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Abstract

The goal of this paper is to design a statistical test for the camera model identification problem from JPEG images.

The approach relies on the camera fingerprint extracted in the Discrete Cosine Transform (DCT) domain based on

the state-of-the-art model of DCT coefficients. The camera model identification problem is cast in the framework of

hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio

Test is presented and its performances are theoretically established. For a practical use, two Generalized Likelihood

Ratio Tests are designed to deal with unknown model parameters such that they can meet a prescribed false alarm

probability while ensuring a high detection performance. Numerical results on simulated and real JPEG images

highlight the relevance of the proposed approach.

Keywords: Digital Forensics, Camera Model Identification, Hypothesis Testing, Natural Image Model, Discrete

Cosine Transform.

1. Introduction

The evolution of digital imaging technology and information technologies in the past decades has raised a num-

ber of information security challenges. Digital images can be easily edited, altered or falsified because of a large

availability of low-cost image editing tools. Consequently, the credibility and trustworthiness of digital images have

been eroded. This is more crucial when falsified images that are utilized as evidence in a courtroom could mislead

the judgement and lead to either imprisonment for the innocent or freedom for the guilty. Digital image forensics has
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been emerged in response to the increasing need to verify the trustworthiness of digital images, see [1] and references

therein for detailed introductions.

1.1. State of the Art

One of the key problems of digital image forensics is identification of image origin, which aims to verify whether

a given image was acquired by a specific camera or determine camera models/brands as well as types of imaging

mechanism (e.g. scanners, cell-phone cameras, or computer graphics). Basically, when an image is captured by a

camera, it is stored with the metadata headers in the memory storage device. The metadata, e.g. Exchangeable Image

File (EXIF) and JPEG headers, contain all recording and compression history. Therefore, a simplest way to determine

the image’s source is to read out directly from the metadata. However, such metadata headers are not always available

in practice if the image is resaved in a different format or recompressed. Another problem is that the metadata headers

are not reliable as they can be easily removed or modified using low-cost editing tools. Therefore, it is desirable for

law enforcement agencies to build up a set of reliable forensic tools for image origin identification.

In general, there are two approaches to address the problem of image origin identification. Active forensics

involves generating extrinsically security measures such as digital watermarks [2] and digital signatures [3], referred

to as extrinsic fingerprints, and adding to the image file. However, active forensics is of limited extent due to many

strict constraints in its protocols. In order to solve the problem of image origin identification in its entirety, passive

forensics has been quickly evolved. In contrast to active forensics, passive forensics does not impose any constraint,

nor require any prior information including the original reference image. Forensic analysts have only the suspect

image at their disposal and must explore useful information from that image to gather forensic evidence and trace the

acquisition device. The common philosophy in passive approach is to rely on inherent intrinsic fingerprints that the

digital camera leaves in a given image. Passive forensics can be widely applied to millions of images that circulate

daily on communication networks.

This paper mainly addresses the origin identification of images acquired by digital cameras based on passive

approach. It is important to distinguish the problem of camera instance identification and the problem of camera

model/brand identification. More specifically, fingerprints used for camera instance identification should capture

individuality, especially cameras coming from the same brand and model. For camera model/brand identification,

it is necessary to exploit fingerprints that are shared between cameras of the same model/brand but discriminative

for different camera models/brands. Passive forensic methods proposed for those problems can be divided into two

fundamental categories.

Technically, any method proposed for image origin identification must respond to following questions:

1. Which fingerprints are utilized for identification?

2. How to extract these fingerprints accurately from a given image?
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3. Under which frameworks is the method designed to exploit the discriminability of fingerprints extracted from

images captured by different sources1 and to calculate the similarity of fingerprints extracted from images

captured by the same source?

Every stage from real-world scene acquisition to image storage can provide intrinsic fingerprints for forensic

analysis. Therefore to design a camera fingerprint, it is necessary to study the image processing pipeline of a digital

camera. Although the image processing pipeline is common for most cameras, each processing step is performed

according to manufacturers’ own design. Thus the information left by each processing step is useful to trace down to

the device source.

Several fingerprints have been proposed in the literature. Sensor Pattern Noise (SPN), which is caused by imper-

fections during the manufacturing process and non-uniformity of photo-electronic conversion due to inhomogeneity

of silicon wafers, is used in [4] for camera instance identification. Two main components of the SPN are the Fixed

Pattern Noise (FPN) and the Photo-Response Non-Uniformity (PRNU) noise. The FPN is also used for camera in-

stance identification in [5]. However it can be compensated by subtracting a dark frame from the output image, thus

it is not a robust fingerprint and no longer used in later works. The PRNU is directly exploited in [6, 7, 8]. Moreover,

PRNU can be also used for camera model identification as proposed in [9] based on the assumption that the fingerprint

obtained from images in the TIFF or JPEG format contains traces of post-acquisition processes (e.g. demosaicing)

that carry information about the camera model. Other fingerprints include lens aberration [10], Color Filter Array

(CFA) pattern and interpolation algorithms [11, 12], and JPEG compression [13], which are proposed for camera

model/brand identification.

In general, the image origin identification problem can be formulated into two frameworks: supervised classi-

fication [14] and hypothesis testing [15]. Compared with hypothesis testing framework, supervised classification

framework is utilized by most of existing methods in the literature to identify camera brands/models. Based on above

fingerprint, a forensic feature set is designed and employed in a machine learning algorithm, e.g. Support Vector

Machines (SVM) [16]. Supervised classification framework involves three main drawbacks. To achieve high accu-

racy, this framework requires an expensive training stage that comprises many images with different characteristics

(e.g. image content or camera settings) from various sources for representing a real-world situation, which might be

unrealistic in practice. Another drawback is the choice of an appropriate forensic feature, which importantly affects

the detection performance of the classifier. Besides, the analytic establishment of statistical performances still remains

an open problem in supervised classification framework [17].

Even though those methods perform efficiently, they have been designed with a very limited exploitation of hy-

pothesis testing theory and statistical image models. Therefore, their performance can not be analytically established

and is only evaluated based on a large image database. Moreover, in the operational context, it is crucial to warrant a

prescribed false alarm probability. Our previous work [18] proposed to design a statistical test within hypothesis test-

1The term source means an individual camera instance, a camera model, or a camera brand.
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ing framework based on the heteroscedastic noise model for camera model identification from RAW images. Recently,

this work has been extended in [19] for camera model identification from JPEG images based on the generalized noise

model [20]. The proposed tests can guarantee a false alarm probability while ensuring a high detection performance

on a large database.

1.2. Main Contributions of the Paper

This paper aims to design a statistical test for camera model identification from JPEG images, which is based on

the same methodology proposed in our previous works [18, 19]. The approach is based on fingerprint extracted in the

Discrete Cosine Transform (DCT) domain. The main motivation behind fingerprint extraction in the DCT domain is

that the statistics of DCT coefficients change with different sensor noises combining with various in-camera processing

algorithms. Relying on an accurate model of DCT coefficients allows us to capture this statistical difference in natural

images taken by different camera models. The main contributions are the following:

• This paper is based on the state-of-the-art statistical model of DCT coefficients [21, 22, 23] for fingerprint

extraction. The parameters (c, d) that characterize the linear relation between two parameters α and β specified

in the proposed model of DCT coefficients are exploited as camera fingerprint for camera model identification.

