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Abstract

The goal of this paper is to design a statistical test for the camera model identification problem. The approach

is based on a generalized noise model that is developed by following the image processing pipeline of the digital

camera. More specifically, this model is given by starting from the heteroscedastic noise model that describes the

linear relation between the expectation and variance of a RAW pixel and taking into account the non-linear effect

of gamma correction. The generalized noise model characterizes very accurately a rendered natural image after in-

camera post-acquisition processes up to the JPEG compression. In the present paper the parameters that are specified

in the generalized noise model are used as camera fingerprint to identify camera models from a digital image. The

camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where

all model parameters are perfectly known, the Likelihood Ratio Test is presented and its statistical performances are

theoretically established. In practice when the model parameters are unknown, two Generalized Likelihood Ratio

Tests are designed to deal with this difficulty such that they can meet a prescribed false alarm probability while

ensuring a high detection performance. Numerical results on simulated images and real natural JPEG images highlight

the relevance of the proposed approach.
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Parameters.
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1. Introduction

Digital forensics has received a great attention from law enforcement agencies and academic researchers in the past

decade. Because of dramatic advancement in computing and network technologies, the accessibility and transmission

of digital images have been increased remarkably. Digital images can be easily edited, altered or falsified because

of the large availability of image editing software tools. Consequently, the reliability and trustworthiness of digital

images have been questioned when used as evidence in legal and security domains. Reliable forensic methods are

urgently needed by law enforcement agencies to restore the trust to digital images.

1.1. State of the Art

Generally, digital image forensics involves two key problems: image origin identification and image forgery de-

tection (see [1] and the references therein for a detailed introduction). The problem of image origin identification aims

at verifying whether a given image was acquired with a specific camera, or at determining the camera model/brand as

well as types of imaging mechanism (e.g. scanners, cell-phone cameras, or computer graphics). The image forgery

detection aims at detecting any act of manipulation such as splicing, removal or adding in an image. There are two

approaches to address these problems. Active approach such as digital signatures [2] and digital watermarking [3]

has some limitations because a dedicated information has to be embedded during the creation of an image, which

increases the production cost of digital cameras, and the credibility of information embedded in the image remains

questionable. Passive approaches has been increasingly studied in the past decade since it does not impose any con-

straint and does not require any prior information. Forensic analysts have only the suspect image at their disposal

and must explore useful information from that image to gather forensic evidence, trace the acquisition device and

detect any act of manipulation. Passive approaches are based on internal traces left by the camera in a given image.

These internal traces can be provided by investigating the image acquisition pipeline; see [4, 5] for an overview of

the structure and processing steps of a typical digital camera. Every step from real-world scene acquisition to image

storage can provide clues for forensic analysis.

In image origin identification problem, it is important to distinguish the problem of camera instance identification

and the problem of camera model/brand identification. More specifically, fingerprints used for camera instance iden-

tification should capture individuality, especially different cameras of the very same model. For camera model/brand

identification, it is necessary to exploit fingerprints that are shared between cameras of the same model/brand but

discriminative for different any other camera models/brands. The present proposes a novel method that belong to the

passive forensic methods for which prior-arts can be divided into two categories.

Methods in the first category rely on the assumption that there are differences in image processing techniques and

component technologies between different camera models. Lens aberration [6], Color Filter Array (CFA) patterns

with interpolation algorithms [7, 8, 9, 10] and JPEG compression parameters [11] are considered as influential fac-

tors for camera model identification. Using these factors, a forensic feature set is provided and used in a machine
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learning algorithm. The main challenge for this approach is that the image processing techniques remain identical or

similar, and the components produced by a few manufacturers are shared among camera models. Moreover, as in all

applications of machine learning, it is difficult to select an accurate feature set.

Methods in the second category aim at identifying unique characteristics or fingerprints of the acquisition camera

device. Sensor Pattern Noise (SPN) is caused by imperfections during the manufacturing process and non-uniformity

of photo-electronic conversion due to inhomogeneity of silicon wafers. This is the unique fingerprint which the

methods are mainly based on to identify the camera device. The reader is referred to [12] for the first version of this

work and [13, 14, 15] for the improved version. Two main components of the SPN are the Fixed Pattern Noise (FPN)

and the Photo-Response Non-Uniformity (PRNU) noise. The FPN used in [16] for camera device identification can

be compensated by subtracting a dark frame from the output image. Therefore, the FPN is not a robust fingerprint

and no longer used in later works. The PRNU, which is directly exploited in [13, 14, 15], can be also used for camera

model identification as proposed in [17] based on the assumption that that fingerprint obtained from images in the

TIFF or JPEG format contains traces of post-acquisition processes (e.g. demosaicing) that carry information about

the camera model. The ability to extract this noise reliably from a given image is the main challenge in this category

due to interference of non-unique operations (e.g. demosaicing and JPEG compression).

1.2. Main Contributions of the Paper

The present paper addresses the problem of camera model identification using a passive approach. In the literature,

a vast majority of prior work are based on machine learning methods to design a classifier that distinguish camera

models. The main drawback is that this framework requires an expensive training stage that comprises many images

with different characteristics (e.g. image content or camera settings) from various sources to represent a real-world

situation, which might be hardly available in practical forensic situations. Another drawback of all machine learning

methods is that the assessment of their statistical performance still remains an open problem [18]. Hence, within this

framework, the performance of the classifier is only evaluated empirically on a large image database and it is difficult

to warrant a prescribed false alarm rate.

The approach proposed in this paper is based on hypothesis testing theory [19]. While the application of hypothesis

testing is often more complex than the training of a classifier using machine learning methods, this first approach has

indisputable advantages, see for instance [20] for discussion in steganalysis. Typically, this approach allows the design

of a statistical test that is optimal with respect to a desired criterion, for instance minimizing false-alarm probability

and maximizing detection power and, very often, permits the establishing of optimal test theoretical properties, that is

the probabilities of false-alarm and miss detection. Besides, hypothesis testing usually provides valuable insight into

the problem of how each parameter impact the performance of the optimal statistical test.

