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Abstract

The goal of this paper is to investigate the problem of source camera device identification for natural images in JPEG format. We
propose an improved signal-dependent noise model describing the statistical distribution of pixels from a JPEG image. The noise
model relies on the heteroscedastic noise parameters, that relates the variance of pixels’ noise with the expectation considered as
unique fingerprints. It is also shown in the present paper that, non-linear response of pixels can be captured by characterizing
the linear relation because those heteroscedastic parameters, which are used to identify source camera device. The identification
problem is cast within the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly
known, the Likelihood Ratio Test (LRT) is presented and its performance is theoretically established. The statistical performance
of LRT serves as an upper bound of the detection power. In a practical identification, when the nuisance parameters are unknown,
two generalized LRTs based on estimation of those parameters are established. Numerical results on simulated data and real natural
images highlight the relevance of our proposed approach. While those results show a first positive proof of concept of the method,
it still requires to be extended for a relevant comparison with PRNU-based approaches that benefit from years of experiences

Keywords: Digital forensics, device identification, improved signal-dependent noise model, nuisance parameters, hypothesis
testing.

I. Introduction and Contributions

Digital image forensics has received an increasing attention
in past decades. It is widely referred to as the art, or methods,
for distinguishing between a realistic and faked image. With the
development of information industry, digital images can be eas-
ily falsified by using a low-cost photo-editing software. There-
fore, it is likely that unscrupulous individuals may be willing
to alter and modify the content of digital images to distort the
truth. Many such examples have been publicly exposed and
may have major negative consequences. To restore the trust to
digital images among the public, it is urgent to propose reliable
and robust forensic tools against malicious image falsification.

a. State of the Art

Digital image forensics aims at addressing the two follow-
ings main problems: image origin identification and image con-
tent integrity; while the former aims at identifying the source
camera model or device, the latter aims at detecting any sort
of digital image manipulation (see details in [1, 2, 3]). To ad-
dress these problems, researchers have developed a variety of
image forensic algorithms to protect against attacks from im-
age forgers. In general, it is proposed to classify all the forensic
methodologies into two categories: active forensics and pas-
sive forensics. Active forensics involves forensic techniques
which are based on prior-embedded relevant information such
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Figure 1: Illustration of a typical imaging pipeline within a digital camera.

as a digital watermark or signature. Since the embedding mech-
anism has to be available, active forensics has its limitation in a
context of a widely adopted method. Therefore, passive foren-
sics, which does not require any embedded information, is the
current main focus of digital image forensics. In this context,
the present paper mainly addresses the problem of image origin
identification.

In general, when a photographer captures a digital image by
using a camera, the image is stored with the header files (e.g.
EXchangeable Image File, EXIF and Joint Photographic Ex-
perts Group, JPEG headers), which contains all recording and
compression history. Thus, forensic investigators can poten-
tially access to all the information on the inspected image by
extracting its header files. Header files as extrinsic fingerprints
can be used to solve the problem of identifying source cam-
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era. The original header files, however, can be easily removed
or replaced due to post-camera operations, that are referred to
as all possible operations that one can apply on a digital image
after its acquisition; nowadays free and open source softwares
for image header files are readily available such as exiftool soft-
ware or libexif library. Besides, a mass of photos shared on the
Internet, especially on the social web-site such as Facebook or
Twitter or on photo-sharing platform such as Flickr web-site, do
not always have their header files. Therefore, passive forensic
investigators do not use header files as fingerprints for identi-
fying source camera as it is usually considered as unreliable.
In the image acquisition pipeline as illustrated in Fig. 1 (see
details in [4, 5]), each step probably leaves some traces in the
image. The passive forensics utilizes the traces as intrinsic fin-
gerprints to acquire the concerning information of the camera
source 1. The methods that investigate the problem of image
origin identification aim at addressing the following questions:

• Which intrinsic/in-camera 2 fingerprint can be exploited
for identifying with reliability and accuracy the image ori-
gin?

• How to extract accurately the proposed fingerprint from a
single image or several images that may have a textured
context and an important noise level in some areas?

• What are the statistical performance of the proposed detec-
tor, e.g. what is the probability that may classify two fin-
gerprints extracted from different images as coming from
the same source?

Many forensic detectors have been proposed, which can be
generally formulated into two schemes: supervised classifica-
tion and unsupervised classification, see [1, 2, 6] for a detailed
review:

1. The methodologies in the category of supervised clas-
sification mainly rely on identifying unique traces of
the imaging pipeline and exploiting the classification ap-
proach from a supervised machine. Many different traces
(or adapted features set) have been proposed and many
statistical learning frameworks have been used. Only a
few works have been proposed to identify the camera
device from early-acquisition stages such as lens distor-
tion/aberration [7, 8, 9]. Forensic investigators can also
utilize the traces left by the stage of post-processing for
source camera identification. For instance, using the white
balancing as a camera fingerprint, the algorithm proposed
in [10] identified the device origin of a given image. The
methodologies proposed by [11, 12, 13, 14] made use of
Color Filter Array (CFA) and demosaicing algorithms to
identify the camera model. Besides, the features extracted

1The term source means an individual camera device, a camera model, or
a camera brand. Other sources such as cell-phone cameras, scanners are not
addressed in this paper.

2The term in-camera is referred to as all the processing steps that are un-
avoidably carried out during image acquisition pipeline (see Fig. 1), which do
not include post-camera operations.

by JPEG compression were also considered as influential
factors to identify the camera origin [15]. Based on ex-
tracted features from the acquisition pipeline, these algo-
rithms use supervised learning methods (such as Support
Vector Machine, SVM) to identify source camera device
from a digital image. However, the challenging problems
are that a few manufacturers share the similar image pro-
cessing techniques and most of the time partially the same
components produced by a few manufacturers lead to the
similarity when extracting fingerprints from given images,
especially in the case of the same camera manufacturer
and model. Moreover, the application of supervised learn-
ing is time-consuming. Besides, several problems such
as accuracy of feature selection, robustness to a mismatch
between training and testing sets, and the establishment of
detection performance remain open since with any statisti-
cal learning approach the performance are only measured
empirically on a validation dataset.

2. The methods in the category of unsupervised classification
aim at identifying the unique noise as fingerprints of the
acquisition device. Indeed, the level of noise that affects
each pixel individually can be considered as a unique fin-
gerprint for each camera device. The origin of noise level
variation from pixel to pixel is due to imperfections dur-
ing sensor manufacturing process and non-uniformity of
photo-electronic conversion caused by inhomogeneity of
silicon wafer (see [16, 4] for details). Hence, Sensor Pat-
tern Noise (SPN) was generated, which can be extracted
from a given image, and was first used for identifying
source camera device [17]. Then, [18, 19, 20, 21, 22]
improved the prior algorithm. It should be noted that
the SPN includes two main components: Fixed Pattern
Noise (FPN) and Photo-Response Non-Uniformity noise
(PRNU). The FPN was represented by dark current, which
was used in [23]. Since the FPN can be suppressed by
subtracting a dark frame from the output image, it was pro-
posed not to use the FPN any more for source camera iden-
tification. On the contrary, the PRNU is more robust than
the FPN. Based on the PRNU, the algorithms proposed in
[18, 19, 20, 24] directly investigated the problem of source
camera identification. Although those PRNU-based detec-
tors performed efficiently, the counter-forensic algorithm
[25] challenged the credibility of their detection power.
Therefore, the main challenge in this category is to extract
relevantly reliable noise-based fingerprints from a given
image. Besides, in the literature, few detectors investigate
the hypothesis testing theory and are designed based on
the statistical image model. Hence, the performance of
detectors still remains analytically unestablished.