• Stating the camera model identification problem in hypothesis testing framework, the paper studies the optimal

detector given by the Likelihood Ratio Test (LRT) in an ideal context where all model parameters are known.

This optimal detector serves as an upper-bound of any statistical test for the camera model identification prob-

lem.

• In the practical context, the model parameters are unknown. The paper proposes two Generalized Likelihood

Ratio Tests (GLRTs) to deal with the difficulty of unknown parameters. The statistical performance of the

GLRTs is analytically established. Moreover, the proposed GLRTs allow the guaranteeing of a prescribed

false-alarm rate and the setting of decision threshold independently of the image content, which is crucial in an

operational context. Numerical experiments also show that the loss of power of GLRTs compared with the LRT

is negligible.

1.3. Organization of the Paper

The paper is organized as follows. Section 2 presents the camera fingerprint that is further exploited for camera

model identification. Section 3 designs an algorithm for camera fingerprint extraction in the DCT domain. Section

4 states the camera model identification problem in the framework of hypothesis testing theory and studies the LRT

assuming that all model parameters are known in advance. Section 5 designs two GLRTs to address the difficulty

of unknown parameters. Section 6 presents numerical results of two proposed GLRTs on simulated and real JPEG

images. Finally, Section 7 concludes the paper.

4



2. Design of Camera Fingerprint

To design a camera fingerprint, it is vital to deeply understand image characteristics during various stages of image

processing pipeline and study image statistics. Image processing pipeline involves several steps from light capturing

to image storage performed in a digital camera, see details about image processing pipeline in [24, 21, 23]. After

measuring light intensity at each pixel, RAW image that contains exactly information recorded by the image sensor

goes through some typical post-acquisition processes, e.g. demosaicing, white-balancing and gamma correction, to

render a full-color high-quality output image, referred to as TIFF image. Image compression can be also performed

for ease of storage and transmission.

The study of noise statistics in a natural image from RAW format to TIFF format has been performed in our

previous work [20]. Firstly, the approach starts from the heteroscedastic noise model proposed in [18], which is

established by modeling various noise sources during RAW image acquisition [25]. The heteroscedastic noise model

characterizes more accurately the RAW image than the Additive White Gaussian Noise (AWGN) model widely used

in image processing since it takes into account the contribution of Poisson noise in the acquisition process. The

heteroscedastic noise model is given as

xi ∼ N
(
µxi , aµxi + b

)
, (1)

where xi denotes a RAW pixel. The index of color channel is omitted for simplicity. By convention, µX and σ2
X

denote respectively expectation and variance of a random variable X. The parameters (a, b) was proposed in our

previous work [18] as fingerprint for camera model identification from RAW images. Then, assuming the operations

of demosaicing and white-balancing are linear, that approach [20] takes into account the non-linear effect of gamma

correction to develop a generalized noise model, given as

σ2
zi

=
1
γ2 µ

2−2γ
zi (ãµγzi + b̃), (2)

where zi denotes an output pixel, γ is the correction factor, and (ã, b̃) differ from the parameters (a, b) due to the

operations of demosaicing and white balancing. It is also shown in [20] that the generalized noise model is relevant

to characterize JPEG images with moderate-to-high quality factors (QF ≥ 70). More details of the generalized noise

model are given in [20]. Similarly, the parameters (ã, b̃, γ) are proposed in [19] as fingerprint to identify camera

models from JPEG images.

The next step in image processing pipeline is JPEG compression that involves transforming the TIFF image into

the DCT domain. To capture statistics of DCT coefficients accurately, it is necessary to study the model of DCT

coefficients. Based on the assumption that the pixels are identically distributed within 8 × 8 block, our previous work

[21, 22, 23] has recently proposed a novel model of DCT coefficients, given by

fI(u) =

√
2
π

(
|u|

√
β
2

)α− 1
2

βαΓ(α)
Kα− 1

2

(
|u|

√
2
β

)
, (3)
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Figure 1: Estimated parameters (α, β) at frequency (0, 1) and (8, 8) of uniform images generated using ã = 0.1, b̃ = 2, γ = 2.2.

where fX denotes the probability density function (pdf) with respect to a random variable X, α is a positive shape

parameter, β is a positive scale parameter, Γ(·) denotes the gamma function and Kν(x) denotes the modified Bessel

function [26, chap. 5.5]. The proposed model of DCT coefficients outperforms the Laplacian, Generalized Gaussian,

and Generalized Gamma model, see more details in [23]. The parameters (α, β) can be estimated following the

Maximum Likelihood (ML) approach as proposed in [23].

Since the parameters (ã, b̃, γ) also contain information about camera model, after transforming into DCT domain,

this information is expanded over different frequencies. Therefore, it is proposed to establish the relation between

the parameters (ã, b̃, γ) and (α, β) to capture such information in the DCT domain. For the sake of simplification, this

relation is given by

β−1 = cα + d, (4)

where the parameters (c, d) depend on (ã, b̃, γ) (see more details in Appendix A). This suggests that the parameters

(c, d) can be also used for camera model identification. It can be said that while the relations (1) and (2) characterize

the non-stationarity of noise in the spatial domain, the relation (4) characterizes this property in the DCT domain.

The relation (4) can capture the difference of noise statistics in natural images taken by different camera models.

Moreover, the linearity in relation (4) can facilitate the estimation of the parameters (c, d). It should be noted that in

an image whose each 8× 8 block is uniform, the same parameters (α, β) and (c, d) are shared among DCT coefficients

at different frequencies. The relation (4) on such images is illustrated in Figure 1.

3. Extraction of Camera Fingerprint

An important requirement when using the parameters (c, d) as camera fingerprint is that they should be invariant to

image content. Furthermore, to guarantee the above mathematical framework, it is necessary to work on homogeneous

blocks. These considerations are addressed in this section.

Because of heterogeneity and noise non-stationarity in a natural image, the energy tends to be more located in

lower frequencies. Consequently, DCT coefficients at different frequencies do not share the same parameters (α, β)
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and (c, d). Therefore, the estimation of parameters (α, β) and (c, d) should be performed on each frequency separately.

In this paper it is proposed to arrange DCT coefficients into 64 vectors of coefficients according to the zig-zag order.

Let Ik = (Ik,1, . . . , Ik,N) with k ∈ {1, . . . , 64}, be the vector of length N that contains coefficients at the frequency k.

The coefficients (I1,i, . . . , I64,i) are in the same block. Analogously, let denote the parameters (αk, βk) and (ck, dk) with

respect to the AC coefficients Ik.

3.1. Estimation of Parameters (ck, dk)

The proposed algorithm for estimation of parameters (ck, dk) consists of three fundamental steps: image denoising,

homogeneous block detection, and Least-Squares (LS) estimation [27]. Image denoising step aims to attenuate the

impact of image content. The detection of homogeneous blocks is performed subsequently to provide appropriate

sample data for parameter estimation. The LS approach is applied straightforwardly as the relation (4) is linear.