However, one of the main challenge to apply accurately hypothesis testing methods is that they requires an accurate

statistical image model. In our prior works, hypothesis testing framework has already been exploited address the

problem of camera model identification. More precisely, the first camera model identification method proposed within



T. H. Thai, F. Retraint, R. Cogranne / Digital Signal Processing 00 (2019) 1–24 4

this framework has been targeting RAW images using heteroscedastic noise model [21, 23]. This noise model takes

into account the contribution of Poisson noise in the RAW image acquisition process by characterizing the noise

variance as a linear function of RAW pixel’s expectation [24, 25]. However, the RAW format is hardly available in

majority of practical forensics applications and most cameras output digital directly in JPEG format. Hence, for a

more practical application, we have recently proposed an approach for camera model identification using Discrete

Cosine Transform (DCT) coefficients from JPEG images [22, 26]. Those works exploited a state-of-the-art statistical

model of DCT coefficients provided in [27, 28] that was obtained by studying and modeling the main steps involved

in digital imaging of typical digital cameras [29].

It is important to note that the two main differences between the first approach proposed in [21, 23] and the latter one

proposed in [22, 26] is that 1) the former exploits noise statistics in the spatial domain while the latter directly uses

the DCT coefficients and 2) those approach are targeting different image format, RAW image for the first ones and

JPEG compressed images for the latter ones.

It should be noted that, to the best of our knowledges, the problem camera device identification from rendered

natural images (not RAW) in the spatial domain has not been studied within the framework of hypothesis testing

theory. The main advantages of using pixel in spatial domain is that this information is always available regardless

the file format and/or compression scheme. The goal of this paper is thus to study the design of an optimal detector,

as referred to in [30], from rendered images and using pixel in spatial domain.

Recently, the study of noise statistics in the spatial domain of a rendered digital image has been performed in our

previous research [31]. Since the heteroscedastic noise model characterizes accurately a RAW image, it is proposed

to start from that model and take into account effects of post-acquisition processes to develop a so-called generalized

signal-dependent noise model that has not been proposed yet in the literature. This noise model describes a non-linear

relation between output pixel’s expectation and variance. The generalized noise model can characterize an original

rendered image format accurately, see more details in [31]. Similar to [21], the present paper exploits the generalized

noise model to design a statistical test within hypothesis testing framework for camera model identification from JPEG

images. The main contributions are the following:

• The approach is based on the generalized noise model that characterizes accurately the statistical properties of

rendered digital images, after in-camera post-acquisition processes. Three parameters (ã, b̃, γ) that are specified

in the generalized noise model are exploited as camera fingerprint for camera model identification.

• Stating the camera model identification problem in hypothesis testing framework, the paper proposes the op-

timal detector given by the Likelihood Ratio Test (LRT) in an ideal context where all model parameters are

known. This optimal detector serves as an upper-bound of any statistical test for the camera model identifica-

tion problem.

• In the practical context, the model parameters are unknown. The paper proposes two Generalized Likelihood

Ratio Tests (GLRTs) to deal with the difficulty of unknown parameters. The statistical performance of the



T. H. Thai, F. Retraint, R. Cogranne / Digital Signal Processing 00 (2019) 1–24 5

ã
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Figure 1: Estimated parameters (ã, b̃) on JPEG images issued from Canon Ixus 70 camera [32] with different camera settings.

GLRTs is analytically established. Moreover, the proposed GLRTs allow us to guarantee a prescribed false-

alarm rate and the setting of decision threshold independently of the image content, which is crucial in an

operational context. Numerical experiments also show that the loss of power of GLRTs compared with the LRT

is negligible.

1.3. Organization of the Paper

The paper is organized as follows. Section 2 presents the generalized noise model and proposes the camera fin-

gerprint that is further exploited for camera model identification. Section 3 states the camera model identification

problem in the framework of hypothesis testing theory and studies the theoretical LRT assuming that all model pa-

rameters are known in advance. In practice, those parameters are unknown when inspecting a digital image. Section

4 designs two GLRTs to address the difficulty of unknown parameters. Section 5 presents numerical results of two

proposed GLRTs on simulated and real natural JPEG images. Finally, Section 6 concludes the paper.

2. Camera Fingerprint

This section briefly describes main steps in the image processing pipeline of a digital camera and presents the

generalized noise model that has been provided in [31]. Based on this noise model, a new camera fingerprint is

proposed for camera model identification.

A typical image processing pipeline includes two stages: RAW image acquisition and post-acquisition processes

(e.g. demosaicing, white-balancing and gamma correction), see more details in [4, 29, 27]. The output image is a

full-color high-quality image, referred to as TIFF image. JPEG compression can also be performed for ease of storage

and transmission.

The study of noise statistics in a natural image in TIFF or JPEG format has been accomplished in our previous

work [31]. The RAW image can be characterized accurately by the heteroscedastic noise model since it takes into
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Figure 2: Estimated parameters (ã, b̃) on JPEG images issued from different devices of Canon Ixus 70 model [32].

account the contribution of Poisson noise due to incident photons [21, 24, 25]. The heteroscedastic noise model is

given as

xi ∼ N
(
µxi , aµxi + b

)
, (1)

where xi denotes a RAW pixel and µX denotes the expectation of a random variable X. The parameters (a, b) was

proposed in our previous work [21] as fingerprint for camera model identification from RAW images. Then, it is pro-

posed to start from the heteroscedastic noise model to study noise statistics in TIFF image. Assuming the operations

of demosaicing and white-balancing are linear [4] and taking into account the non-linear effect of gamma correction,

a so-called generalized noise model is given as

σ2
zi
, f (µzi ; ã, b̃, γ) =

1
γ2 µ

2−2γ
zi (ãµγzi + b̃), (2)

where zi denotes the output pixel, σ2
X denotes the variance of a random variable X, γ is the correction factor (typically

γ = 2.2), and (ã, b̃) differ from the parameters (a, b) due to the operations of demosaicing and white balancing. It

is shown in [31] that the generalized noise model is also relevant to characterize JPEG images with moderate-to-

high quality factors (QF ≥ 70). The model parameters (ã, b̃, γ) can be estimated by the Maximum Likelihood (ML)

approach, see details in [31].