b. Contributions of the Paper

In a practical context, it is proposed to use the various sources
of random noise (e.g. shot noise and read-out noise) as the
unique fingerprints for individual device identification. In our
prior research, based on the generalized signal-dependent noise
model [26], a statistical test that can identify source camera
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model, from a given image, was designed in [27]. However,
those prior works have the indisputable disadvantage to be un-
able of distinguishing different devices from the same camera
model. By improving the signal-dependent noise model and
extracting block fingerprints, we develop a new statistical test
that aims at identifying the individual camera device from JPEG
images. Hence, the main contributions of this paper are sum-
marized below:

• By taking into account the impact of the main in-camera
post-processing stage (such as white balancing, gamma
correction) on the variance of each pixel and by study-
ing the non-linearity of pixel’s response, this paper pro-
poses an improved signal-dependent noise model describ-
ing more accurately the relation between pixel’s expecta-
tion and variance.

• This novel noise model is used in the present paper over
blocks of several pixels to extract camera device finger-
prints. Moreover, it is shown that the camera parameters
describing our improved signal-dependent noise model
have a linear relation, which can be used for designing our
proposed tests.

• In an ideal context, that is when all the parameters are
perfectly known, the Likelihood Ratio Test (LRT) is pre-
sented, and its properties are theoretically established. The
statistical performance of LRT serves as an upper bound
on the detection power of any test that aims at identifying
source camera device using individual pixel’s noise prop-
erties.

• In a practical context, it is proposed to design two Gen-
eralized Likelihood Ratio Tests (GLRT)s. In the first sce-
nario, in which both camera parameters characterizing the
improved signal-dependent noise model and model pa-
rameters describing the relation of camera fingerprints are
known, and the statistical parameter of estimate errors is
unknown, the first GLRT is designed. In another scenario,
when both camera and model parameters are unknown, as
well as the statistical parameter of estimate errors, the sec-
ond GLRT is established.

• Numerical simulations show the sharpness of the theo-
retically established results and the good performance of
our proposed tests. Comparisons with prior-art detector
[19, 26] on the real image dataset show the efficiency of
our proposed method for source camera device identifica-
tion.

c. Organization of the Paper

This paper is organized as follows. Section II reviews the
generalized signal-dependent noise model for a JPEG image,
then improves this noise model. Based on this novel noise
model, this section presents the parameters that are used as fin-
gerprints for camera device identification, details their extrac-
tion over blocks of pixels, and presents the linear relation be-
tween those parameters. Based on the proposed linear model

for block fingerprints extracted from several JPEG images, the
LRT is established and its statistical performance is presented in
Section III. While the optimal LRT requires knowledge of cam-
era fingerprints, model parameters and estimate error’s param-
eter, Section IV presents the first practical GLRT for JPEG im-
ages that estimates the error’s parameter, but still assumes both
camera and model parameters known. Section V proposes even
more practical GLRT that estimates the camera fingerprints,
model parameters and error’s parameter. Section VI presents
numerical results of the proposed detectors on the simulated
and real image dataset, and also presents comparison with cur-
rent art. Finally, Section VII concludes this paper.

II. Proposed Camera Fingerprints for JPEG Images

a. Overview on Generalized Signal-Dependent Noise Model
and Its Limitation

Digital image acquisition pipeline, depicted in Fig. 1, actu-
ally consists in various processing stages briefly described be-
low (the reader interested may find more details in [4, 5]). First,
light intensity measured at each pixel generates an electrical
signal that is read out as a RAW format image. This RAW im-
age is then subjected to several post-acquisition processes, such
as demosaicing, white balancing and gamma correction, to is-
sue a full resolution, colored and uncompressed image, that is
referred to as a TIFF image in this paper. Besides, other pro-
cessing operations, that widely differ among different camera
models, such as camera denoising and edge enhancement are
not discussed in this paper. Then, for storage, an image com-
pression algorithm is applied very often using the JPEG stan-
dard and, hence, a JPEG image is finally output. In fact, our
proposed model in this paper for JPEG image is evolved from
the model designed for RAW data. Hence, in the following part,
we first introduce a statistical model for RAW image in order to
explain our proposed model for JPEG image.

Let us denote Z = {zi}, i ∈ {1, · · · , I} a RAW image, made of I
pixels. The noise corrupting a RAW image is usually described
using the Poissonian-Gaussian noise model [28], which in-
cludes Gaussian read-out noise and Poissonian photo-counting
shot noise, as follows:

zi = µzi + ξzi ∼ N(µzi , aµzi + b). (1)

This model describes the pixel noise variance as an affine func-
tion of the pixel’s expectation, characterized by the parameters
(a, b). Recently, this model has been extended in [29, 30] to
describe a RAW image.

In fact, since demosaicing and white balancing are linear
transformation, see details in [5], the application of those pro-
cesses does not modify the Gaussian distribution of pixels up to
the parameters (a, b):

yi = µyi + ηyi ∼ N(µyi , ãµyi + b̃) (2)

where yi denotes a pixel after white balancing and demosaic-
ing, but before gamma correction, and µyi the expectation of yi

which still characterizes the variance through the affine relation
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ãµyi + b̃. In addition, ηyi ∼ N(0, ãµyi + b̃) represents the signal-
dependent noise with zero mean. Next, a usual processing that
occurs, to adjust the brightness with former CTR (Cathode Ray
Tube) display device, is the gamma correction, which is a pixel-
wise non-linear operation defined as:

xi = y
1
γ

i (3)

where xi denotes a TIFF pixel after gamma correction, and γ
the correction factor. The statistical distribution of pixels after
gamma correction is not very simple. However, based on the
first order of Taylor series expansion of (1+ p)

1
γ at p = 0, xi can

be approximated by:

xi ≈ µi +
1
γ
µ

1−γ
i ηi ∼ N(µi, σ

2
i ) (4)

with σ2
i =

1
γ2 µ

2−2γ
i (̃aµγi + b̃) (5)

where µi and σ2
i represent the expectation and the variance of

pixel xi. Finally, an image in TIFF format is usually trans-
formed to a JPEG one for storage. Thus, let us consider the
quantization noise modelled as an addictive noise that is uni-
formly distributed and independent of the input signal, see [31].
Then Equation (5) can be rewritten as follows:

σ2
i =

1
γ2 µ

2−2γ
i (̃aµγi + b̃) +

∆2

12
(6)

where ∆2

12 is the term modelling the variance of additive quanti-
zation noise. Besides, in this paper we assume, for clarity, that
quantization step ∆ equals 1. It should be noted that based on
Equation (6), xi of the generalized signal-dependent model (4)
is redefined as the pixel from an image in JPEG format. It also
should be noted that in this model, camera parameters (̃a, b̃) are
constant for the whole inspected image.