Let Z be a two-dimensional matrix representing a natural image. To remove the image content, a denoising filter

D is employed so that the residual image W is given by

W = Z −D(Z). (5)

If Z is a color image, the denoising filter D is performed on each color component, then three residual components

are combined into one residual image using the usual conversion from RGB to grayscale

W = 0.2989Wr + 0.587Wg + 0.114Wb, (6)

where Wr, Wg, and Wb are respectively residuals of red, green, and blue component. The residual image W is then

transformed into the DCT domain

I = DCT(W), (7)

where I is the image of DCT coefficients of the residual image W.

For homogeneous block detection, this paper proposes to calculate the standard deviation of each block and

compare it with a threshold λ. The median of absolute deviations (MAD), which is considered as a robust estimator of

standard deviation [28], is utilized to calculate the standard deviation of each block. The standard deviation of block

i is calculated in the DCT domain as

ŝi = 1.4826 ·MAD
(
I2,i, . . . , I64,i

)
. (8)

The DC coefficient I1,i is excluded in the calculation ŝi. The block i is selected if the standard deviation ŝi is smaller

than the threshold λ. The number of selected homogeneous blocks is denoted as Nb.

Suppose that L couples (α̂k,l, β̂k,l), l ∈ {1, . . . , L} are available, the LS estimates of the parameters (ck, dk) are given

by ĉk

d̂k

 = (HT
k Hk)−1HT

k υk (9)

7



α

β−1

5 10 15 20 25 30
0

50

100

150

200

250

300

350

(α8,8, β
−1
8,8) of Nikon D200

(α8,8, β
−1
8,8) of Canon Ixus 70

Figure 2: Estimated parameters (α, β) at frequency (8, 8) of natural JPEG images issued from Canon Ixus 70 and Nikon D200 camera models.
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with

Hk =


α̂k,1 1
...

...

α̂k,L 1

 and υk =


β̂−1

k,1
...

β̂−1
k,L

 ,
where HT

k and H−1
k denote respectively the transpose and inverse of the matrix Hk. The LS estimates (ĉk, d̂k) are

unbiased and asymptotically equivalent to ML estimates in large samples [27].

As showed above, the LS approach requires several couples (αk, βk) for estimation of parameters (ck, dk). One

can collect L images and estimate a couple (αk,l, βk,l) from all homogeneous blocks of each image following the ML

approach [23]. However, from the practical point of view, it is necessary to estimate the parameters (ck, dk) from a

single image. This is accomplished by extracting randomly a subset of nb homogeneous blocks from Nb blocks, then

performing the ML estimation of parameters (αk,l, βk,l) on this subset.

3.2. Property of Parameters (ck, dk)

When the image content is removed perfectly, the parameters (ck, dk) remain identical for images with different

image contents. However, in practice, due to the fact that the perfect denoising filterD is difficult to obtain, the DCT
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coefficients at low frequencies are still affected by image content. Meanwhile, the coefficients at high frequencies

contain mostly noises because of the energy compaction property of DCT operation. Thus they are more relevant to

exploit for camera model identification. Figure 2 shows the the linear relation (4) at frequency (8, 8) of natural JPEG

images taken by Canon Ixus 70 and Nikon D200 camera models. It should be noted that each point (α, β) in Figure 2

corresponds to one image. Figure 2 involves the JPEG images with different imaged scenes, different camera settings,

different devices per model, and different environmental conditions. This indicates that the parameters (ck, dk) remain

similar under those conditions.

Moreover, for camera model identification problem, it is necessary to verify the discriminability of parameters

(ck, dk) for different camera models. The Figure 3 shows the parameters (ck, dk) estimated from JPEG images at

frequency (8, 8) for different camera models. This figure clearly shows their discriminability between different camera

models. Therefore, the parameters (ck, dk) are proposed to be exploited as camera fingerprint to identify camera models

in this paper.

4. Optimal Detector for Camera Model Identification Problem

4.1. Hypothesis Testing Formulation

Let analyze two camera models S0 and S1. Each camera model S j, j ∈ {0, 1}, is characterized by the parameters

(ck, j, dk, j), k ∈ {1, . . . ,K}, where K is the number of usable frequencies for camera model identification. For obvious

reasons, it is assumed that (ck,0, dk,0) , (ck,1, dk,1). In a binary hypothesis testing, the inspected image Z is either

acquired by camera model S0 or camera model S1. The goal of the test is to decide between two hypotheses defined

by ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . ,Nb} 
H0 =

{
Ik,i ∼ Pθk,0 , β

−1
k,0 = ck,0αk + dk,0

}
H1 =

{
Ik,i ∼ Pθk,1 , β

−1
k,1 = ck,1αk + dk,1

}
,

(10)

where Pθk, j , θk, j = (αk, ck, j, dk, j), denotes the probability distribution of DCT coefficients Ik,i under hypothesisH j. As

previously explained, this paper focuses on designing a test that allows the guaranteeing of a prescribed false-alarm

probability. Hence, let

Kα0 =
{
δ : sup

θ0

PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests whose the false alarm probability is upper-bounded by the prescribed rate α0. Here θ0 =

(θ1,0, . . . , θK,0) is the vector containing all parameters, PH j

[
E
]

stands for the probability of event E under hypothe-

sisH j, j ∈ {0, 1}, and the supremum over θ has to be understood as whatever model parameters might be. Among all

the tests in the class Kα0 , it is aimed at finding a test δ which maximizes the power function, defined by the correct

detection probability:

βδ = PH1

[
δ(Z) = H1

]
.
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The problem (10) highlights three fundamental difficulties of the camera model identification. First, even when

all model parameters (αk, ck, j, dk, j) are known, the most powerful test, namely the LRT, has never been studied in

the literature. The second difficulty concerns unknown parameters αk in practice. Finally, the camera parameters

(ck, j, dk, j) are also unknown, thus the hypothesisH j becomes composite.

Suppose that the camera model S0 is available, thus forensic analysts can have access to its characteristics, or its

fingerprints, i.e. its camera parameters (ck,0, dk,0) can be known. Therefore, they can make a decision by checking

whether the image under investigation Z contains the fingerprint (ck,0, dk,0). It is proposed to solve the problem (10)

when the alternative hypothesis H1 is composite, i.e. the camera parameters (ck,1, dk,1) are unknown. It can be noted

that a test that maximizes the correct detection probability whatever (ck,1, dk,1) might scarcely exist [15]. The main

goal of this paper is to study the LRT and to design the GLRTs to address the second and third difficulties.

4.2. Likelihood Ratio Test for Two Simple Hypotheses

When all model parameters are known, in virtue of the Neyman-Pearson lemma [15, theorem 3.2.1], the most

powerful test δ∗ solving the problem (10) is the LRT given by the following decision rule

δ∗(Z) =


H0 if Λ(Z) =

K∑
k=1

Nb∑
i=1

Λ(Ik,i) < τ∗

H1 if Λ(Z) =

K∑
k=1

Nb∑
i=1

Λ(Ik,i) ≥ τ∗
(11)

where the decision threshold τ∗ is the solution of the equation

PH0

[
Λ(Z) ≥ τ∗

]
= α0 (12)

to ensure that the LRT is in the class Kα0 and the LR Λ(Ik,i) is defined as

Λ(Ik,i) = log
Pθk,1

[
Ik,i

]
Pθk,0

[
Ik,i

] , (13)

assuming that the DCT coefficients are statistically independent. From (3), it can be noted that the expression of the

LR Λ(Ik,i) is difficult to exploit for subsequent stages, e.g. the design of the GLRT and analytic establishment of its

statistical performance. Therefore it is proposed to simplify the LR Λ(Ik,i) to facilitate the study in the manner that it

does not cause any loss of optimality.