For camera model identification problem, it is necessary to evaluate the variability of the camera fingerprint

for different camera settings and different devices per camera model, and to verify their discriminability for different

camera models. Figure 1 shows the estimated parameters (ã, b̃) on JPEG images of Canon Ixus 70 camera for different

camera settings and Figure 2 shows the estimated parameters (ã, b̃) on JPEG images acquired by different devices of

Canon Ixus 70 model. Furthermore, Figure 3 illustrates the discriminability of the parameters for different camera

models [31]. It is worth noting that the parameters (ã, b̃) are invariant to imaged scenes and camera settings and

discriminative for different camera models. Since the difference between estimated gamma factors of different camera

models is small, we do not report them in this paper. The parameters (ã, b̃, γ) are relevant to be exploited as camera
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Figure 3: Estimated parameters (ã, b̃) on JPEG images issued from different camera models, see [31] .

fingerprint to identify camera models.

3. Optimal Detector for Camera Model Identification Problem

The application of hypothesis testing theory requires to know the statistical distribution of a JPEG pixel. To

this end, it is necessary to model the JPEG compression chain rigorously. JPEG compression mainly involves the

Discrete Cosine Transform (DCT) and the quantization in the DCT domain, while the JPEG decompression performs

dequantization and inverse DCT operation to return to spatial domain [33]. In general, the reconstructed image from

a compressed file usually differs from the original image. There are two fundamental factors involved in this spatial-

domain error [34]: the DCT basis vectors, and quantization error introduced in the DCT domain. The spatial-domain

error at a pixel location is a weighted sum of 64 DCT-domain quantization errors within a 8 × 8 block. Providing an

exact statistical distribution of the JPEG pixel is a challenging task due to the difficulty of establishing mathematically

the model of DCT coefficients [29], characterizing the effect of quantization in the DCT domain [27, 28], and deriving

the distribution of the sum of those random variables.

To overcome those difficulties, it is proposed to invoke the Lindeberg Central Limit Theorem (CLT) [19, theorem

11.2.5]. A preprocessing stage involves dividing the JPEG image Z into K non-overlapping homogeneous segments

S k of size nk, k ∈ {1, . . . ,K}. In each segment S k, the pixels zk,i, i ∈ {1, . . . , nk} are assumed to be independent

and identically distributed. Such segmentation technique is detailed in [31]. In fact, this preprocessing stage is also

performed for estimation of parameters (ã, b̃, γ). The JPEG pixel zk,i in the segment S k can be decomposed as

zk,i = µk + ηzk,i , (3)

where µk denotes the expectation of all pixels in the segment S k and ηzk,i accounts for the spatial-domain noise after

JPEG compression. Since the DCT can approximately decorrelate the input image [34], the spatial-domain noise ηzk,i
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Figure 4: Empirical distribution of noise residuals in a segment of a natural JPEG image compared with theoretical Gaussian distribution.

in the decompressed JPEG image can be seen as a linear combination of independent random variables. In virtue of

the Lindeberg CLT, the noise ηzk,i can be approximately modeled by the Gaussian distribution with zero-mean [34].

Meanwhile, the variance of noise ηzk,i depends on pixel’s expectation µk according to the generalized noise model

(2). Figure 4 shows the empirical distribution of noise residuals in a segment extracted from a natural JPEG image,

compared with theoretical Gaussian distribution. Therefore, it is proposed to model the JPEG pixel zk,i as

zk,i ∼ N
(
µk, f (µk; ã, b̃, γ)

)
. (4)

3.1. Hypothesis Testing Formulation

Let analyze two camera models S0 and S1. Each camera model S j, j ∈ {0, 1} is characterized by three parameters

(ã j, b̃ j, γ j). For obvious reasons, it is assumed that (ã0, b̃0, γ0) , (ã1, b̃1, γ1). In a binary hypothesis testing, the

inspected image Z is either acquired by camera model S0 or camera model S1. The goal of the test is to decide

between two following hypotheses: ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , nk}
H0 =

{
zk,i ∼ N

(
µk, σ

2
k,0

)}
H1 =

{
zk,i ∼ N

(
µk, σ

2
k,1

)}
,

(5)

where σ2
k, j = f (µk; ã j, b̃ j, γ j) is the noise variance with respect to the expectation µk under hypothesis H j. As pre-

viously explained, this paper focuses on designing a test that allows us to guarantee a prescribed false-alarm rate.

Hence, let

Kα0 =
{
δ : sup

(µ,ã0,b̃0,γ0)
PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests whose false alarm probability is upper-bounded by the rate α0. Here µ = (µ1, . . . , µK) is the

mean vector and PH j

[
E
]

stands for the probability of event E under hypothesisH j, j ∈ {0, 1}, and the supremum over
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(µ, ã0, b̃0, γ0) has to be understood as whatever model parameters might be. Among all the tests in the class Kα0 , it is

aimed at finding a test δ which maximizes the power function βδ, defined by the correct detection probability:

βδ = PH1

[
δ(Z) = H1

]
. (6)

The problem (5) highlights three fundamental difficulties of the camera model identification. First, even when

all model parameters (µ, ã j, b̃ j, γ j) are known, the most powerful test, namely the LRT, has never been studied in the

literature. The second difficulty concerns unknown image parameters µ in practice. Finally, the camera parameters

(ã j, b̃ j, γ j) are also unknown, thus the hypothesisH j becomes composite.

Suppose that the camera model S0 is available, thus forensic analysts can have access to its characteristics, or its

fingerprints, i.e. its camera parameters (ã0, b̃0, γ0) can be known. Therefore, they can make a decision by checking

whether the image under investigation Z contains the fingerprint (ã0, b̃0, γ0). In other words, it is proposed to solve

the problem (5) when the alternative hypothesisH1 is composite, i.e. the camera parameters (ã1, b̃1, γ1) are unknown.

It can be noted that a test that maximizes the correct detection probability whatever (ã1, b̃1, γ1) might scarcely exist.

The main goal of this paper is to study the LRT and to design the GLRTs to address the second and third difficulties.

