false alarm is raised. On the opposite, a flow
of steganographic images is correctly detected made when
T ≥ ν. With the quickest detection of change in mind, it
is naturally desirable to minimize the detection delay T − ν
which is referred to as the detection delay.
Since the detection is made sequentially, it does not make
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Fig. 1: Illustrative example of a changepoint detection criteria
of accuracy with simulated data.

any sense to measure the probability of false alarm for each
sequence x1, . . . , xn. Instead, the most usual criterion in
changepoint detection is the average run length (ARL) to false
alarm, that is, the expected number of cover images tested and
leading to the false-alarm (erroneous decision that embedding
starts):

ARL = E [T |T < ν] . (4)

Because the ARL does not provide any guarantee on false
alarm probability, another criterion that may be used is the
the probability of false alarm over a run length, or a number
of inspected cover images L, denoted α(L)

0 and defines for the
i.i.d case by:

α
(L)
0 = P [T ≤ L|L < ν] (5)

Similarly, the power of a test, defined as the probability of
correctly detecting the use of a steganographic algorithm for a
“snapshot” test, has very few meaning in sequential detection.
Instead it is usually considered that the average detection delay
(ADD) should be considered:

ADD = E[T − ν|T ≥ ν]. (6)

The ADD represents the number of images, after the embed-
ding startpoint, that would be required in average to correctly
detect steganography.

However, similar to the ARL, the average number does not
provide any guarantee on the detection accuracy. Hence, when
it is preferable to reliably detect the use of steganography with
a fixed detection delay, that is with at most M images after
embedding start, the probability of detection before M images
has to be used:

β(M) = P [ν ≤ T ≤ ν +M ] . (7)

The notions of detection delay and run length are illustrated
in Figure 1.

B. Changepoint detection: Brief Review

In the literature of sequential analysis, two approaches
which are briefly presented below are generally used, see [19]
for a detailed review. First, when the changepoint is ν = 0
and it is desired to decide between two hypotheses with
as few samples a possible, the Sequential Probability Ratio
Test (SPRT) is generally used because it has been shown
to be optimal with respect to minimizing average time to

detection and error probabilities. The SPRT is associated with
the following decision rule:

δsprtN =

{
0 if λN = ΣNn=1Λ(xn) < τ0,

1 if λN = ΣNn=1Λ(xn) > τ1,
(8)

with Λ(xn) =
f0(xn)

fθ(xn)
. (9)

Here f0 and fθ are the probability distribution functions asso-
ciated with distributions P0 and Pθn and Λ is the Likelihood
Ratio (LR) between the two distributions. Note that for the
sake of clarity it is assumed here that θ is fixed and known
after embedding starts. The two thresholds τ0 and τ1 are set
to respect constraints on error probabilities. When the SPRT
cannot decide between the two hypotheses, this means that the
inspection should continue with one more image.

For the problem of changepoint detection, with unknown ν,
the most widely used method is the cumulative sum (CUSUM)
initially proposed in [18]. The CUSUM method is based on
the following decision rule:

δcusumN =

{
0 if SN =max {0;SN−1 + Λ(xN )} ≤ τ,
1 if SN =max {0;SN−1 + Λ(xN )} > τ,

(10)

with initialization S0 = 0. The CUSUM is thus essentially a
cumulative sum of LR, as the SPRT, which is reset to 0 when
its value is negative. This can be explained by the fact that the
LR has a negative expectation under H0 that inspected images
are cover and hence will decrease in average. Resetting the
CUSUM to 0 avoid the negative drift of the SPRT and hence
allows a much quicker detection.
The popularity of the CUSUM may be explained by the fact
that its optimality, with respect to minimizing worst case
average run length to false-alarm and detection delay, has been
proved in several cases (see [19] for a details).
However, the criterion of minimizing false-alarm probability
for a given run length has seldom been studied and the change-
point detection method is rarely provided with established
statistical properties in term of probability of errors. Such
a study has only recently been proposed in the context of
transient change detection [20], [21] and it has motivated the
present study.
An illustrative example of results from the SPRT and the
CUSUM are given in Figures 2.Obviously the SPRT is slowly
decreasing before the embedding starts, because it aims at
detecting if from the beginning the inspected flow of images is
made of only cover or of only stego images. On the opposite
the CUSUM, that aims at reacting as quickly as possible after
the embedding start, remains around zero until changepoint.