Compared with the Poissonian-Gaussian noise model for a
RAW image, the extra parameter γ of the model (4) is very
difficult to estimate since it has a non-linear impact on pixel’s
statistical properties. Finally, it should also be noted that the
parameters (̃a, b̃, γ) estimated from JPEG images are relatively
insensitive to ISO sensitivity parameters, unlike the fingerprints
used for RAW images, see more details in [29, 30]. This allows
the design of fingerprints and a statistical test for camera device
identification which are independent of ISO sensitivity settings.
It should be noted that in the present paper the pixel’s value of
the inspected image is used ; hence we do not intend in this
paper to model the DCT coefficient, see details in [32, 33, 34]
for instance.

In our prior research [27], this generalized signal-dependent
noise model (4) has been used for extracting the camera model
fingerprints (̃a, b̃) from a single JPEG image. However, (̃a, b̃)
can only be used to identify source camera model. Unfortu-
nately they can not identify different devices of the same camera
model. Fig. 2a provides a simple example showing the parame-
ters (̃a, b̃) of the noise model (4) extracted from several images
captured with a few devices of the same models. It is obvious
that those estimated parameters overlap and, hence, lead to a
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(a) Estimated camera parameters (̃a, b̃) proposed in [27]. Each result
represents the parameters estimated from a single JPEG image.
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Figure 2: Camera fingerprints comparison with several devices for each camera
model. Natural JPEG images for Nikon D70, Nikon D70s, Canon Ixus70 and
Nikon D200 are from Dresden dataset [35].

poor statistical test, whose detection performance is weak. In
fact, even though in the test of [27] the average (̃a, b̃) is used
for detection, the very similar (̃a, b̃) of each device unavoidably
leads to unsatisfying detection results, see Section VI. Thus, in
the following subsection IIb, it is proposed to improve the gen-
eralized signal-dependent noise model (4) and extract the novel
device block fingerprints whose linear relationship is exposed
for establishing the statistical tests.

b. Description of Improved Noise Model and Block Finger-
prints

By challenging the assumption that all the noise corrupting
all the pixels from a given digital image follows the same statis-
tical distribution, modelled in (4), with the same distribution pa-
rameters, the improved signal dependent noise model proposes
to take into account the non-uniformity of pixel’s response by
assuming that the parameters (̃ak, b̃k) change for each pixel, or
for each block of pixels for feasibility. This model is thus given
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Figure 3: Scatter-plot of pixels’ estimated expectation µ̂i and estimated variance
σ̂2
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by:

xi ≈ µi +
1
γ
µ

1−γ
i ηi ∼ N(µi, σ

2
i ) (7)

with σ2
i =

1
γ2 µ

2−2γ
i (̃akµ

γ
i + b̃k) +

∆2

12
(8)

where k ∈ {1, · · · ,K} denotes the block index and block finger-
prints (̃ak, b̃k) are estimated by using the same block, at the same
location, from several JPEG images. Fig. 3 demonstrates on an
example the accuracy of the proposed model and the relevance
of the block fingerprints by showing the non-linear relationship
(8) between pixel’s expectation and variance in k-th block.

Let us describe the specific process of extracting the device
block fingerprints from images as follows:

1. Let X = {xi, j} be a single matrix representing a JPEG
image of size I × J, i ∈ {1, · · · , I}, j ∈ {1, · · · , J} and
let X(N) = (X1, . . . XN) be a set of N images. By us-
ing the BM3D denoising filter [36, 37], each image Xn,
n ∈ {1, · · · ,N} is first decomposed into two components:
Xapp

n an estimation of pixel’s expectation µi, j and Xres
n the

residual noise, that is: Xres
n = Xn − Xapp

n .
2. Due to the block artifact of JPEG image, it is proposed to

decompose Xapp
n into blocks of size 8 × 8 pixels, denoted

{xapp
n,k } where xapp

n,k = {xapp
n,k,l}, k ∈ {1, · · · ,K}, l ∈ {1, · · · , 64}

with K ≈ I×J
64 .

3. Similarly, we decompose XRes
n into blocks of size 8 × 8

pixels, denoted {xRes
n,k } where xRes

n,k = {xRes
n,k,l}.

4. By computing the standard deviation of {xapp
n,k }, it is pro-

posed to set the threshold τ = 2 to exclude non-
homogeneous blocks in each image. In fact, those blocks
correspond to highly textured areas for which estimations
of pixel’s expectation and of block variance are likely to
be inaccurate.

5. For the k-th block of all N images, it is proposed to uti-
lize the selected Nk with Nk ≤ N homogeneous blocks to
estimate the expectation of xapp

n,k and the variance of xres
n,k.

6. Finally, based on the estimations of pixel’s expectation and
noise variance, the parameters of the proposed improved

signal-dependent noise model (̃ak, b̃k) are jointly estimated
using a Least Square algorithm (LS) (see details in Ap-
pendix A). Those parameters are later used as fingerprints
for the camera device identification problem cast with hy-
pothesis testing theory, see Sections III-V.

Fig. 2 illustrates the comparison of the camera fingerprints
extracted by using the algorithm of [27] and our proposed de-
vice block fingerprints. In Fig. 2a, each scatter point de-
notes parameters (̃a, b̃) estimated from a single image using
the method proposed in [27]. By contrast, the proposed im-
proved signal-dependent noise model parameters whose esti-
mated values (̃ak, b̃k) are presented in Fig. 2b and used within
the statistical test proposed in this paper as camera device fin-
gerprints. Obviously, the proposed improved signal-dependent
noise model is more relevant for extracting camera device fin-
gerprints. This may be explained by the fact that this novel
noise model takes into account the non-uniformity of pixels and
hence estimates the proposed fingerprint by block; this leads to
an increasing number of parameters for camera device finger-
prints and, hence, helps distinguishing two camera devices of
the same model.

c. Exposing Linear Relationship of Block Fingerprints

In fact, even though block fingerprints proposed in this paper,
that are parameters (̃ak, b̃k), allows the distinguishing of camera
devices much more accurately than those proposed in [27], it
is still very difficult to directly establish the optimal statistical
test based on the improved signal-dependent noise model. This
can be explained by the following main reasons: the variance of
each image block is very difficult to estimate and, hence, can not
always perfectly satisfies the improved signal-dependent noise
model (7). Thus, we propose another solution for detection.

Based on the relationship between camera parameters (a, b)
proposed in the the Poissonian-Gaussian noise model [28, 29]:

b = ω2a2 (9)

where ω2 is a depending parameter of the camera device, it is
proposed to approximate Equation (9) due to the low variations
of a by using the first order Taylor series at ā:

b ≈ ω2ā2 + 2ω2ā(a − ā)

= 2ω2āa − ω2ā2 (10)

where ā denotes the mean of a. Then, for clarity, let us rewrite
Equation (10) as:

a ≈ cb + d (11)

where c = 1/2ω2ā and d = ā/2 approximately link the linear re-
lationship between parameters (a, b) from the noise model (1)
of RAW data. The white balancing, demosaicing and gamma
correction operations do not change this linear relationship (see
Equations (2) to (8)). Thus, the relationship is still valid for
JPEG images. Fig. 4 illustrates the linear relationship between
the parameters (̃ak, b̃k) for two Canon Ixus70 devices. Based
on the linear relationship of the parameters, let us replace ãk by
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c̃bk + d and, hence, use (c̃bk + d, b̃k) as the parameters that are
used as fingerprints for camera device identification. As Fig. 4
illustrates, for images captured with the same device, the esti-
mated parameters are well modelled using the proposed linear
relation between ãk and b̃k, which tends to confirm our assump-
tion. Thus, let us define the estimate error by:

ek = ãk − (c̃bk + d). (12)

where ek denotes the estimate error in k-th block, c and d the
linear model parameters which can be estimated by using LS
algorithm. It should be noted that c and d are constant for the
whole image. Then, the problem of identifying source individ-
ual device from JPEG images is solved by using the estimate
error between camera fingerprint ãk and its linear relation with
b̃k. Because numerous sources of noise corrupt a digital im-
age during its acquisition, and because within the proposed ap-
proach many parameters have to be estimated, and that each of
those estimations generates errors, we can model accurately the
statistical distribution of the error ek, see (12), as the realization
of a Gaussian random variable.