3.2. Likelihood Ratio Test for Two Simple Hypotheses

When all model parameters are known, in virtue of the Neyman-Pearson lemma [19, theorem 3.2.1], the most

powerful test δ solving the problem (5) is the LRT given by the following decision rule

δ(Z) =


H0 if Λ(Z) =

K∑
k=1

nk∑
i=1

Λ(zk,i) < τ

H1 if Λ(Z) =

K∑
k=1

nk∑
i=1

Λ(zk,i) ≥ τ,

(7)

where, to ensure that the LRT is in the class Kα0 , the decision threshold τ is the solution of the equation PH0

[
Λ(Z) ≥

τ
]

= α0 and the Likelihood Ratio (LR) of one observation zk,i is defined by

Λ(zk,i) = log

1√
2πσ2

k,1

exp
[
−

(zk,i−µk)2

2σ2
k,1

]
1√

2πσ2
k,0

exp
[
−

(zk,i−µk)2

2σ2
k,0

]
=

1
2

log
(σ2

k,0

σ2
k,1

)
+

1
2

( 1
σ2

k,0

−
1
σ2

k,1

)
(zk,i − µk)2. (8)

In order to analytically establish the statistical performance of the LRT, it is necessary to characterize the statistical

distribution of the LR Λ(Z) under each hypothesisH j. To this end, the approach is based on the Lindeberg CLT [19,

theorem 11.2.5] that requires to calculate the expectation and variance of Λ(zk,i).
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Proposition 1. Under hypothesisH j, the first two moments of the LR Λ(zk,i) is given by

mk, j , EH j

[
Λ(zk,i)

]
=

1
2

log
(σ2

k,0

σ2
k,1

)
+

1
2

( 1
σ2

k,0

−
1
σ2

k,1

)
σ2

k, j (9)

vk, j , VarH j

[
Λ(zk,i)

]
=

1
2

( 1
σ2

k,0

−
1
σ2

k,1

)2
σ4

k, j, (10)

where EH j [·] and VarH j [·] denote respectively the mathematical expectation and variance under hypothesisH j.

Proof. The proof of Proposition 1 is given in Appendix A.

In virtue of Lindeberg CLT, the statistical distribution of the LR Λ(Z) under hypothesisH j is derived as

Λ(Z)
D
−→ N

(
m j, v j

)
, (11)

where the notation
D
−→ denotes the convergence in distribution and

m j =

K∑
k=1

nk∑
i=1

mk, j =

K∑
k=1

nkmk, j (12)

v j =

K∑
k=1

nk∑
i=1

vk, j =

K∑
k=1

nkvk, j. (13)

Since a natural image is heterogeneous, it is proposed to normalize the LR Λ(Z) in order to set the decision threshold

independently of the image content. The normalized LR is defined by

Λ?(Z) =
Λ(Z) − m0
√

v0
. (14)

The LR Λ(Z) differs from the normalized LR Λ?(Z) only by an additive constant and a multiplicative constant, which

does not change the decision rule given by the LRT. Accordingly, the corresponding test δ? is rewritten as follows

δ?(Z) =


H0 if Λ?(Z) < τ?

H1 if Λ?(Z) ≥ τ?,
(15)

where the decision threshold τ? is the solution of the equation PH0

[
Λ?(Z) ≥ τ?

]
= α0. The decision threshold τ? and

the power function βδ? are given in the following theorem:

Theorem 1. In an ideal context where all the model parameters (µ, ã j, b̃ j, γ) are known in advance, the decision

threshold and the power function of the LRT δ? are given by

τ? = Φ−1(1 − α0) (16)

βδ? = 1 − Φ

(
m0 − m1 + τ?

√
v0

√
v1

)
, (17)

where Φ(·) and Φ−1(·) denotes respectively the cumulative distribution function of the standard Gaussian random

variable and its inverse.
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Proof. For the sake of clarity, the proof of Theorem 1 is given in Appendix B.

From Theorem 1, it can be noted that the decision threshold τ? is now independent of the image content. Therefore

the LRT δ? can be applied to any natural image. The LRT δ? allows us to warrant a prescribed false alarm rate and

maximizes the correct detection probability. Since its statistical performance is analytically established, it can provide

an analytically predictable result for any false alarm rate α0. The detection power βδ? serves as an upper-bound of any

statistical test for the camera model identification problem.

4. Practical Context: Generalized Likelihood Ratio Test

The scenario studied in the LRT may not be realistic because the parameters (µk, ã1, b̃1, γ1) are unknown in prac-

tice. This section designs two GLRTs to deal with the difficulty of unknown parameters. It is proposed to replace

unknown parameters by their ML estimates in the LR Λ(zk,i) (8).

4.1. Generalized Likelihood Ratio Test with Unknown Image Parameters

The GLRT designed in this subsection deals with the difficulty of unknown image parameters µk assuming that the

camera parameters (ã0, b̃0, γ0) and (ã1, b̃1, γ1) are known, i.e. the inspected image Z is either acquired by the known

camera model S0 or the known camera model S1.

By replacing the unknown parameter µk by its estimate µ̂k in the LR Λ(zk,i) (8), the Generalized Likelihood Ratio

(GLR) Λ̂1(zk,i) is given by

Λ̂1(zk,i) =
1
2

log
( σ̂2

k,0

σ̂2
k,1

)
+

1
2

( 1
σ̂2

k,0

−
1
σ̂2

k,1

)
(zk,i − µ̂k)2, (18)

where σ̂2
k, j = f (µ̂k; ã j, b̃ j, γ j). In the estimation method proposed in [31], it is assumed that the variance of the

estimates µ̂k is negligible when the number of pixels is large. Therefore, the mathematical expectation and variance

of the GLR Λ̂1(zk,i) do not change. Consequently, the statistical distribution of the GLR Λ̂1(Z) =
∑K

k=1
∑nk

i=1 Λ̂1(zk,i)

under hypothesisH j can be approximated as

Λ̂1(Z)
D
−→ N

(
m j, v j

)
, (19)

where the expectation m j and v j are given respectively in (12) and (13).

Similarly, the normalized GLR Λ̂?
1 (Z) can be defined as Λ̂?

1 (Z) =
Λ̂1(Z)−m0√

v0
. However, the expectation m0 and

variance v0 can not be defined in practice since the parameters µk are unknown. Therefore, it is proposed to replace

µk by µ̂k in (12) and (13) to obtain estimates of m0 and v0, denoted m̂0 and v̂0. The normalized GLR Λ̂?
1 (Z) is given in

practice as

Λ̂?
1 (Z) =

Λ̂1(Z) − m̂0
√

v̂0
. (20)
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Since the variance of the estimates m̂0 and v̂0 is negligible, it follows that
Λ̂?

1 (Z)
D
−→ N(0, 1) under H0,

Λ̂?
1 (Z)

D
−→ N

(
m1 − m0
√

v0
,

v1

v0

)
under H1.