Using the Laplace’s approximation [29, 30] (see more details in Appendix B), the function fI(u) can be approxi-

mated as

fI(u) ≈
|u|α−1

(2β)
α
2 Γ(α)

exp

−|u|
√

2
β

 . (14)
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Consequently, the LR Λ(Ik,i) can be simplified as

Λ(Ik,i) = log

|Ik,i |
αk−1

(2βk,1)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,1

)
|Ik,i |

αk−1

(2βk,0)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,0

)
=
αk

2
log

β−1
k,1

β−1
k,0

−
√

2|Ik,i|
(√

β−1
k,1 −

√
β−1

k,0

)
. (15)

It should be noted that other polynomial expansions for the modified Bessel function Kν(x) are provided in [26], so a

polynomial approximation of fI(u) can be derived. However, those approximations are not considered in this paper.

The main advantage of the Laplace’s approximation (14) is to provide an approximation of the form of exponential

family function, which allows us to simplify the expression of the LR Λ(Ik,i). The approximating function (14) is used

only for simplification of the LR. The estimation of parameters (αk, βk) is always based on the exact function (3).

In order to analytically establish the statistical performance of the LRT, it is necessary to characterize the statistical

distribution of the LR Λ(Z) under each hypothesis H j. To this end, it is proposed to rely on the Lindeberg Central

Limit Theorem (CLT) [15, theorem 11.2.5] that requires to calculate the expectation and variance of Λ(Ik,i).

Proposition 1. Under hypothesisH j, the first two moments of the LR Λ(Ik,i) are given by

mk, j , EH j

[
Λ(Ik,i)

]
=
αk

2
log

β−1
k,1

β−1
k,0

−
2
√
π
β

1
2
k, j

Γ(αk + 1
2 )

Γ(αk)

(√
β−1

k,1 −

√
β−1

k,0

)
(16)

vk, j , VarH j

[
Λ(Ik,i)

]
= 2

(√
β−1

k,1 −

√
β−1

k,0

)2

×
(
αkβk, j −

2βk, j

π

Γ2(αk + 1
2 )

Γ2(αk)

)
. (17)

where EH j [·] and VarH j [·] respectively denote the mathematical expectation and variance under hypothesisH j.

Proof. of Proposition 1 is given in Appendix C.

In virtue of Lindeberg CLT, the statistical distribution of the LR Λ(Z) under hypothesisH j is derived as

Λ(Z)
d
→ N

(
m j, v j

)
, (18)

where the notation
d
→ denotes the convergence in distribution and the expectation m j and variance v j are given by

m j =

K∑
k=1

Nb∑
i=1

EH j

[
Λ(Ik,i)

]
=

K∑
k=1

Nbmk, j (19)

v j =

K∑
k=1

Nb∑
i=1

VarH j

[
Λ(Ik,i)

]
=

K∑
k=1

Nbvk, j. (20)
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Since a natural image is heterogeneous, it is proposed to normalize the LR Λ(Z) in order to set the decision

threshold independently of the camera parameters. The normalized LR is defined by Λ?(Z) =
Λ(Z)−m0√

v0
. Accordingly,

the corresponding LRT δ? is rewritten as follows

δ?(Z) =


H0 if Λ?(Z) < τ?

H1 if Λ?(Z) ≥ τ?
(21)

where the decision threshold τ? is the solution of the equation PH0

[
Λ?(Z) ≥ τ?

]
= α0. The decision threshold τ? and

the power βδ? are given in following theorem.

Theorem 1. In an ideal context where all the model parameters (αk, ck, j, dk, j) are exactly known, the decision thresh-

old and the power function of the LRT δ? are given by

τ? = Φ−1(1 − α0) (22)

βδ? = 1 − Φ

(
m0 − m1 + τ?

√
v0

√
v1

)
, (23)

where Φ(·) and Φ−1(·) denotes respectively the cumulative distribution function of the standard Gaussian random

variable and its inverse.

The test power βδ? serves as an upper-bound of any statistical test for the camera model identification problem.

The test δ? allows to warrant a prescribed false alarm rate and maximizes the detection probability. Since its statistical

performance is analytically established, it can provide an analytically predictable result for any false alarm probability

α0.

5. Practical Context: Generalized Likelihood Ratio Test

The scenario studied in the LRT may not be realistic because the parameters (αk, ck,1, dk,1) are unknown in practice.

This section designs two GLRTs to deal with unknown parameters. It is proposed to replace unknown parameters by

their ML estimates in the LR Λ(Ik,i) (15).

5.1. Generalized Likelihood Ratio Test with Unknown Parameters αk

In this subsection it is assumed that the camera parameters (ck, j, dk, j) are known and we only deal with unknown

nuisance parameters αk. By replacing unknown parameter αk by its ML estimate α̂k in the LR Λ(Ik,i) (15) (see more

details about ML estimation of parameters (αk, βk) in [23]), the Generalized Likelihood Ratio (GLR) Λ̂1(Ik,i) can be

given by

Λ̂1(Ik,i) =
α̂k

2
log

ck,1α̂k + dk,1

ck,0α̂k + dk,0

−
√

2|Ik,i|
( √

ck,1α̂k + dk,1 −
√

ck,0α̂k + dk,0

)
. (24)
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The ML estimate α̂k is asymptotically consistent [15], i.e. it asymptotically converges in probability to its true

value: α̂k
p
→ αk. Therefore, from the Slutsky’s theorem [15, theorem 11.2.11], the statistical distribution of the GLR

Λ̂1(Z) =
∑K

k=1
∑Nb

i=1 Λ̂1(Ik,i) under each hypothesisH j can be approximated as

Λ̂1(Z)
d
→ N

(
m j, v j

)
, (25)

where the expectation m j and variance v j are given in (19) and (20), respectively.

Similarly, the normalized GLR Λ̂?
1 (Z) is defined by Λ̂?

1 (Z) =
Λ̂1(Z)−m0√

v0
. However, the expectation m0 and variance

v0 can not be defined in practice since the parameters αk are unknown. Therefore, this paper proposes to replace αk by

α̂k in (19) and (20) to obtain the estimates of m0 and v0, denoted m̂0 and v̂0. The normalized GLR Λ̂?
1 (Z) can be given

in practice as Λ̂?
1 (Z) =

Λ̂1(Z)−m̂0√
v̂0

. Since the estimates m̂0 and v̂0 are consistent, it also follows from Slutsky’s theorem

that 
Λ̂?

1 (Z)
d
→ N(0, 1) under H0,

Λ̂?
1 (Z)

d
→ N

(
m1 − m0
√

v0
,

v1

v0

)
under H1.

(26)

Finally, the GLRT δ̂?1 based on the normalized GLR Λ̂?
1 (Z) is given by

δ̂?1 (Z) =


H0 if Λ̂?