By using this statistical model for the error ek, together with
hypothesis testing theory, we first establish the optimal statis-

tical test for camera device identification and study its statis-
tical performance. One can note that this optimal statistical
test, namely the Likelihood Ratio Test (LRT), assumes that all
distribution parameters are known, which are the framework
adopted first in Section III. Then, for a practical application,
it is proposed to investigate two GLRTs. In the first GLRT, it
is proposed to study the case when the linear model parame-
ters namely, (c, d), of two devices and the camera fingerprints
namely, (̃ak, b̃k), of two devices are known, but the statistical
distribution parameters of the error ek are unknown. In such
a case Section IV presents the proposed GLRT and especially
studies the impact of distribution parameters on the statistical
performance of this GLRT. In the second GLRT, presented in
Section V, it is assumed that, under hypothesis H1, neither
the linear model parameters (c1, d1) nor the camera parameters
(̃ak,1, b̃k,1) are known, the proposed GLRT deals with this prac-
tical case.

III. Likelihood Ratio Test for Two Simple Hypotheses
Based on JPEG Format

a. Problem Statement

This section aims at presenting the optimal LRT and, more
important, at studying its statistical performance; this statisti-
cal test is based on the error ek, see (12). It is hardly possible
to establish formally the statistical distribution of ek; however,
because pixels within the same block share similar expectation,
their distribution is well modelled by a Gaussian distribution
and, hence, the estimation error ek is also very accurately mod-
elled by a Gaussian distribution. Hence in the rest of the paper,
the error is modelled by a Gaussian distribution. This assump-
tion has been confirmed empirically on a wide dataset such as
shown in Fig. 5 which shows the comparison between the em-
pirical error ek and the Gaussian model under Hypothesis H0.
Each camera device j, j ∈ {0, 1} is characterized by its lin-
ear parametric model with parameters (c j, d j), which are ob-
tained from the estimated camera device fingerprints (̃ak, j, b̃k, j).
In fact, when testing an inspected image X, two sets of errors
ek are known, that are ek,0 based on parameters (c0, d0); ek,1
based on parameters (c1, d1). Hence, for simplicity, let us de-
fine ek = (ek,0, ek,1). Within the framework of the LRT, hence,
the problem of identifying source camera device is reduced to a
choice between the two following simple hypotheses:H0 :

{
ek,0 = ãk − (c0b̃k + d0) ∼ N(0, σ2

0)
}

H1 :
{
ek,1 = ãk − (c1b̃k + d1) ∼ N(0, σ2

1)
}
,

where ∀k= (1, ...,K), (c1, d1) , (c0, d0), σ2
0 , σ

2
1.

(13)

Formally, a statistical test is a mapping δ : X → δ(x), such
that hypothesis H j is accepted if and only δ(X) = H j. For
solving this statistical detection problem such as (13), it follows
from the Neyman-Pearson lemma [38, Theorem 3.2.1] that the
LRT is optimal in the sense described below. For definition, let

Kατ = {δ : P0[δ(X) = H1] ≤ ατ} (14)
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be the class of tests, solving problem (13), with an upper-
bounded False Alarm Rate (FAR) ατ. Here P j[·] is the prob-
ability under H j, j ∈ {0, 1}. Among all tests in Kατ the LRT is
the most powerful test, which maximizes the detection power
defined as:

βδ = P1[δ(E) = H1]. (15)

In the following subsection, the LRT is first described in details
and then its statistical performance is analytically established.

b. Optimal Detection Framework

For testing simple hypotheses the Neyman-Pearson
Lemma [39, theorem 3.2.1] states that the LRT is the most
powerful test in Kατ (14). Because of the statistical indepen-
dence of pixels, and so is error ek, the LRT for camera device
identification can be written:

δlr(X) =


H0 if Λlr(E) =

K∑
k=1

Λlr(ek) < τlr,

H1 if Λlr(E) =

K∑
k=1

Λlr(ek) ≥ τlr,

(16)

where the decision threshold τlr is the solution of Equation
PH0

[
Λlr(E) ≥ τlr

]
= ατ, to ensure that the FAR of the LRT

equals ατ. Based on the Gaussian distribution from Equation
(13), it is proposed to define statistical parameters θ0 = (0, σ2

0)
and θ1 = (0, σ2

1) under hypothesisH0 andH1. Then the proba-
bility density function (pdf) is given as: Pθ0 and Pθ1 . Thus one
can obtain the log Likelihood Ratio (LR) for one observation
given by:

Λlr(ek) = log
Pθ1 [ek,1]
Pθ0 [ek,0]

. (17)

From the definition of (13), it is easy to rewrite the LR (17) as:

Λlr(ek) = log
(
σ0

σ1

)
+

1
2

e2
k,0

σ2
0

−
e2

k,1

σ2
1

, (18)

where the error ek, j = ãk− (c j̃bk +d j), j ∈ {0, 1} and block index
k ∈ {1, · · · ,K}.

c. Statistical Performance of LRT

The study of the proposed LRT is made easier thanks to some
asymptotic theorems, which are relevant in this context as the
number of blocks is chosen very large (each block is made
of a small number of pixels). Let us denote EH j (Λ

lr(ek)) and
VH j (Λ

lr(ek)) the expectation and the variance of the LR Λlr(ek)
under hypothesis H j, j = {0, 1}. Note that those moments can
be analytically calculated, the details are provided in Appendix
B. The Lindeberg’s central limit theorem (CLT) [39, theorem
11.2.5] states that as the number of blocks K tends to infinity it

holds true that3:

K∑
k=1

(
Λlr(ek) − EH j (Λ

lr(ek))
)

 K∑
k=1

VH j (Λ
lr(ek))

1/2

d
−−→ N(0, 1) , j = {0, 1} , (19)

where
d
−−→ represents the convergence in distribution and

N(0, 1) is the standard normal distribution with zero mean and
unit variance. This theorem is of crucial interest to establish the
statistical properties of the proposed test [40, 41, 42, 43, 44].
In fact, once the two first moments of the LR have been calcu-
lated analytically under hypothesisH0, which again is detailed
in Appendix B, one can normalize under hypothesisH0 the LR
Λlr(E) as follows:

Λ
lr
(E) =

Λlr(E) −
∑K

k=1 EH0 (Λlr(ek))(∑K
k=1 VH0 (Λlr(ek))

)1/2 .

It is thus straightforward to define the normalized LRT with
Λ

lr
(E) by:

δ
lr

=

H0 if Λ
lr
(E) < τlr

H1 if Λ
lr
(E) ≥ τlr.

(20)

Thus, let us establish the statistical properties of the LRT (20).