(21)

Finally, the GLRT δ̂?1 based on the normalized GLR Λ̂?
1 (Z) is given by

δ̂?1 (Z) =


H0 if Λ̂?

1 (Z) < τ̂?1

H1 if Λ̂?
1 (Z) ≥ τ̂?1 ,

(22)

where the decision threshold τ̂?1 is the solution of the equation PH0

[
Λ̂?

1 (Z) ≥ τ̂?1

]
= α0. From (21), the decision

threshold and the power of the GLRT δ̂?1 can be accordingly defined as in the Theorem 1.

4.2. Generalized Likelihood Ratio Test with Unknown Image and Camera Parameters

This subsection deals with a scenario where the image parameters µk and the camera parameters (ã1, b̃1, γ) are

unknown. Thus the hypothesisH1 becomes composite. The GLRT designed in this subsection aims to verify whether

the inspected image Z is acquired by the camera model S0. The inspected image Z is allowed to be taken from an

unknown camera model.

Before designing the GLRT, the ML estimation of camera parameters (ã1, b̃1, γ1) is performed on the inspected

image Z; see details in [31]. Here we set γ1 = γ0 and the estimation problem with three parameters is reduced

to the one with two parameters (ã1, b̃1). The ML estimates ( ˆ̃a1,
ˆ̃b1) are asymptotically consistent [19], i.e. they

asymptotically converge in probability to their true value: ˆ̃a1
P
−→ ã1 and ˆ̃b1

P
−→ b̃1. The parameters (ã1, b̃1, γ1) would

characterize a certains unknown camera model. Furthermore, the ML estimates ( ˆ̃a1,
ˆ̃b1) exhibit a certain variability.

Let σ2
ã1

, σ2
b̃1

, σã1b̃1
denote respectively the variance of ˆ̃a1, the variance of ˆ̃b1 and the covariance between ˆ̃a1 and ˆ̃b1.

By replacing (µk, ã1, b̃1) by (µ̂k, ˆ̃a1,
ˆ̃b1) in (8), the GLR Λ̂2(zk,i) is now given by

Λ̂2(zk,i) =
1
2

log
f (µ̂k; ã0, b̃0, γ0)

f (µ̂k; ˆ̃a1,
ˆ̃b1, γ1)

+
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1) − f (µ̂k; ã0, b̃0, γ0)

2 f (µ̂k; ˆ̃a1,
ˆ̃b1, γ1) f (µ̂k; ã0, b̃0, γ0)

(zk,i − µ̂k)2. (23)

Proposition 2. Under hypothesisH j, using the Delta method [19, theorem 11.2.14], the first two moments of the GLR

Λ̂2(zk,i) can be approximated as

EH j

[
Λ̂2(zk,i)

]
= mk, j (24)

VarH j

[
Λ̂2(zk,i)

]
= vk, j +

1
4

VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

σ4
k,1

+
3
4

VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

σ8
k,1

σ4
k, j, (25)
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where VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

is given by

VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

=
µ

4−2γ1
k

γ4
1

σ2
ã1

+
µ

4−4γ1
k

γ4
1

σ2
b̃1

+ 2
µ

4−3γ1
k

γ4
1

σã1b̃1
. (26)

Proof. The proof of Proposition 2 is given in Appendix C.

It can be noted that the mathematical expectation of the GLR Λ̂2(zk,i) does not change. Besides, the second and

the last terms in (25) aim to take into account the variability of ( ˆ̃a1,
ˆ̃b1) in the variance of the GLR Λ̂2(zk,i). For brevity,

let denote ṽk, j = VarH j

[
Λ̂2(zk,i)

]
. In virtue of the Lindeberg CLT, the GLR Λ̂2(Z) =

∑K
k=1

∑nk
i=1 Λ̂2(zk,i) follows the

Gaussian distribution under hypothesisH j

Λ̂2(Z)
D
−→ N

(
m j, ṽ j

)
. (27)

where the expectation m j is given in (12) and the variance ṽ j =
∑K

k=1 nkṽk, j.

Finally, the GLRT δ̂?2 based on the normalized GLR Λ̂?
2 (Z) =

Λ̂2(Z)−m̂0√
ˆ̃v0

is written as

δ̂?2 (Z) =


H0 if Λ̂?

2 (Z) < τ̂?2

H1 if Λ̂?
2 (Z) ≥ τ̂?2 ,

(28)

where m̂0 and ˆ̃v0 are estimates of m0 and ṽ0 by replacing unknown parameters (µk, ã1, b̃1) by (µ̂k, ˆ̃a1,
ˆ̃b1), and the

decision threshold τ̂?2 is the solution of the equation PH0

[
Λ̂?

2 (Z) ≥ τ̂?2
]

= α0.

Theorem 2. When the image Z is tested against the known camera modelS0 characterized by (ã0, b̃0, γ0), the decision

threshold and the power function of the GLRT δ̂?2 are given by

τ̂?2 = Φ−1(1 − α0) (29)

βδ̂?2
= 1 − Φ

m0 − m1 + τ̂?2
√

ṽ0
√

ṽ1

 . (30)

Proof. The proof of Theorem 2 is given in Appendix D.

The statistical performance of the proposed GLRTs δ̂?1 and δ̂?2 is analytically provided. Moreover, they allow us

to warrant a prescribed false alarm rate and set the decision threshold independently of image content (see (16) and

(29)). It is worth noting that the GLRT δ̂?1 can be interpreted as a closed hypothesis testing since the decision is made

only between two known camera models S0 and S1. Meanwhile, the GLRT δ̂?2 becomes an open hypothesis testing

because it aims to verify whether the given image is acquired by camera model S0 or not. These two proposed GLRTs

can be straightforwardly applied in practice, depending on the requirements of the operational context.
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Figure 5: Detection performance of the proposed tests for 50 and 100 pixels extracted randomly from simulated JPEG images with quality factor

100.

5. Numerical Experiments

5.1. Receiver Operating Characteristic Curve on Simulated Database

The implementation of the GLRT δ̂?2 requires to know the covariance matrix of ML estimates ( ˆ̃a1,
ˆ̃b1). However,

the ML estimates ( ˆ̃a1,
ˆ̃b1) are solved numerically [31], which causes a difficulty of defining their statistical properties.