1 (Z) < τ̂?1

H1 if Λ̂?
1 (Z) ≥ τ̂?1

(27)

where the decision threshold τ̂?1 is the solution of the equation PH0

[
Λ̂?

1 (Z) ≥ τ̂?1

]
= α0. From (26), the decision

threshold and the power of the GLRT δ̂?1 can be accordingly defined as in the Theorem 1.

5.2. Generalized Likelihood Ratio Test with Unknown Parameters (αk, ck,1, dk,1)

Before designing the GLRT, the LS estimation of camera parameters (ck,1, dk,1) is performed on the inspected

image Z; see Section 3. The LS estimates (ĉk,1, d̂k,1) are asymptotically equivalent to ML estimates in large samples

[27]. Moreover, they are unbiaised and follow the asymptotic bivariate Gaussian distributionĉk,1

d̂k,1

 ∼ N

ck,1

dk,1

 ,
 σ2

ck,1
σck,1dk,1

σck,1dk,1 σ2
dk,1


 , (28)

where σ2
ck,1

, σ2
dk,1

, σck,1dk,1 denote the variance of ĉk,1, variance of d̂k,1, and covariance between ĉk,1 and d̂k,1, respectively

(see also discussions in Section 6.1 for this covariance matrix). The parameters (ck,1, dk,1) would characterize an

unknown camera model. It is require to take into account the variability of LS estimates (ĉk,1, d̂k,1) in the analytic

establishment of performance of the GLRT.

By replacing unknown parameters (αk, ck,1, dk,1) by (α̂k, ĉk,1, d̂k,1) in the LR Λ(Ik,i) (15), the GLR Λ̂2(Ik,i) is given

by

Λ̂2(Ik,i) =
α̂k

2
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

−
√

2|Ik,i|
(√

ĉk,1α̂k + d̂k,1 −
√

ck,0α̂k + dk,0

)
. (29)
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Proposition 2. Under hypothesisH j, from the Delta method [15, theorem 11.2.14], the first two moments of the GLR

Λ̂2(Ik,i) can be approximated as

EH j

[
Λ̂2(Ik,i)

]
= mk, j (30)

VarH j

[
Λ̂2(Ik,i)

]
=

vk, j +
β2

k,1αk(αk + 2)

4

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
. (31)

Proof. of Proposition 2 is given in Appendix D.

For brevity, let denote ṽk, j = VarH j

[
Λ̂2(Ik,i)

]
. It can be noted that the second term in (31) aims to take into account

the variability of LS estimates (ĉk,1, d̂k,1). In virtue of Lindeberg CLT, the GLR Λ̂2(Z) =
∑K

k=1
∑Nb

i=1 Λ̂2(Ik,i) follows the

Gaussian distribution under each hypothesisH j

Λ̂2(Z)
d
→ N

(
m j, ṽ j

)
, (32)

where the expectation m j is given in (19) and the variance ṽ j is defined as

ṽ j =

K∑
k=1

Nbṽk, j. (33)

Finally, the GLRT δ̂?2 based on the normalized GLR Λ̂?
2 (Z) =

Λ̂2(Z)−m̂0√
ˆ̃v0

is written as

δ̂?2 (Z) =


H0 if Λ̂?

2 (Z) < τ̂?2

H1 if Λ̂?
2 (Z) ≥ τ̂?2

(34)

where the decision threshold τ̂?2 is the solution of the equation PH0

[
Λ̂?

2 (Z) ≥ τ̂?2
]

= α0 and m̂0 and ˆ̃v0 are estimates

of m0 and ṽ0 by replacing unknown parameters (αk, ck,1, dk,1) by (α̂k, ĉk,1, d̂k,1) in (19) and (33), respectively. From

the Slutsky’s theorem [15, theorem 11.2.11], the decision threshold and the power of the GLRT δ̂?2 are given in the

following theorem.

Theorem 2. When the image Z is tested against the known camera model S0 characterized by the parameters

(ck,0, dk,0), the decision threshold and the power of the GLRT δ̂?2 are given by

τ̂?2 = Φ−1(1 − α0) (35)

βδ̂?2
= 1 − Φ

m0 − m1 + τ̂?2
√

ṽ0
√

ṽ1

 . (36)

The statistical performance of the proposed GLRTs δ̂?1 and δ̂?2 is analytically provided. Moreover, they allow us to

warrant a prescribed false alarm rate and set the decision threshold independently of camera parameters (see (22) and

(35)). It is worth noting that the GLRT dealing with unknown parameters αk while the camera parameters (ck, j, dk, j)

are known can be interpreted as a closed hypothesis testing since the decision is made only between two known

14



α0

βδ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Theoretical LRT δ?

Approximating LRT δ?

GLRT δ̂?1
GLRT δ̂?2

Figure 4: Detection performance of proposed tests on simulated vectors with 1024 coefficients.
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Figure 5: Detection performance of proposed tests on simulated vectors with 4096 coefficients.

camera models S0 and S1. Meanwhile, the GLRT dealing with unknown camera parameters (ck,1, dk,1) becomes an

open hypothesis testing telling whether the given image is acquired by camera model S0 or not. The given image is

allowed to be acquired by an unknown camera model. Therefore, two proposed tests can be straightforwardly applied,

depending on the requirements of the operational context.

6. Numerical Experiments

In this paper, the wavelet-based denoising filter proposed in [31, 4] is employed to suppress image content be-

cause of its relative accuracy and computational efficiency. Besides, the selection of homogeneous blocks requires

an appropriate threshold λ. This threshold should be fixed independently of image content. The threshold λ is set at

λ = 0.5.

6.1. Detection Performance on Simulated Database

The implementation of the GLRT δ̂?2 requires to know the covariance matrix of LS estimates (ĉk,1, d̂k,1). However,

the ML estimates (α̂k, β̂k) are solved numerically, which causes a difficulty of defining their statistical properties. Thus

it seems impossible to establish the covariance matrix of (ĉk, d̂k) analytically. To overcome this difficulty, it is proposed

to estimate the parameters (ck, dk) on each image from 50 images taken by the camera model S0 since this camera
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Figure 6: Detection performance of proposed tests for 1024 coefficients at frequency (8, 8) extracted randomly from simulated images with different

quality factors.

α0

βδ

0 0.1 0.2 0.3 0.4 0.5 0.60.4

0.5

0.6

0.7

0.8

0.9

1

δ̂?1 : 4096 coefficients
δ̂?2 : 4096 coefficients
δ̂?1 : 1024 coefficients
δ̂?2 : 1024 coefficients

Figure 7: Detection performance of proposed tests for different number of coefficients at frequency (8, 8) of natural JPEG images taken by Canon

Ixus 70 and Nikon D200 camera models.

model is assumed to be available. Then the empirical covariance matrix can be calculated from previous couples

(ĉk, d̂k). Speaking rigorously, this is the covariance matrix characterizing the variability of the camera parameters

(ck,0, dk,0). By doing so, it is expected that the parameters (ĉk,1, d̂k,1) fall into the neighborhood of (ck,0, dk,0), namely

that the inspected image Z is acquired by the camera model S0. This leads us to exploit this covariance matrix in the

implementation of the GLRT δ̂?2 . This step is also performed in the test with real images.