Proposition 1. Assuming that for the camera device identifica-
tion problem as case within the two simple hypotheses (13), in
which both parameters (c j, d j) and σ2

j are known, then for any
ατ ∈ (0, 1) the decision threshold:

τlr
= Φ−1 (1 − ατ) , (21)

guarantees that the LRT is in the class Kατ , see (14). Here Φ

and Φ−1 respectively represent the cumulative distribution func-
tion (cdf) of the standard normal distribution and its inverse.

Proposition 2. Assuming that for the camera device identifi-
cation problem as case within the two simple hypotheses (13),
in which both parameters (c j, d j) and σ2

j are known, for any
decision threshold τlr, the power function associated with the
proposed test δ

lr
(20) is given by:

β
δ

lr = 1 − Φ

(√
v0

v1
Φ−1 (1 − ατ) +

m0 − m1
√

v1

)
. (22)

where

m j =

K∑
k=1

EH j (Λ
lr(ek)) (23)

v j =

K∑
k=1

VH j (Λ
lr(ek)) , j={0, 1}. (24)

3Note that we refer to the Lindeberg’s CLT, whose conditions are easily
verified in our case as the pixels have a bounded value.
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Equations (21) and (22) emphasize the main advantage of
normalizing the LR as described in relation (20): it allows to
set any of threshold that guarantees a FAR independently from
any distribution parameter. One can also note that, for practi-
cal application, it is considered in the present paper that a given
image under investigation was captured with device 0. Hence
the case “false alarm” occurs when an alarm is raised because
the given image is authenticated as captured with another de-
vice 1. On the opposite, the “correct detection” which defines
the power function, corresponds to the probability of accurately
identifying an image captured from camera device 1.

IV. GLRT for JPEG Format with Knowing Camera Fin-
gerprints and Linear Model Parameters

While the previous section studies the optimal LRT assum-
ing that all the statistical parameters are known, this section
proposes a less restrictive GLRT. It is indeed assumed in the
present section that statistical parameters of the Gaussian dis-
tribution, see (13), are unknown. Hence it is proposed in this
section to estimate those parameters and then, to design and
study statically the GLRT which replaces the Gaussian distri-
bution parameters with those estimates. Similar to the prior
LRT, let us defines the GLRT δ̂lr

1 as follows:

δ̂lr
1 =


H0 if Λ̂lr

1 (E) =

K∑
k=1

Λ̂lr
1 (ek) < τ̂lr

1 ,

H1 if Λ̂lr
1 (E) =

K∑
k=1

Λ̂lr
1 (ek) ≥ τ̂lr

1 .

(25)

Λ̂lr
1 (ek) ensures that the proposed GLRT δ̂lr

1 is in the class Kατ .
The associated decision threshold τ̂lr

1 is defined as the solution
of the following Equation:

P0[Λ̂lr
1 (E) ≥ τ̂lr

1 ] = ατ. (26)

Again, here ατ is the prescribed probability of false alarm.
Again, the Generalized Likelihood Ratio (GLR) essentially

consists in replacing the unknown parameters by the Maximum
Likelihood (ML) estimation; hence, it follows from the defini-
tion of the LR (18), that the GLR is defined as:

Λ̂lr
1 (ek) = log

Pθ̂1
[ek,1]

Pθ̂0
[ek,0]

= log
(
σ̂0

σ̂1

)
+

1
2

e2
k,0

σ̂2
0

−
e2

k,1

σ̂2
1

, (27)

where ek, j = ãk − (c j̃bk + d j), with j ∈ {0, 1}, represents the
estimate error and (̃ak, b̃k) stand for the device fingerprint es-
timated from the inspected image X. θ̂0 and θ̂1 denote respec-
tively the estimates of statistical parameters θ0 and θ1. It should
be noted that in this GLR, the linear model parameters (c j, d j)
and camera device fingerprints (̃ak, j, b̃k, j) are known. Our aim is

to estimate the Gaussian distribution parameter σ2
j . Using ML

estimation, the variance is estimated by:

σ̂2
j =

1
K − 1

K∑
k=1

(̃ak, j − c j̃bk, j − d j)2. (28)

By invoking again the Lindeberg’s CLT [39, theorem 11.2.5]
under hypothesisH j, j ∈ {0, 1}, immediately the statistical dis-
tribution of Λ̂lr

1 (E) is given as:

Λ̂lr
1 (E)

d
−−→ N(m(1)

j , v
(1)
j ) (29)

where the expectation m(1)
j and the variance v(1)

j of the GLR

Λ̂lr
1 (E) are respectively defined by:

m(1)
j =

K∑
k=1

EH j (Λ̂
lr
1 (ek)) (30)

v(1)
j =

K∑
k=1

VH j (Λ̂
lr
1 (ek)), (31)

where the specific calculation of the expectation EH j (Λ̂
lr
1 (ek))

and the variance VH j (Λ̂
lr
1 (ek)) of Λ̂lr

1 (ek) is expanded in Ap-
pendix C. Let us straightforwardly define the normalized GLR
as follows:

Λ̂?
1 (E) =

Λ̂lr
1 (E) − m(1)

j√
v(1)

j

. (32)

It finally follows that the normalized GLRT, based on Λ̂?
1 (E), is

given by:

δ̂?1 =

H0 if Λ̂?
1 (E) < τ?1

H1 if Λ̂?
1 (E) ≥ τ?1 .

(33)

Hence, again, one can immediately establish the statistical
properties of the GLRT (33).

Proposition 3. Assuming that the pixels are modelled by the
proposed improved signal-dependent noise model (8), when
both linear model parameters (c j, d j) and camera device fin-
gerprints (̃ak, j, b̃k, j) are known, and the unknown statistical pa-
rameter σ2

j is estimated as in (28), then any ατ ∈ (0, 1) the

decision threshold of the proposed GLRT δ̂?1 is given by:

τ?1 = Φ−1 (1 − ατ) . (34)

Proposition 4. Assuming that the pixels are modelled by the
proposed improved signal-dependent noise model (8), when
both linear model parameters (c j, d j) and camera device fin-
gerprints (̃ak, j, b̃k, j) are known, and the unknown statistical pa-
rameter σ2

j is estimated as in (28), for any decision threshold

τ̂?1 , the power function associated with test δ̂?1 (33) is given by

βδ̂?1
= 1 − Φ


√√

v(1)
0

v(1)
1

Φ−1 (1 − ατ) +
m(1)

0 − m(1)
1√

v(1)
1

 . (35)
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It is important to contact the optimal LRT presented in Sec-
tion III that requires the knowledge of both noise model through
camera device fingerprints (̃ak, j, b̃k, j) and the linear relation be-
tween those fingerprints characterized by (c j, d j) as well as the
error ek statistical parameter, that is the expectation and the
variance under both hypotheses. On the opposite, the practical
GLRT proposed in this Section IV is essentially based on the
estimation of noise model parameters, typically from a set of
images from each device. Then the proposed GLRT consists of
estimating the noise model parameters from given images, us-
ing those estimates to extract the error ek and testing, for each
block, whether the error is more likely distributed according to
what is expected under each hypothesisH0 orH1. Besides, the
impact of those estimations is taken into account in the calcu-
lation of the proposed GLRT statistical performance. In prac-
tice, before testing, we have known σ from BM3D denoising
filter for decomposing an inspected image which controls the
strength of denoising and γ which is the value of gamma cor-
rection.