To overcome this difficulty, firstly it is proposed to estimate the parameters (ã, b̃, γ) on each image from 50 images

taken by the camera modelS0 since this camera model is assumed to be available. These images are selected randomly

to cover different image contents. Then the averaged gamma is calculated over 50 previous gamma values. To reduce

the variability of the estimates, we set the parameter γ to the averaged gamma value and re-estimate the parameters

(ã, b̃) on each image. Consequently, the empirical covariance matrix can be calculated from 50 couples ( ˆ̃a, ˆ̃b). This

empirical covariance matrix is used for the GLRT δ̂?2 . Strictly speaking, this covariance matrix characterizes the

variability of the camera parameters (ã0, b̃0). By doing so, it is expected that the estimates ( ˆ̃a1,
ˆ̃b1) would fall into the

neighborhood of the camera parameters (ã0, b̃0). In other words, the inspected image Z is expected to be taken by the

camera model S0. This step is also performed in the test with real images.

The detection performance of the proposed tests is first theoretically studied on a simulated database. Suppose

the camera model S0 and S1 are respectively characterized by (ã0, b̃0, γ0) = (−0.0012, 0.11, 0.8) and (ã1, b̃1, γ1) =

(−0.0025, 0.20, 0.85). These parameters respectively correspond to Nikon D70 and Nikon D200 camera models in the

Dresden image database [32], see Figure 3 and also details in [31]. From a simple synthetic image given in [25],

those camera parameters are used with the generalized noise model (2) to generate randomly 5000 images for camera

model S0 and 5000 images for camera model S1. These images are further compressed with different quality factors

using the software imagemagick. Therefore, these images could follow the image processing pipeline as described in

Section 2.

Firstly, it is desirable to compare the detection performance of the practical GLRTs with the theoretical LRT
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Figure 6: Detection performance of the GLRT δ̂?2 for 100 pixels extracted randomly from simulated JPEG images with different quality factors.

to observe the loss of power in the GLRTs caused by the estimation error of unknown parameters. The detection

performance of the proposed tests for different number of pixels is illustrated in Figure 5. The pixels in the tests are

extracted randomly. The power function βδ of each test is plotted as a function of the false alarm rate α0. It can be

noted that the loss of power between the LRT δ? and the GLRT δ̂?1 is negligible even with a small number of pixels

(e.g. 50 pixels), which also indicates that the parameters µk are well estimated. Moreover, from Figure 5, a small loss

of power between the GLRT δ̂?1 and the GLRT δ̂?2 is revealed. Nevertheless, this loss of power decreases when the

number of pixels increases. Actually, the fact of selecting randomly a number of pixels (e.g. 50 and 100 pixels) for

the proposed tests allows a better visibility since their power function is perfect (i.e. βδ = 1) from only 500 pixels

for any false alarm rate. On the contrary to other methods that exploit all the pixels, only a small number of pixels

is required to achieve a high detection performance, which emphasizes the strength of the proposed approach. This

observation could be useful in case of real images.

Furthermore, it is necessary to study the impact of JPEG compression factor on the detection performance of the

GLRT δ̂?2 . As mentioned in Section 2, the generalized noise model is also relevant for JPEG images with moderate-

to-high quality factors (QF ≥ 70). Figure 6 shows its detection performance for different quality factors (QF =

70, 80, 90, 100). As expected, the correct detection probability βδ decreases with the decline of the quality factor since

the compression error intervenes more important in the generalized noise model.

5.2. Receiver Operating Characteristic Curve on Two Nikon D70 and Nikon D200 Cameras

In hypothesis testing framework studied in this paper, the camera fingerprint (ã0, b̃0, γ0) is assumed to be known in

advance. Therefore, this fingerprint needs to be defined accurately in practice. To this end, it is proposed to estimate

the parameters (ã0, b̃0, γ0) using the same technique of calculating the covariance matrix proposed in Section 5.1.

Firstly, the estimates ( ˆ̃a, ˆ̃b, γ̂) on each image are given and the reference parameter γ0 is calculated as the average of

50 gamma values. Then the parameters (ã, b̃) are re-estimated on each image by setting γ to the reference γ0. The

reference parameters (ã0, b̃0) are finally obtained by averaging the previous estimates ( ˆ̃a, ˆ̃b). The covariance matrix of
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Figure 7: Detection performance of the GLRT δ̂?1 and δ̂?2 for 50 and 100 pixels extracted randomly from JPEG images of Nikon D70 and Nikon

D200 cameras.

(ã0, b̃0) can be also defined. Evidently, using more images will get a better estimate but it is also less realistic. The

number of 50 is a good trade-off.

To highlight the relevance of the proposed GLRTs, two Nikon D70 and Nikon D200 camera models of the Dresden

image database [32] are chosen to conduct experiments since two camera models of the same brand are expected to

exhibit similar characteristics. Only the red color channel is used in this experiment. The Nikon D70 and Nikon

D200 cameras are respectively set at H0 and H1. The reference parameters of each camera model are defined as

discussed above. Figure 7 shows the detection performance of the GLRTs δ̂?1 and δ̂?2 for different numbers of pixels.

We can note a similar behavior to the detection performance on the simulated database. There is a small loss of power

between the two power functions since the estimates ( ˆ̃a1,
ˆ̃b1) used in the GLRT δ̂?2 are influenced by the image content.

Nevertheless, this loss of power also decreases as the number of pixels increases. Two proposed GLRTs are nearly

perfect from 500 pixels.

Furthermore, as mentioned above, the proposed tests allow us to warrant a prescribed false alarm probability.

Therefore, it is desirable to compare the empirical false alarm probability of the proposed GLRTs in practice with

theoretical one given in (16) and (29). Figure 8 shows the comparison between the theoretical and empirical false

alarm probability, which are plotted as a function of decision threshold τ. The two proposed GLRTs δ̂?1 and δ̂?2 show

an ability to guarantee a prescribed false alarm rate, even though there is a slight difference in some cases (typically

α0 ≤ 10−3) due to the influence of image content, the presence of weak outliers in the segments S k, and the inaccuracy

of the CLT for modeling tails.

5.3. Results on a Large Database

Experiments are then conducted on a large database to verify the efficiency of the proposed approach. The public

Dresden image database [32] is chosen in our experiments. Technical specifications of the cameras are shown in Table

1, see more details in [32]. The database covers different devices per camera model, different imaged scenes, different

camera settings and different environmental conditions. The images are acquired with different JPEG quality factors.
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Figure 8: Comparison between the theoretical false alarm probability (FAP) and the empirical FAP, plotted as a function of decision threshold τ.