The detection performance of proposed tests is first theoretically studied on simulated database. Suppose that

the camera models S0 and S1 are characterized by the parameters (c0, d0) = (11.8,−3.5) and (c1, d1) = (13.5,−4.5),

respectively. These parameters correspond to frequency (8, 8) of JPEG images taken by Canon Ixus 70 and Nikon

D200 camera models in the Dresden image database [32], respectively (see Figure 2). They are used to generate

randomly 5000 vectors of 1024 and 4096 coefficients under H0 and H1. Because this paper proposes to simplify

the LR Λ(Ik,i) to facilitate the study, it is desirable to compare the detection performance of the LRT based on the

approximating LR with the one based on the exact LR. The expectation and variance of the exact LR are calculated

numerically. Moreover, it is necessary to compare the detection performance of the proposed GLRTs with the LRT

since the GLRTs utilize ML estimates of unknown parameters, which may cause a loss of power. Figure 4 and Figure 5

show the detection performance of all proposed tests for 1024 and 4096 coefficients, respectively. For clarity, only
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Figure 8: Detection performance of the GLRT δ̂?2 for 4096 coefficients at different frequencies of natural JPEG images taken by Canon Ixus 70 and

Nikon D200 camera models.
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Figure 9: Comparison between the theoretical false alarm probability (FAP) and the empirical FAP, plotted as a function of decision threshold τ.

regions of interest are illustrated in the figures. It is worth noting that the loss of power between the theoretical LRT

and approximating LRT is negligible. Besides, a small loss of power is revealed between the GLRTs and LRT due

to the estimation of unknown parameters. Nevertheless this loss of power decreases when the number of coefficients

increases. It can be also noted that the loss of power between two GLRTs δ̂?1 and δ̂?2 is negligible, i.e. the variability

of estimates (ĉk,1, d̂k,1) are well taken into account in the GLRT δ̂?2 . The power function of all proposed tests is perfect

(e.g. βδ = 1) from 214 coefficients for any false alarm rate α0.

Moreover, it is desirable to study the detection performance of the proposed tests on simulated images that follow

the image processing pipeline as described in Section 2. To this end, suppose the camera models S0 and S1 are

characterized by the parameters (ã0, b̃0, γ0) = (0.1, 2, 2.2) and (ã1, b̃1, γ1) = (0.2, 2, 2.2). These parameters are used

together with the reference image lena to generate randomly 5000 images under H0 and H1. The simulated images

are then compressed with quality factor of 90 and 75. The detection performance of the proposed GLRTs for 1024

coefficients at frequency (8,8) extracted randomly from those simulated images is shown in Figure 6. As expected, a

small loss of power is revealed with the decline of quality factor.

17



Camera Model No. devices Resolution No. images

Canon Ixus 70 C 3 3072 × 2304 350

Fujifilm FinePix J50 F 3 3264 × 2448 350

Kodak M1063 K 5 3664 × 2748 550

Nikon Coolpix S710 N1 5 4352 × 3264 550

Nikon D200 N2 2 3872 × 2592 250

Nikon D70 N3 2 3008 × 2000 250

Pentax Optio A40 Pe 4 4000 × 3000 450

Praktica DCZ 5.9 Pr 5 2560 × 1920 550

Ricoh Capilo GX100 Ri 5 3648 × 2736 550

Rollei RCP-7325XS Ro 3 3072 × 2304 350

Sony DSC-H50 S 2 3456 × 2592 250∑
11 39 4450

Table 1: Camera Model Used in Experiments

6.2. Detection Performance on Two Canon Ixus 70 and Nikon D200 Camera Models

It is important to remind that the proposed GLRTs are designed in the framework of hypothesis testing theory

where the reference camera parameters (ck,0, dk,0) under hypothesis H0 are assumed to be known in advance. There-

fore, those parameters need to be defined accurately in practice. To this end, the parameters (ck, dk) are estimated

on 50 images of the camera model S0 and the reference parameter (ck,0, dk,0) is calculated as the average of previous

estimates (ĉk, d̂k). Evidently, using more images will get a better estimate but it is also less realistic. The number of

50 is a good trade-off.

To highlight the relevance of the proposed GLRTs, two Canon Ixus 70 and Nikon D200 camera models of the

Dresden image database [32] are chosen to conduct experiments. The Canon Ixus 70 and Nikon D200 cameras are

respectively set at H0 and H1. All available JPEG images of each camera model are used in this experiment. The

reference camera parameters are estimated as discussed above. The Figure 7 shows the detection performance of the

GLRTs δ̂?1 and δ̂?2 for 1024 and 4096 coefficients extracted randomly at frequency (8, 8) of natural JPEG images taken

by Canon Ixus 70 and Nikon D200 camera models. We can note a similar behavior to the detection performance

on simulated database. Besides, there is a small loss of power between the two GLRTs because different estimates

(ĉk,1, d̂k,1) used in the design of the GLRT δ̂?2 are still influenced by image content. Nevertheless, this loss of power also

decreases when the number of coefficients increases. Besides, Figure 8 illustrates detection performance of the GLRT

δ̂?2 for 4096 coefficients randomly extracted at different frequencies. It can be noted that the detection performance

decreases with the reverse zig-zag order.

Meanwhile, the Figure 9 shows the comparison between the theoretical and empirical false alarm probability,

which are plotted as a function of decision threshold τ. The two proposed GLRTs δ̂?1 and δ̂?2 show an ability of

guaranteeing a prescribed false alarm rate, even though there is a slight difference in some cases (typically α0 ≤ 10−3)
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Tested images

Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 26.54 20.42 * * * * * * * *

N1 * 84.61 10.56 * * * * * * * *

Pe * 7.79 82.04 * * * * * * * *

F * * * 91.67 6.63 * * * * * *

Ro * * * 22.92 100 * * * * * *

K * * * * * 99.81 14.15 * * * *

N3 * * * * * * 97.62 * * * *

N2 * * * * * * * 100 * * *

Pr * * * * * * * * 95.78 * *

Ri * * * * * * * * * 100 *

S * * * * * * * * * * 96.81

95.31

Table 2: Detection performance of proposed detector δ̂?2 (the symbol * represents values smaller than 2%)

due to the influence of image content and the inaccuracy of the CLT for modeling tails.

6.3. Detection Performance on a Large Image Database

Experiments are then conducted on a large database to verify the efficiency of the proposed approach. The public

Dresden image database [32] is chosen in our experiments. Technical specifications of the cameras are shown in Table

1, see more details in [32]. The database covers different devices per camera model, different imaged scenes, different

camera settings and different environmental conditions. All images are acquired with the highest available JPEG

quality setting and maximum available resolution. For each camera model, the set contains 50 images per camera

model for estimation of reference camera parameters and 100 images per device for testing, which are randomly

selected from the Dresden database.