III. PROPOSED CHANGEPOINT DETECTION METHOD FOR
ONLINE STEGANALYSIS

The present paper lies within the field of optimal detection
and, hence, focuses on guaranteeing a false-alarm probability
for a given run-length, or number N of inspected cover images
and aims at designing a statistical changepoint detection
methods for which the corresponding power function for a
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Fig. 2: Comparison between the proposed LR test and the
majority vote decision rule for spatial domain steganalysis.

fixed detection delay is established.
Let us also recall that the proposed method is used in this paper
with the WS-type statistical test [5] and with the ensemble
classifier with LRT decision rule [14], [15], though it can be
extended to wider range of steganalysis methods. The two
steganalysis methods on which the proposed sequential method
relies share a common model for the detection statistics. In
fact, in both case, when inspecting a cover image their results
has been shown to follow a Gaussian distribution with zero
mean and unit variance. On the opposite, when inspecting
steganographic images, their results follow a Gaussian dis-
tribution still with unit variance while the mean θ > 0 is
increased. However, a fundamental difference, that is discussed
in numerical results, is that the mean θ depends, for the WS,
on the payload R but also on pixels’ variance. On the opposite,
because ensemble classifier is trained on a whole dataset of
cover and stego images, the test [14], [15] is designed such
that all stego image share the same expectation. We also note
that because both tests used are optimal whatever the payload,

or more precisely Uniformly Most Powerful, the payload has
small influence.

Hence, each steganalysis result xn can be modeled as:

xn ∼

{
N (0, 1) if inspected image is a cover ,
N (θn, 1) if inspected image is a stego .

(11)

And the goal is to detect as quickly as possible the embedding
starting image ν at which the expectation change from 0 to
θn > 0. In this paper it is proposed to target a fixed maximal
detection delay M , after which the detection is considered
as “too late”. Hence, the proposed sequential method has a
fixed window length (FWL) M that coincide with the maximal
detection delay. The proposed FWL-SPRT test is based on the
following decision rule:

δfwl
N =

{
0 if WN,M = ΣNn=N−M+1xn ≤ τ,
1 if WN,M = ΣNn=N−M+1xn > τ.

(12)

We note that here for used steganalysis methods [5] and [14],
[15], the xn’s correspond to values of likelihood ratios. This
allows a transparent comparison with the CUSUM and the
SPRT. First, the proposed methodology essentially consists in
a SPRT which is only applied on the M lasts steganalysis
results, as opposed to the SPRT which is computed using all
results. More precisely, from Equations (12) and (8) it is obvi-
ous that WN,M = λN − λN−M . For this reason the proposed
method is referred to as a “Fixed Window Length SPRT”
(FWL-SPRT). This process, similar to the reset to 0 for the
CUSUM, naturally avoids the drift of the SPRT when the flow
of inspected images begins with covers. Besides, the CUSUM
may also be re-written as SN = λN − min1≤n≤N (λn), see
details in [19, Chap.8.2], that is it uses an adaptive threshold
based on the minimal SPRT value instead of M lasts.

A. Statistical Properties of the Proposed Method

Let us start by noting that the FWL-SPRT Wν+M−1,M ,
which is last one for which the steganalysis detection is
possible under maximal delay M constraint, is given by:

Wν+M−1,M = Σν+M−1
n=ν xn

where, from Equation (11) xn ∼ N (θn, 1). Hence, from the
independence of images, it is immediate that:

Wν+M−1,M ∼ N (‖θν‖1,M), (13)

with ‖θν‖1 =

ν+M−1∑
n=ν

|θn| =
ν+M−1∑
n=ν

θn,

the last equality being due to the fact that θn ≥ 0 for all
n ∈ {0, . . . , T}.
It should be noted that the distribution of Wν+M−1,M as
given in Equation (13) is made without any assumption on
the strategy used to spread the payload within several images.
Hence, it especially includes two specific cases which are
embedding with constant payload after embedding start ν and
the case in which the embedding is made in only a selected
subset of images, and cover images are still sent, for instance



in order to try avoiding detection. In this later case, the θn
will be 0 for cover images.

The distribution of WN,M for cover images is more difficult
to establish. In fact, the main difficulty is that WN,M and
WN+1,M , for instances, are computed using M − 1 same
images. Hence the correlation between WN,M and WN+1,M

will be important. Because of this, it is hardly possible to
establish the false-alarm probability over a run length of
size L. To avoid the difficulty it is proposed to bound the
probability α(L)

0 . Without loss of generality let us assume that
L = `M with ` ∈ N. It is proposed in this paper to bound
α
(L)
0 by above by noting that ∀n ∈ {1, . . . , N −M + 1}:

P[max{Wn,M , . . . ,Wn+M−1,M} > τ ] ≥ P[WN,M > τ ].

On the opposite, since the correlation between FWL-SPRT
values WN,M , . . . ,WN+M−1,M is positive is follows that ∀t ∈
{1, . . . , T} [20]:

P[max{Wn,M , . . . ,Wn+M−1,M}>τ ]≤
n+M−1∑
t=n

P[WN,M >τ ].