For each camera model, 50 images are used to estimate the reference parameters and other images are used for the

testing stage.

Firstly, the GLRT δ̂?2 is conducted to verify whether a given image is acquired by the camera model of interest. The

decision threshold τ̂?2 is given by the Theorem 2 corresponding to the false alarm rate α0 = 10−5. If the normalized

GLR Λ̂?
2 (Z) is smaller than the decision threshold τ̂?2 , the hypothesisH0 is accepted, i.e. the given image is declared

taken by the camera model of interest. On the contrary, the hypothesis H1 is accepted. The detection performance

of the GLRT δ̂?2 is shown in Table 2. In this table, each camera model is considered as hypothesis H0 (row) and all

images (column) are tested against H0. The values in the table 2 indicate the percentage of images that are detected

taken by the camera modelH0. The table in this paper is not used in the same way as in the classification in which the

sum for each class yields 100%. The inspected image is brought into the binary testing of the known camera model

Camera Model No. devices Resolution No. images

Canon Ixus 70 Cn 3 3072 × 2304 500

Casio EX-Z150 Cs 5 3264 × 2448 600

Fujifilm J50 F 3 3264 × 2448 500

Nikon D200 N1 2 3872 × 2592 500

Nikon D70 N2 2 3008 × 2000 300

Olympus 1050SW O 5 3648 × 2736 700

Panasonic FZ50 Pa 3 3648 × 2736 600

Pentax A40 Pe 4 4000 × 3000 600

Praktica DCZ Pr 5 2560 × 1920 700

Ricoh GX100 Ri 5 3648 × 2736 700∑
10 37 5700

Table 1: Camera Model Used in Experiments
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Inspected images

Cn Cs F N1 N2 O Pa Pe Pr Ri Avg.

H0

Cn 100 * * * * * * * * *

Cs * 99.82 * * * * * * * *

F * * 91.55 * * * * * * *

N1 * * * 100 * * * * * *

N2 * * * * 100 * * * * *

O * * * * * 97.25 * * * *

Pa * * * * * * 98.57 * * *

Pe * * * * * * * 92.21 * *

Pr * * * * * * * * 100 *

Ri * * * * * * * * * 98.33

97.77

Table 2: Performance of proposed detector (the symbol * represents values smaller than 2%)

H0 against the others, thus the sum of a class may not yield 100%. Therefore, it could lead to a scenario that an image

is detected taken by at least two camera models. To deal with this scenario, the GLRT δ̂?1 could be performed on the

camera models of conflict to better classify the inspected images.

The comparison with prior-art detectors includes the Support Vector Machine (SVM)-based detector that has

already been performed on the Dresden database [32]. This detector is based on the statistical difference in natural

images that are captured by different camera models. To capture this statistical difference, the SVM-based detector

uses 46 different features. The feature set includes three main groups: color features describing the color reproduction

of a camera model, wavelet statistics quantifying sensor noise and image quality metrics measuring sharpness and

noise. The reader is referred to [36] for more details of this feature set. Moreover, the SVM might be the most popular

choice among many existing powerful machine learning algorithms for supervised classification. The SVM-based

detector has used 60% of the images of one device per model for training and all images of the remaining devices

for testing. The detection performance of the SVM-based detector is shown in Table 3. The proposed detector δ̂?2 is

almost equivalent to the SVM-based detector.

Furthermore, the PRNU-based detector [14] is also performed for reference. The PRNU is considered as the

reliable fingerprint for image origin identification. Note that this detector is only performed on one device per model.

Its detection performance is shown in Table 4. It is worth noting that the SVM-based and PRNU-based detectors

cannot guarantee a prescribed false alarm rate. The proposed detector is not only able to guarantee a prescribed false

alarm rate but also ensure a high detection performance. This emphasizes the strength of the proposed approach that

is based on a relevant parametric image model to design a statistical test within hypothesis testing framework.

Besides, we also conduct the detector based on DCT coefficients statistics that is provided in our previous work

[22] for comparison. The results of this statistical test are presented in the Table 5. The second GLRT is performed so

that these two detectors are in the same scenario. In general, the DCT-based detector is less powerful and provides an
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Inspected images

Cn Cs F N1 N2 O Pa Pe Pr Ri Avg.

H0

Cn 98.26 * * 2.61 * * * * * *

Cs * 99.71 * 2.77 * * * * * *

F * * 99.94 * * * * * * *

N1 * * * 93.73 * * * * * *

N2 * * * * 84.57 * * * * *

O * * * * * 98.95 * * * *

Pa * * * * * * 97.31 * * *

Pe * * * * * * * 90.86 * *

Pr * * * * * * * * 98.42 *

Ri * * * * * * * * * 100

96.17

Table 3: Performance of SVM-based detector [32]

important misclassification, see groups (Cn,N1,Pe). However, one can note that this DCT based GLRT provides for

two models (Olympus 1050SW and Pentax A40, respectively denoted ’O’ and ’Pe’) a slightly higher power than the

spatial domain based GLRT δ̂?2 proposed in this paper. This can be explained by different quantization tables used for

those two specific models compared to other models used in this present numericaml experiments. (RC:Thanh Hai,

peux tu confirmer ou apporter une autre explication ?)

6. Conclusion

This paper designs statistical tests for camera model identification from JPEG images within hypothesis testing

framework. The approach is based on the generalized noise model that is more accurate to characterize a natural

image acquired by a digital camera. The parameters (ã, b̃, γ) characterizing the generalized noise model are exploited

as camera fingerprint for camera model identification. Based on the proposed image model, this paper studies the most

powerful LRT and designs two GLRTs that can be straightforwardly applied in practice. The strength of the proposed

approach is that statistical performance of the tests can be analytically established as well as they can warrant a

prescribed false alarm rate while ensuring a high detection performance. Future researches can exploit this approach

for image forgery detection, for instance detecting a forged region that is taken by a different camera model.

Appendix A. Proof of Proposition 1

Under hypothesisH j, it follows from zk,i ∼ N
(
µk, σ

2
k, j

)
that

(zk,i − µk)2

σ2
k, j

∼ χ2
1, (A.1)
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Inspected images

Cn Cs F N1 N2 O Pa Pe Pr Ri Avg.