V. GLRT for JPEG Format without Knowing Camera Fin-
gerprints or Linear Model Parameters

While the GLRT proposed in Section IV can be used in many
practical applications in which one has to decide if a given im-
age was acquired either with device 0 or with device 1, it is also
possible to imagine some practical case that does not fit within
this framework. This would be typically the case if one has only
access to a given device 0; and hence he may be interested to
test whether a given image has been acquired with this known
device, or with any other unknown device, for which the noise
parameters are unknown. In such a practical context, the hy-
pothesisH1 becomes composite. In this scenario, it is proposed
to design a test which would allow us to identify whether or not
the inspected JPEG image X is taken by the camera device 0.
Hence, it is important to note that the given image X may have
been acquired by any other unknown device characterized by
noise parameters that may take any values. The proposed sec-
ond GLRT, denoted as δ̂lr

2 , if defined as follows:

δ̂lr
2 =


H0 if Λ̂lr

2 (E) =

K∑
k=1

Λ̂lr
2 (̂ek) < τ̂lr

2 ,

H1 if Λ̂lr
2 (E) =

K∑
k=1

Λ̂lr
2 (̂ek) ≥ τ̂lr

2 ,

(36)

where the decision threshold τ̂lr
2 is the solution of Equation

P0[Λ̂lr
2 (E) ≥ τ̂lr

2 ] = ατ (37)

to ensure that the GLRT is in the class Kατ . The GLR Λ̂lr
2 (̂ek) is

defined by:

Λ̂lr
2 (̂ek) = log

Pθ̂1
[̂ek,1]

Pθ̂0
[ek,0]

(38)

= log
(
σ̂0

σ̂1

)
+

1
2

e2
k,0

σ̂2
0

−
ê2

k,1

σ̂2
1

, (39)

where êk consists of the estimate error ek,0 = ãk − c0b̃k − d0

and êk,1 = ãk − ĉ1b̃k − d̂1. It should be noted that in this
GLR, the linear model parameters (c0, d0) and camera device
fingerprints (̃ak,0, b̃k,0) are known under hypothesis H0; (c1, d1)
and (̃ak,1, b̃k,1) are unknown, which can be estimated by using
several tested images. It is proposed to estimate parameters
(c1, d1) by using LS algorithm, see Appendix A, and estimate
(̃ak,1, b̃k,1) by using the proposed algorithm of block fingerprints
estimation in subsection IIb. Then the variance σ̂2

j can be esti-
mated by using Equation (28).

Once again one can use Lindeberg’s CLT to establish the sta-
tistical distribution of the proposed normalized Λ̂?

2 (E), defined
follows as:

Λ̂?
2 (E) =

Λ̂lr
2 (E) − m(2)

j√
v(2)

j

d
−−→ N(0, 1). (40)

where the expectation m(2)
j and the variance v(2)

j of Λ̂lr
2 (E) is

defined by:

m(2)
j =

K∑
k=1

EH j (Λ̂
lr
2 (̂ek)) (41)

v(2)
j =

K∑
k=1

VH j (Λ̂
lr
2 (̂ek)). (42)

For clarity, the calculations of the expectation EH j (Λ̂
lr
2 (̂ek)) and

the variance VH j (Λ̂
lr
2 (̂ek)) of Λ̂lr

2 (̂ek) are detailed in Appendix D.
Finally, it is proposed to define the normalized GLRT with

Λ̂?
2 (E) by:

δ̂?2 =

H0 if Λ̂?
2 (E) < τ?2

H1 if Λ̂?
2 (E) ≥ τ?2 .

(43)

Again, it is proposed to establish the statistical properties of
the GLRT (43) for testing a known camera device against any
other unknown device.

Proposition 5. Assuming that the pixels are modelled by the
proposed improved signal-dependent noise model (8), when pa-
rameters (c0, d0) and (̃ak,0, b̃k,0) for device 0 are known, param-
eters (c1, d1) and (̃ak,1, b̃k,1) for device 1 are not known, and
the unknown parameter σ2

j is estimated as in (28), then any

ατ ∈ (0, 1) the decision threshold of the proposed GLRT δ̂?2 is
given by:

τ?2 = Φ−1 (1 − ατ) , (44)

Proposition 6. Assuming that the pixels are modelled by the
proposed improved signal-dependent noise model (8), when pa-
rameters (c0, d0) and (̃ak,0, b̃k,0) for device 0 are known, param-
eters (c1, d1) and (̃ak,1, b̃k,1) for device 1 are not known, and the
unknown parameter σ2

j is estimated as in (28), for any decision

threshold τ̂?2 , the power function associated with test δ̂?2 (43) is
given by

βδ̂?2
= 1 − Φ


√√

v(2)
0

v(2)
1

Φ−1 (1 − ατ) +
m(2)

0 − m(2)
1√

v(2)
1

 . (45)
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The main advantages of the proposed GLRT δ̂?2 are 1) that
its statistical performance can be analytically established and,
hence, one can easily compute the decision threshold that guar-
antees a prescribed FAR along with the ensuing power function
and 2) thanks to the normalization the decision threshold only
depends on the prescribed FAR ατ. In practice, the parame-
ters σ and γ for camera device 0 are both known; on the con-
trary, those two parameters for device 1 are estimated by using
the algorithms proposed in [26] before applying source camera
identification.

VI. Numerical Experiments

a. Results on Simulated Images for JPEG Format

One of the main contributions of this paper is to show that hy-
pothesis testing theory can be applied to design a statistical test
with known statistical properties for identifying source camera
device on simulated images.

To verify the sharpness of the theoretically established re-
sults, it is first proposed to use the Monte-Carlo simulation
on a generated dataset. Camera device 0 is characterized by
(c0, d0) = (−0.0142, 0.0015) and device 1 characterized by
(c1, d1) = (−0.0132, 0.0018). Those values correspond to the
estimated parameters for two different devices of camera model
Nikon D200 from the Dresden dataset [35]. With those settings,
the statistical parameters of residuals ek,0 and ek,1 (see Equation
(13)) following the Gaussian distribution are also known using
estimates from Dresden dataset images. Here, the simulation
reduces to a simple test between two Gaussian random variables
with known and different variances. All the required parameters
have been detailed, thus, one can now build two sets of random
variables by repeating 10000 simulation with those distribution
parameters. Then, the first set of 10000 simulated images from
camera device 0 consisting of 5000 realization of random vari-
ables (̃a0, b̃0) for each image; the second set of 10000 simulated
images from device 1 consisting of 5000 realization of random
variables (̃a1, b̃1) for each image. Under hypothesisH0 andH1
respectively, Fig. 6 presents the comparison between empirical
and theoretical distribution of the optimal LR Λ

lr
(E). Under

hypothesis H0, the empirical distribution of the LR Λ
lr
(E) ap-

proximately follows the standard normal distribution with zero
mean and unit variance, which directly verifies the accuracy
of the theoretically established statistical performance for the
proposed LRT (20). Similarly, under hypothesis H1, the em-
pirical and theoretical distribution of the optimal LR Λ

lr
(E) are

nearly overlapped, which also verifies the correctness of the es-
tablished statistical performance.