Those observations allow us to bound both the power for
a maximal detection delay β(M) and the probability α

(L)
0 of

false alarm for a run of fixed length L.

Proposition 1. For any decision threshold τ ∈ R the false
alarm probability over L = `M inspected cover image is
bounded by:

1−
[
Φ

(
τ√
M

)]`
≤ α(L)

0 ≤ 1−
[
Φ

(
τ√
M

)]L
, (14)

with Φ and Φ−1 the standard normal cumulative distribution
function and its inverse.
For any decision threshold τ , the power of the proposed FWL-
SPRT is bounded:

β(M) ≥ 1− Φ

(
τ − ‖θ‖1√

M

)
(15)

Since the study of sequential detection method is very
difficult, the previous Proposition 1 only offer bounds on the
statistical performances of the proposed FWL-SPRT. However,
this allows to set a threshold for guaranteeing a false alarm
probability for L cover images and to guarantee a minimal
detection accuracy.

IV. NUMERICAL RESULTS

The numerical results presented in this paper has been
obtained from BOSS database version 1.01 [22], made of
10, 000 grayscale images of size. The proposed method relies
on steganalysis detector for which the statistical distribution
of the results is known. Hence, the WS-type statistical test
proposed in [5] from “optimal detectors” has been used at
first.To enlarge the application of the proposed detection
method to feature-based approaches, the recently proposed
approach for establishing the statistical properties of the well-
known ensemble classifier has been used. In this paper we
only present, for spatial domain, results obtained using the

threshold τ

β
(M

)
an

d
α
(L
)

0

0 1 2 3 4 5 6 7 8

10−2

10−1

1

Lower bound on PFA (14)
Upper bound on PFA (14)
Empirical α(L)

0 (5)
β(M) (15): theory
Empirical β(M) (7)

Fig. 3: Comparison between empirical and theoretical prob-
ability of false alarm for run length L = 100 and power
for M = 5 with the WS-like statistical test [5] for LSB
replacement embedding at payload R = 0.025.

improved version of the Spatial Rich Model (SRM) [12],
called maxSRMd2 [23], that takes into account the selection
channel. The embedding method used is the recent embedding
scheme [24], [25], that is based on statistical detectability
of LSB matching under a multivariate Gaussian model, with
payload 0.2 bit per pixel (bpp). For the JPEG domain, the
presented results were obtained using the recent Phase aware
projection model (PHARM) feature set [26] and Uniform
Embedding Distortion (UED) [27] steganographic algorithm
at payload 0.2 bit per non zero-coefficients.
It should be noted that several other embedding schemes
and feature sets have been tested, for both spatial and JPEG
domain, and similar trends has been observed.

First, because the main goal of this paper is to design a
changepoint detection method for steganalysis with known
statistical properties, Figure 3 show a comparison between
empirical and theoretical results for WS-type test [5]. This
figure shows the false-alarm probability over a run length,
α
(L)
0 (5), with L = 100 and the power for a maximal

detection delay β(M) (7), with M = 5. The empirical results
obtained for LSB replacement and WS-type algorithm show
the relevance of the theoretical bounds. However, we note that
this type of algorithm is applied for each image independently,
hence the statistical properties of individual results is reliable.
On the opposite, Figure 4 show a comparison between em-
pirical and theoretical bounds on false-alarm probability over
a run length L = 5 and L = 100 for the ensemble classifier
with LRT decision rule and spatial domain embedding [24],
[25] with maxSRMd2 feature set [23]. While the bounds are
rather tight, it should be noted that for large L = 100 and
large threshold value τ its accuracy becomes doubtful. In fact,
since this type of steganalysis is trained on a wide range of
images, the statistical properties of individual results are not
as much reliable; training is based on properties of the whole
training set. Hence, it is more likely to find images that are
outliers with respect to the average image from training set.

For the JPEG domain steganalysis, Figure 5 presents a
comparison between the theoretical power for a maximal
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Fig. 5: Comparison between empirical and theoretical power
for a maximal detection delay β(M), with M = 5, as a function
of the detection threshold. The ensemble classifier with LRT
decision rule [14], [15] is used with with PHARM feature
set [26] and UED embedding scheme is [27].

detection delay β(M) as function of decision threshold τ . For
this figure, PHARM feature set [26] and UED embedding
scheme [27] are used. It should be noted that, in this case,
the model for spreading the payload over different images is
that after embedding start at image ν, 3 randomly selected
images are used in the 10 next images (hence 7 are left as
cover). Roughly speaking this strategy correspond to case in
which the steganographer keep sending cover images in order
to prevent detection. This Figure show the accuracy of the
theoretical bound of the power for a maximal detection delay
β(M), with M = 5. We also note here that the empirical
results does not match perfectly the theoretical bound for large
threshold because feature based steganalysis is trained for the
whole dataset and hence can hardly deal with outliers images.