H0

Cn 100 * * * * * * * * *

Cs * 99.44 * * * * * * * *

F * * 73.81 * * * * * * *

N1 * * * 98.92 * * * * * *

N2 * * * * 100 * * * * *

O * * * * * 87.25 * * * *

Pa * * * * * * 94.71 * * *

Pe * * * * * * * 100 * *

Pr * * * * * * * * 96.65 *

Ri * * * * * * * * * 100

95.07

Table 4: Performance of PRNU-based detector [14]

where χ2
1 denotes chi-square distribution with one degree of freedom. Consequently, we derive

EH j

[
(zk,i − µk)2

]
= σ2

k, j (A.2)

VarH j

[
(zk,i − µk)2

]
= 2σ4

k, j. (A.3)

By taking expectation and variance of the LR Λ(zk,i), the proof of Proposition 1 follows immediately.

Appendix B. Proof of Theorem 1

From (11), the statistical distribution of the normalized LR Λ?(Z) can be given as
Λ?(Z)

D
−→ N(0, 1) under H0,

Λ?(Z)
D
−→ N

(
m1 − m0
√

v0
,

v1

v0

)
under H1.

(B.1)

Consequently, based on the definition the decision threshold τ?, it follows that

1 − α0 = PH0

[
Λ?(Z) ≤ τ?

]
= Φ

(
τ?

)
. (B.2)

The decision threshold τ? can be obtained immediately

τ? = Φ−1(1 − α0). (B.3)

Similarly, based on the definition of the power function in (6), the power function βδ? can be given as

βδ? = PH1

[
Λ?(Z) ≥ τ?

]
= 1 − PH1

[
Λ?(Z) ≤ τ?

]
= 1 − Φ

τ
? −

m1−m0√
v0√

v1
v0

 = 1 − Φ

(
m0 − m1 + τ?

√
v0

√
v1

)
. (B.4)
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Inspected images

Cn Cs F N1 N2 O Pa Pe Pr Ri Avg.

H0

Cn 100 * * 22.32 * * * 18.54 * *

Cs * 98.72 * * * * * * * *

F * * 92.21 * * * * * * *

N1 * * * 85.64 * * * 6.75 * *

N2 * * * * 100 * * * * *

O * * * * * 96.11 * * * *

Pa * * * * * * 99.52 * * *

Pe * * * 8.93 * * * 82.78 * *

Pr * * * * * * * * 95.44 *

Ri * * * * * * * * * 98.12

94.85

Table 5: Performance of DCT-based detector [22]

Appendix C. Proof of Proposition 2

Since the variance of µ̂k is negligible, it is proposed to treat µ̂k as a constant µk, i.e.

Λ̂2(zk,i) =
1
2

log
f (µk; ã0, b̃0, γ0)

f (µk; ˆ̃a1,
ˆ̃b1, γ1)

+
f (µk; ˆ̃a1,

ˆ̃b1, γ1) − f (µk; ã0, b̃0, γ0)

2 f (µk; ˆ̃a1,
ˆ̃b1, γ1) f (µk; ã0, b̃0, γ0)

(zk,i − µk)2. (C.1)

Since the ML estimates ( ˆ̃a1,
ˆ̃b1) are consistent, it follows from the Slutsky’s theorem [19, theorem 11.2.11] that the

mathematical expectation of the GLR Λ̂2(zk,i) does not chagne.

Meanwhile, the variance of f (µk; ˆ̃a1,
ˆ̃b1, γ1) under each hypothesisH j is given by

VarH j

[
f (µk; ˆ̃a1,

ˆ̃b1, γ1)
]

= VarH j

[ 1
γ2

1

ˆ̃a1µ
2−γ1
k +

1
γ2

1

ˆ̃b1µ
2−2γ1
k

]
=
µ

4−2γ1
k

γ4
1

VarH j

[
ˆ̃a1

]
+
µ

4−2γ1
k

γ4
1

VarH j

[ ˆ̃b1

]
+

2µ4−3γ1
k

γ4
1

CovH j

[
ˆ̃a1; ˆ̃b1

]
=
µ

4−2γ1
k

γ4
1

σ2
ã1

+
µ

4−4γ1
k

γ4
1

σ2
b̃1

+ 2
µ

4−3γ1
k

γ4
1

σã1b̃1
. (C.2)
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Based on the Delta method [19, theorem 11.2.14], we derive

VarH j

[
log

( f (µk; ã0, b̃0, γ0)

f (µk; ˆ̃a1,
ˆ̃b1, γ1)

)]
= VarH j

[
log

(
f (µk; ˆ̃a1,

ˆ̃b1, γ1)
)]

≈
VarH j

[
f (µk; ˆ̃a1,

ˆ̃b1, γ1)
]

f 2(µk; ã1, b̃1, γ1)
, (C.3)

and

VarH j

[ f (µk; ˆ̃a1,
ˆ̃b1, γ1) − f (µk; ã0, b̃0, γ0)

f (µk; ˆ̃a1,
ˆ̃b1, γ1) f (µk; ã0, b̃0, γ0)

]

= VarH j

[ 1

f (µk; ˆ̃a1,
ˆ̃b1, γ1)

]
≈

VarH j

[
f (µk; ˆ̃a1,

ˆ̃b1, γ1)
]

f 4(µk; ã1, b̃1, γ1)
. (C.4)

Consequently, based on the law of total variance, it follows that

VarH j

[
Λ̂2(zk,i)

]
=

1
2

( 1
σ2

k,0

−
1
σ2

k,1

)2
σ4

k, j

+
1
4

VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

σ4
k,1

+
3
4

VarH j

[
f (µ̂k; ˆ̃a1,

ˆ̃b1, γ1)
]

σ8
k,1

σ4
k, j. (C.5)

The proof follows immediately.

Appendix D. Proof of Theorem 2

From (27), in virtue of the Slutsky’s theorem, the statistical distribution of the normalized GLR Λ̂?
2 (Z) can be

derived as 
Λ̂?

2 (Z)
D
−→ N(0, 1) under H0,

Λ̂?
2 (Z)

D
−→ N

(
m1 − m0
√

ṽ0
,

ṽ1

ṽ0

)
under H1.

(D.1)

Based on the similar steps given in Appendix B, the proof follows immediately.
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