Another contribution of the present paper lies in the design
of a statistical test that can warrant the prescribed FAR. Thus,
it is proposed to compare the empirical and theoretical FAR ατ

of the optimal LR Λ
lr
(E) as a function of the decision threshold

τlr. The results of this comparison are presented in Fig. 7. This
figure emphasizes that the proposed LRT (20) has in practice
the ability of guaranteeing the prescribed FAR. In some cases
(τlr
≥ 3), it should be noted that the slight differences of two
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Figure 6: Comparison between empirical and theoretical distribution of Λ
lr

(E).

cures are due to the inaccuracy of the CLT which can hardly
model the tails of the distribution with accuracy.

b. Results on Real Images for JPEG Format

Another major contribution of this paper is to design the de-
tectors with estimated parameters to identify source camera de-
vice in the practical cases. Therefore, it is proposed to verify on
numerical experiments, using a real image dataset, the accuracy
of both the GLRT δ̂?1 (33), that aims at distinguishing between
two camera devices whose parameters are known, as well as the
accuracy of the second GLRT δ̂?2 (43), whose goal is to distin-
guish between a known camera device and any other unknown
device with unknown parameters.

To this end, it is proposed in this paper to exploit the ref-
erence images from Dresden dataset [35] for showing the ac-
curacy of the proposed GLR tests as well as for comparison
with the prior-art detectors. Note that the images from Dresden
dataset are colored image and that in our tests, only the red color
channel is selected. Besides, all the images are acquired with
the highest available JPEG quality setting and maximum avail-
able resolution. Table 1 gives the specific number of each de-
vice in our experiments. It also displays the comparison of the
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Table 1: Images statistic from Dresden dataset with mean estimated parameters (std: standard deviation)

Camera Model & Device Alias σ γ Resolution No. images
Nikon D200 # 0 N_D200_0 3.4000 0.8464 3872×2592 372
Nikon D200 # 1 N_D200_1 3.3294 0.8591 3872×2592 380
Nikon D70 # 0 N_D70_0 2.2365 0.7494 3008×2000 180
Nikon D70 # 1 N_D70_1 2.1823 0.7024 3008×2000 189
Nikon D70s # 0 N_D70s_0 2.2322 0.7001 3008×2000 178
Nikon D70s # 1 N_D70s_1 2.0998 0.7506 3008×2000 189

Canon Ixus70 # 0 C_I70_0 4.3573 0.8596 3072×2304 187
Canon Ixus70 # 1 C_I70_1 4.0456 0.8425 3072×2304 194
Canon Ixus70 # 2 C_I70_2 4.5535 0.8819 3072×2304 186∑

11
∑

11 std: 1.0025 std: 0.0726
∑

3
∑

2055
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Figure 7: Comparison between the theoretical FAR ατ and the empirical results,
plotted as a function of the threshold τlr.

estimated parameters where σ denotes the parameter of BM3D
denoising filter [36, 37] which, roughly speaking, determines
denoising strength, and the presented value of parameter γ rep-
resents the value of gamma correction mean parameter in the
post-processing of digital imaging. It should be noted that in
this paper, these two parameters are not the device fingerprint,
and that they can be estimated accurately, for instance, by using
the algorithm proposed in [26] before applying the identifica-
tion step. In other words, parameters (σ, γ) are assumed to be
known in our proposed practical test (33) and unknown in the
test (43).

For the practical application of the proposed GLRT, the
dataset available for each image is split into two subsets: one
“Learning Subset” and one “Testing Subset”; those subsets are
disjoint as none of images is used in both subsets. Images of
“Learning Subset” are used to extract device fingerprints from
each device; images of “Testing Subset” are used to identify the
origin of a given image. The number of “Learning Subset” is
set as 100 where the images are randomly selected with high
quality factor (QF ≥ 70). Besides, unlike the fingerprints of
RAW images [29, 30], we have found that the ISO sensitivity
has no impact on the proposed fingerprints and, hence, on the
camera device identification methodology.

Experiments are realized on a large dataset to verify the
sharpness of the proposed algorithms. It should be noted that in
the proposed tests GLRT δ̂?1 and δ̂?2 , we use multiple JPEG im-

ages together to identify the camera device. Then it is proposed
to divide the “Testing Subset” into several overlapping groups
of n images for each group, here of course n < N with N the
total number of images in the “Testing Subset”. If the value of n
is set very small, we could lose the accuracy of the estimation,
since our parameters estimation is based on LS algorithm which
needs the large number of data (see Appendix A). To select the
optimal number of each group, let us do the test with increasing
the number n (see Table 2). Based on the detection power of
the proposed test, therefore, it is proposed to set n = 40 in our
test GLRT δ̂?1 and δ̂?2 , which can guarantee the high detection
power while decreasing the probability of missed detection.

First, let us highlight the relevance of the proposed GLRT δ̂?1 .
In this scenario, the camera fingerprints (̃ak, j, b̃k, j) are known
(or estimated) as well as the linear model parameters (c j, d j),
j ∈ {0, 1} for all devices from the same camera model. Our goal
is to identify the inspected images captured with device 0, cor-
responding here to hypothesisH0, or with camera device 1, cor-
responding to hypothesis H1. In [27], Test one is designed for
identifying the inspected image from camera device 0 or 1, that
deals with the same case as the proposed GLRT δ̂?1 . Thus, it is
reasonable that let us compare the performance of our proposed
test δ̂?1 with Test one of [27]. As Table 3 illustrates, at the given
very low FAR (ατ = 0.01), our proposed method obviously out-
performs Test one. The detection power of our proposed test δ̂?1
remains 1 for each case. On the contrary, the average detection
power of Test One only achieve 0.05. Based on the generalized
signal-dependent noise model in [27], Test one can only iden-
tify two camera devices from different models. By contrast, our
proposed test δ̂?1 can identify source camera device of the same
model.

Next, let us study the detection performance of the test δ̂?2 .
In this scenario, we can not obtain the camera fingerprints
(̃ak,1, b̃k,1) and linear model parameters (c1, d1), j ∈ {0, 1} for de-
vice 1, which are estimated from the group of “Testing Subset”.
The goal of the test δ̂?2 is to identify the inspected JPEG images
acquired by device 0 or any other one. In [27], Test two is de-
signed for identifying the inspected image from camera device
0 or any other one as well. Besides, the state-of-the-art detector
of [19], based on the reference PRNU noise as camera finger-

11



Table 2: Detection performance comparison of the test δ̂?2 at the given FAR ατ = 0.02 with increasing the number n of tested images for each group, assuming that
two devices 0 and 1 from the same camera model.

Camera Device n = 10 n = 20 n = 30 n = 40
N_D200_0 vs N_D200_1 0.10 0.95 0.97 1.00

N_D70_0 vs N_D70_1 0.05 1.00 1.00 1.00

N_D70s_0 vs N_D70s_1 0.12 0.98 1.00 1.00

C_I70_0 vs C_I70_1 0.00 0.98 1.00 1.00

C_I70_0 vs C_I70_2 0.00 0.96 1.00 1.00

C_I70_1 vs C_I70_2 0.00 1.00 1.00 1.00

Average 0.05 0.98 1.00 1.00

Table 3: Detection performance comparison at the given FAR ατ = 0.01, assuming that two devices 0 and 1 from the same camera model. This test is corresponding
to the case of the GLRT (33).

Camera Device Proposed Test δ̂?1 Test one of [27]
N_D200_0 vs N_D200_1 1.00 0.02

N_D70_0 vs N_D70_1 1.00 0.01

N_D70s_0 vs N_D70s_1 1.00 0.03

C_I70_0 vs C_I70_1 1.00 0.16

C_I70_0 vs C_I70_2 1.00 0.03

C_I70_1 vs C_I70_2 1.00 0.07

Average 1.00 0.05

Table 4: Detection performance comparison at the given FAR ατ = 0.01, assuming that two devices 0 and 1 from the same camera model. This test is corresponding
to the case of the GLRT (43).