Finally, it is worth comparing the performance of the pro-
posed FWL-SPRT methodology with the CUSUM algorithm.
We recall here that the proposed approach rely on minimizing
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Fig. 6: Comparison between the proposed FWL-SPRT and the
CUMSUM algorithm in term of average detection delay as
function of average run length to false-alarm. Results obtained
with ensemble classifier with LRT decision rule [14], [15]
using maxSRMd2 feature set [23] and embedding scheme [24],
[25].

probability of false alarm for a given run length while the
CUSUM is optimal to minimize the average run length to
false-alarm. However, it is proposed in Figure 6 to compare the
CUMSUM and the proposed FWL-SPRT through the average
detection delay as a function of average run length to false-
alarm. While the CUMSUM has been shown to be optimal
for such criterion in several case, we note that the proposed
method only performs slightly worse. The results presented in
Figure 6 are also obtained with the ensemble classifier with
LRT decision rule using spatial domain embedding [24], [25]
and maxSRMd2 features set [23].

V. CONCLUSION

This paper studies the problem of sequential steganalysis,
when a flow of images has to be inspected, within the frame-
work of “optimal detectors” relying on hypothesis testing.
To the best of our knowledge, the problem of inspecting
several images one by one with a goal to detect steganographic
embedding startpoint as quickly as possible has never been
studied. This paper presents the performance criterion that has
to be considered for sequential steganalysis and briefly review
usual sequential methods. Then a methodology is proposed
with the aims of detecting when steganographic embedding
start with a maximal detection delay. Bound are provided for
the performance of the proposed method and their sharpness
is verified on digital images using WS-type statistical test and
ensemble classifier as an example of feature based steganalysis
method.
Future works will study the application of the proposed
method with steganalysis detector that output a binary results
and study the optimal strategy to spread the payload with
respect to the proposed test.

ACKNOWLEDGEMENTS

The work of Rémi Cogranne was funded in part by the
STEG-DETECT program for scholar mobility and by IDENT



research grant both from Conseil Régional de Champagne-
Ardenne.

REFERENCES

[1] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distortion in
steganography using syndrome-trellis codes,” Information Forensics and
Security, IEEE Transactions on, vol. 6, no. 3, pp. 920–935, Sept 2011.

[2] A. Ker, “A general framework for structural steganalysis of LSB
replacement,” in Information Hiding, ser. LNCS, vol. 3727, 2005, pp.
296–311.

[3] J. Fridrich and M. Goljan, “On estimation of secret message length in
LSB steganography in spatial domain,” IS&T/SPIE Electronic Imaging
conf., vol. 5306, Security, Steganography, and Watermarking of Multi-
media Contents, 2004, pp. 23–34.

[4] A. D. Ker and R. Böhme, “Revisiting weighted stego-image stega-
nalysis,” in Security, Forensics, Steganography, and Watermarking of
Multimedia Contents X, Proc. SPIE 6819, 2008, pp. 501–517.

[5] R. Cogranne, C. Zitzmann, L. Fillatre, I. Nikiforov, F. Retraint and
P. Cornu, “A cover image model for reliable steganalysis,” in Information
Hiding, ser. LNCS vol. 6958, 2011, pp. 178–192.

[6] C. Zitzmann, R. Cogranne, F. Retraint, I. Nikiforov, L. Fillatre, and
P. Cornu, “Statistical decision methods in hidden information detection,”
in Information Hiding, ser. LNCS vol. 6958, 2011, pp. 163–177.

[7] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler,
J. Fridrich, and T. Pevný, “Moving steganography and steganalysis
from the laboratory into the real world,” in ACM Information hiding
and multimedia security, IH&MMSec’13, 2013, pp. 45–58.

[8] O. Dabeer, K. Sullivan, U. Madhow, S. Chandrasekaran, and
B. Manjunath, “Detection of hiding in the least significant bit,” Signal
Processing, IEEE Transactions on, vol. 52, no. 10, pp. 3046 – 3058,
oct. 2004.

[9] R. Cogranne and F. Retraint, “An asymptotically uniformly most power-
ful test for lsb matching detection,” Information Forensics and Security,
IEEE Transactions on, vol. 8, no. 3, pp. 464–476, March 2013.

[10] C. Zitzmann, R. Cogranne, L. Fillatre, I. Nikiforov, F. Retraint, and
P. Cornu, “Hidden information detection based on quantized Laplacian
distribution,” in Proc. of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), March 2012.

[11] T. H. Thai, R. Cogranne, and F. Retraint, “Statistical model of quantized
DCT coefficients : Application in the steganalysis of JSteg algorithm,”
Image Processing, IEEE Transactions on, vol. 23, no. 5, pp. 1980–1993,
2014.
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