Firstly, the GLRT δ̂?2 is used to verify whether a given image is acquired by the camera model of interest. The

decision threshold τ̂?2 is given by the Theorem 2 corresponding to the false alarm rate α0 = 10−5. If the normalized

GLR Λ̂?
2 (Z) is smaller than the decision threshold τ̂?2 , the hypothesisH0 is accepted, i.e. the given image is taken from

the camera model of interest. On the contrary, the hypothesis H1 is accepted. It is proposed to use the last 21 high

frequencies for the test. The detection performance of the test δ̂?2 is shown in Table 2. In this table, each camera model

is considered as hypothesis H0 (row) and all images (column) are tested against H0. The values in the table indicate

the percentage of images that are detected taken by the camera model H0. The table in this paper is not used in the

same way as in the classification in which the sum for each class yields 100%. The inspected image is brought into the

binary testing of the known camera modelH0 against the others, thus the sum of a class may not yield 100%. It could

lead to a scenario that an image is declared taken by at least two camera models. It can be noted from Table 2 that the
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Tested images

Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 98.26 * * * * * * 2.61 * * *

N1 * 100 3.97 * * * * * * * *

Pe * * 90.86 * * * * * * * *

F * * * 99.94 * * * * * * *

Ro * * * * 99.79 * * * * * *

K * * * * * 99.19 * * * * *

N3 * * * * * * 84.57 * * * *

N2 * * * * * * * 93.73 * * *

Pr * * * * * * * * 98.42 * *

Ri * * * * * * * * * 100 *

S * * * * * * * * * * 98.23

96.63

Table 3: Detection performance of SVM-based detector [32]

incorrect detection in some groups of camera models, such as (C,N1,Pe), (F,Ro), and (K,N3), is important. This may

be justified due to a similarity in JPEG compression scheme used in the camera. To deal with this scenario, a second

testing round involves performing the GLRT δ̂?1 on the camera models of conflict. The detection performance of the

test δ̂?1 is shown in Table 5. The images are almost correctly classified. It should be noted that the GLRT δ̂?1 aims to

give a decision rule between two different known camera models, thus the experiment on the diagonal of Table 5 is

not performed. This paper also presents the SVM-based detector for comparison, which has been already performed

in [32] on the Dresden database using 46 different features to capture characteristics of different camera components

of a digital camera. The detection performance of this SVM-based detector is shown in Table 3. The proposed

detector δ̂?2 is slightly equivalent to the SVM-based detector in terms of average correct detection performance but the

misclassification of the former is more severe. The PRNU-based detector [7] is also performed in this experiment.

This PRNU-based detector is only conducted on one device per model. Its detection performance is shown in Table

4. Overall, the two proposed detectors provide an equivalent detection performance compared with the other ones in

the literature, but the latter can not allow to guarantee a prescribed false alarm probability like the proposed detectors.

Remark 1. The present paper proposes to exploit the state-of-the-ar model of DCT coefficients provided in [23]. This

model is not only more accurate than prior-art models in the literature, but also is the only one that is mathematically

justified based on a statistical analysis of images’ properties according to the image processing pipeline, as provided

in [23]. Therefore, relying on the proposed model allows us to capture accurately statistics of DCT coefficients as

well as to analyze camera fingerprint that can be exploited for camera model identification.
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Tested images

Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 * * * * * * * * * *

N1 * 98.92 * * * * * * * * *

Pe * * 100 * * * * * * * *

F * * * 73.81 * * * * * * *

Ro * * * * 99.49 * * * * * *

K * * * * * 99.19 * * * * *

N3 * * * * * * 100 * * * *

N2 * * * * * * * 98.92 * * *

Pr * * * * * * * * 96.65 * *

Ri * * * * * * * * * 100 *

S * * * * * * * * * * 100

96.99

Table 4: Detection performance of PRNU-based detector [7]

H1

Cn2 N1 Pe F Ro K N3

H0

Cn2 - 0 3.52 - - - -

N1 0 - 3.13 - - - -

Pe 0 0 - - - - -

F - - - - 0 - -

Ro - - - 2.12 - - -

K - - - - - - 0

N3 - - - - - 0 -

Table 5: Detection performance of proposed detector δ̂?1

7. Conclusion

The goal of this paper is to design a statistical test for camera model identification from JPEG images within

hypothesis testing framework. The approach is based on the state-of-the-art model of DCT coefficients to capture

their statistical difference, which jointly results from different sensor noises and in-camera processing algorithms.

The parameters (c, d) characterizing the simplistic linear relation between α and β−1, which are two parameters of the

DCT coefficient model, are proposed to be exploited as camera fingerprint for camera model identification. Based on

the parametric model of DCT coefficients, this paper studies the most powerful LRT and proposes two GLRTs that

can be straightforwardly applied in practice. The strength of the proposed approach is that statistical performance of

the tests can be analytically established as well as they can warrant a prescribed false alarm rate while ensuring a high

detection performance.
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Appendix A. Relation between the Parameters (ã, b̃, γ) and (αp,q, βp,q)

Given an arbitrary image Z, the DCT operation is performed in each 8 × 8 block of Z as follows

Ip,q =
1
4

TpTq

7∑
m=0

7∑
n=0

zm,n

× cos
( (2m + 1)pπ

16

)
cos

( (2n + 1)qπ
16

)
, (A.1)

where zm,n denotes a pixel within a 8 × 8 block of Z, 0 ≤ m ≤ 7, 0 ≤ n ≤ 7 and Ip,q denotes the two-dimensional DCT

coefficient and

Tp =


1
√

2
for p = 0

1 for p > 0.
(A.2)

For the sake of simplification, it is assumed that the pixels are independent and identically distributed within each

8 × 8 block. By taking variance on the both sides of the equation (A.1), it follows that

Var
[
Ip,q

]
= Var

[
zm,n

]
(A.3)

Var
[
I2

p,q

]
= S p,qVar

[
z2

m,n

]
+

(
1 − S p,q

)
Var2[zm,n

]
, (A.4)

with

S p,q =
1
44 T 4

pT 4
q

7∑
m=0

7∑
n=0

cos4
( (2m + 1)pπ

16

)
cos4

( (2n + 1)qπ
16

)
. (A.5)

In fact, the proposed model of DCT coefficients (3) is based on the doubly stochastic model given in [33] that

takes into account the statistics of DCT coefficients in a block whose variance is constant and the variability of

block variance in a natural image. Given a constant block variance σ2
b, the AC coefficient I may be approximately

distributed as zero-mean Gaussian in virtue of the CLT. Besides, the block variance σ2
b can be approximately modeled

by the Gamma distribution G(α, β). As the pdf of I is symmetric, the odd moments vanish. Based on the law of total
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expectation, the short calculation shows that

Var
[
Ip,q

]
= EIp,q

[
I2

p,q

]
= Eσ2

b

[
EIp,q |σ

2
b

[
I2

p,q|σ
2
b

]]
= Eσ2

b

[
σ2

b

]
= αp,qβp,q (A.6)

Var
[
I2

p,q
]

= E
[
I4

p,q

]
− E2

[
I2

p,q

]
= Eσ2

b

[
3σ4

b

]
− α2

p,qβ
2
p,q

= 2α2
p,qβ

2
p,q + 3αp,qβ

2
p,q. (A.7)

On the other hand, it follows from [20] that

Var[zm,n] =
1
γ2 µ

2−2γ
zm,n (ãµγzm,n + b̃) (A.8)

Var
[
z2

m,n
]

=
4
γ2 µ

4−2γ
zm,n (ãµγzm,n + b̃). (A.9)

Consequently, one derives that

αp,qβp,q =
1
γ2 µ

2−2γ
zm,n (ãµγzm,n + b̃) (A.10)

(
S p,q + 1

)
αp,qβp,q + 3βp,q = 4S p,qµ

2
zm,n
. (A.11)

Resolving this system of equations, the relation between αp,q and β−1
p,q is given as

β−1
p,q =

(S p,q + 1)αp,q + 3

4b̃
2
γ S p,q

×

(√
γ2αp,qb̃

(S p,q + 1)αp,q + 3
4S p,q

+
ã2

4
−

ã
2

) 2
γ

. (A.12)

This relation is too complicated to exploit. Therefore, it is proposed to employ the polynomial expansion and only

keep the first two terms

β−1
p,q = cp,q αp,q + dp,q, (A.13)

where the parameters (cp,q, dp,q) depend on the parameters (ã, b̃, γ). Numerical experiments show that this simpli-

fied equation sufficiently characterizes the relation between the parameters (ã, b̃, γ) and (αp,q, βp,q) (see Figure 1 and

Figure 2).

Appendix B. Laplace’s Approximation of DCT Coefficient Model

Let us briefly describe the idea behind the Laplace’s approximation [29]. The Laplace’s method aims to provide

an approximation for integrals of the form

I =

∫
exp

(
− g(t)

)
dt, (B.1)

when the function g(t) reaches the global minimum at t∗. By using the Taylor expansion of the function g(t) at t∗, we

have

g(t) = g(t∗) +
g′′(t∗)

2
(t − t∗)2 + o((t − t∗)2), (B.2)
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where g′′(t) denotes the second derivative of the function g(t). Therefore, the integral I can be approximated as

I ≈ exp
(
− g(t∗)

) ∫
exp

[
−

g′′(t∗)
2

(t − t∗)2
]

dt. (B.3)

This integral takes the form of Gaussian integral. We derive

I ≈

√
2π
|g′′(t∗)|

exp
(
− g(t∗)

)
. (B.4)

A generalization has been made in [30] with an arbitrary function h(t)

I =

∫
h(t) exp

(
− g(t)

)
dt ≈

√
2π
|g′′(t∗)|

h(t∗) exp
(
− g(t∗)

)
. (B.5)

As described in [23], the DCT coefficient model fI(u) is rewritten as follows

fI(u) =
1

√
2πβαΓ(α)

∫ ∞

0
h(t) exp

(
− g(t∗)

)
dt (B.6)

where

g(t) =
t
β

+
u2

2t
and h(t) = tα−

3
2 . (B.7)

The function g(t) reaches the minimum at t∗ = |u|
√

β
2 and its second derivative is defined by g′′(t) = u2

t3 . Consequently,

the function fI(u) can be approximated as

fI(u) ≈
|u|α−1

(2β)
α
2 Γ(α)

exp

−|u|
√

2
β

 . (B.8)

It can be noted that this approximating model is a special case of the GΓ model [34] when γ = 1 (the variable γ is

given in [34, Eq. (6)]).

Appendix C. Expectation and Variance of the LR Λ(Ik,i) under HypothesisH j

It can be noted from (15) that it is necessary to calculate the expectation and variance of the random variable |I|.

Given a constant variance σ2
b, the random variable I is normally distributed with zero-mean and variance σ2

b. Thus,

the random variable |I| follows the half-Normal distribution [35]. Therefore, we obtain

EI|σ2
b

[
|I| | σ2

b

]
=

√
2
π
σb. (C.1)

Based on the law of total expectation, the mathematical expectation of |I| is given by

EI

[
|I|

]
= Eσ2

b

[
EI|σ2

b

[
|I| | σ2

b

]]
=

√
2
π
Eσ2

b
[σb]

=

√
2
π
β

1
2
Γ(α + 1

2 )
Γ(α)

. (C.2)
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Besides, the variance of |I| is given by

VarI
[
|I|

]
= EI

[
|I|2

]
− E2

I

[
|I|

]
= αβ −

2β
π

Γ2(α + 1
2 )

Γ2(α)
. (C.3)

Consequently, the expectation and variance of the LR Λ(Ik,i) under hypothesisH j can be defined by

EH j

[
Λ(Ik,i)

]
=
αk

2
log

β−1
k,1

β−1
k,0

−
2
√
π
β

1
2
k, j

Γ(αk + 1
2 )

Γ(αk)

(√
β−1

k,1 −

√
β−1

k,0

)
(C.4)

VarH j

[
Λ(Ik,i)

]
= 2

(√
β−1

k,1 −

√
β−1

k,0

)2

×
(
αkβk, j −

2βk, j

π

Γ2(αk + 1
2 )

Γ2(αk)

)
. (C.5)

Appendix D. Asymptotic Expectation and Variance of the GLR Λ̂2(Ik,i) under HypothesisH j

It is assumed that the variance of the estimate α̂k is negligible when the number of coefficients Nb is very large.

Thus it is proposed to treat the estimate α̂k as a constant αk. Besides, since the estimates (ĉk,1, d̂k,1) are consistent, the

asymptotic mathematical expectation of the GLR Λ̂2(Ik,i) under hypothesis H j does not change, i.e. EH j

[
Λ̂2(Ik,i)

]
=

mk, j.

Meanwhile, the variance of the GLR Λ̂2(Ik,i) needs to take into account the variability of the estimates (ĉk,1, d̂k,1).

Based on the definitions of mathematical expectation and variance, we have

EH j

[
ĉk,1α̂k + d̂k,1

]
= β−1

k,1 (D.1)

VarH j

[
ĉk,1α̂k + d̂k,1

]
= α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1 . (D.2)

Subsequently, from the Delta method [15, theorem 11.2.14], we derive that

VarH j

[
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

]
= VarH j

[
log

(
ĉk,1α̂k + d̂k,1

)]
=

VarH j

[
ĉk,1α̂k + d̂k,1

]
E2
H j

[
ĉk,1α̂k + d̂k,1

]
= β2

k,1

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
, (D.3)

and

VarH j

[√
ĉk,1α̂k + d̂k,1 −

√
ck,0α̂k + dk,0

]
= VarH j

[√
ĉk,1α̂k + d̂k,1

]
=

VarH j

[
ĉk,1α̂k + d̂k,1

]
4EH j

[
ĉk,1α̂k + d̂k,1

]
=
βk,1

4

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
. (D.4)
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Finally, the asymptotic variance of the GLR Λ̂2(Ik,i) can be given as

VarH j

[
Λ̂2(Ik,i)

]
=
α2

k

4
VarH j

[
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

]
+ 2VarH j

[√
ĉk,1α̂k + d̂k,1 −

√
ck,0α̂k + dk,0

]
EH j

[
|I|2

]
+ 2E2

H j

[√
ĉk,1α̂k + d̂k,1 −

√
ck,0α̂k + dk,0

]
VarH j

[
|I|2

]
=
β2

k,1αk(αk + 2)

4

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
+ 2

(√
β−1

k,1 −

√
β−1

k,0

)2(
αkβk, j −

2βk, j

π

Γ2(αk + 1
2 )

Γ2(αk)

)
. (D.5)
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