Camera Device Proposed Test δ̂?2 Test two of [27] Test [19]
N_D200_0 vs N_D200_1 1.00 0.01 1.00

N_D70_0 vs N_D70_1 1.00 0.01 1.00

N_D70s_0 vs N_D70s_1 1.00 0.01 1.00

C_I70_0 vs C_I70_1 1.00 0.02 1.00

C_I70_0 vs C_I70_2 1.00 0.03 1.00

C_I70_1 vs C_I70_2 1.00 0.07 1.00

Average 1.00 0.03 1.00

prints, can also deal with this scenario. Then let us compare
the detection perform of those three detectors for identifying
source camera device from the same model. As Table 4 demon-
strates, at the given very low FAR (ατ = 0.01), the test δ̂?2 is
approximately perfect and exhibits roughly the detection power
as the state-of-the-art detector of [19], as well as largely out-
performing Test two whose detection power can only achieve
0.03. Besides, it should be noted that in the comparison with
[19] the performance of both methods evolved very similarly
with the increasing number of training images used to estimate
noise parameters.

To compare with two tests of [27], our proposed two detec-
tors largely outperform the algorithms from [27] (see Table 3

and 4). In fact, the camera fingerprints extracted from JPEG im-
ages in [27] are used for designing the detectors (for instance,
Test one and Test two) which can only identify source camera
model. Hence, the authors of [27] did not extract very distin-
guishable camera fingerprints, which is incapable of identify-
ing source camera devices from the same model. Moreover, the
camera fingerprints of [27] are extracted from one single JPEG
image; our proposed fingerprints are extracted from multiple
images. Therefore, our proposed fingerprints performs more
distinguishable than the prior-art fingerprints. However, the
limitation of our proposed detector is that the camera finger-
prints are extracted from multiple images, which is not suitable
for identifying one single JPEG image.

12



To extend the evaluation of our proposed detector, it is pro-
posed to compare the performance of three instances from the
same camera model Canon Ixus70. In this case, we detect if the
inspected images acquired from the individual camera device is
the same as the images under H0. As Table 5 illustrated, even
the extracted fingerprints from three instances are very close,
the individual camera device can still be distinguished by using
our proposed detector. It should be noted that the detection ac-
curacy is denoted as the ratio of the number of inspected images
selected as images under H0 to the total number of inspected
images.

VII. Conclusion and Discussion

This paper studies the problem of identifying source camera
device for JPEG images. In the most literature, PRNU-based
detectors nearly dominate the research community of source
camera identification. In this context, each camera device is
characterized by its linear parametric model with parameters
(c, d), which are obtained from the estimated camera device
fingerprints (̃ak, b̃k) describing the proposed improved signal-
dependent noise model. Then the problem of camera device
identification is cast in the framework of hypothesis testing the-
ory. Assuming that all the parameters are perfectly known, the
statistical performance of the LRT is analytically established.
In the practical cases, based on the estimated parameters, our
designed two GLRTs perform very well at the prescribed FAR.
Numerical simulations have showed positive results of the pro-
posed method making a solid first proof of concept that still
needs to be extended to get it up to the level of PRNU-based
methods. The method proposed in this paper is however an in-
teresting alternative as it is based on a very different approach.

Besides, the problem of multi-hypotheses can be addressed
by modifying the criterion of optimality and designing a multi-
hypotheses test for this criterion. Once the statistical distribu-
tion of hypotheses are known (cameras parameters) a mini-max
approach can be used for instance to minimize the worst miss-
classification probability. The multi-hypotheses testing frame-
work can also be used to reject both hypothesisH0 andH1, see
[45, 46].

The main limitation of our proposed tests is that since the
camera fingerprints (̃ak, b̃k) are extracted based on multiple im-
ages, our designed tests can only deal with the case of testing a
set of images (at least 40) together. In this scenario, if a foren-
sic investigator aims at identifying the origin of the only one
inspected image, our proposed tests will be invalid.
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Appendix A. Block Fingerprints (̃ak, b̃k) Estimation

In this appendix, it is proposed to detail the estimation of
(̃ak, b̃k) by using Least Square algorithm (LS). Then let us trans-
form Equation (8) to:

pk,n = qk,nãk + b̃k (A.1)

where pk,n = (σ2
k,n −

∆
12 ) γ

µ
2−2γ
k,n

where γ can be previously esti-

mated using the algorithm proposed in [26] and qk,n = µk,n, the
block index k ∈ {1, · · · ,K}, the image index n ∈ {1, · · · ,N}
with N denoting the number of JPEG images. Moreover, one
can express Equation (A.1) in the form of vector like:

P = Q ·
(

ãk

b̃k

)
(A.2)

where P =


pk,1
...

pk,N

 ,Q=


qk,1 1
...

...
qk,N 1

.
Then, we can estimate the camera device fingerprints by: ̂̃ak̂̃bk

 = (QTQ)−1QTP (A.3)

where QT denotes the transpose of Q.

Appendix B. Expectation and Variance of LR Λlr(ek)

In this appendix, let us discuss the expectation EH j (Λ
lr(ek))

and the variance VH j (Λ
lr(ek)) of the LR Λlr(ek) under hypoth-

esis H j, j = {0, 1}. First, under hypothesis H0 with camera
device 0 fingerprints (̃ak,0, b̃k,0), we can immediately obtain the
following Gaussian distribution:ek,0 = ãk,0 − (c0b̃k,0 + d0) ∼ N(0, σ2

0),
ek,1 = ãk,0 − (c1b̃k,0 + d1) ∼ N(µ0,1, σ

2
0,1).

(B.1)

By putting the expression of the distribution from ek,0 and ek,1
respectively (B.1) into the expression LR Λlr(ek) (18), the ex-
pectation EH0 (Λlr(ek)) and the variance VH0 (Λlr(ek)) can be cal-
culated by:

EH0 (Λlr(ek))= log(
σ0

σ1
)

+
1
2

EH0

e2
k,0

σ2
0

−EH0

e2
k,1

σ2
1


= log(

σ0

σ1
)+

1
2

1−σ2
0,1+µ

2
0,1

σ2
1

, (B.2)

VH0 (Λlr(ek))=
1
4

VH0

e2
k,0

σ2
0

+VH0

e2
k,1

σ2
1


=

1
4

2+
VH0 (e2

k,1)

σ4
1

 (B.3)

=
1
2

1+
σ4

0,1 − 2µ2
0,1σ

2
0,1

σ4
1

.
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Table 5: Detection performance comparison at the given FAR ατ = 0.01, assuming that two devices 0 and 1 from the same camera model. This test is corresponding
to the case of the GLRT (43).

H0Inspected C_I70_0 C_I70_1 C_I70_2
C_I70_0 1.00 0 0

C_I70_1 0 1.00 0

C_I70_2 0 0 1.00

Similarly, under hypothesis H1 with camera device 1 fin-
gerprints (̃ak,1, b̃k,1), we can immediately obtain the following
Gaussian distribution:ek,0 = ãk,1 − (c0b̃k,1 + d0) ∼ N(µ1,0, σ

2
1,0),

ek,1 = ãk,1 − (c1b̃k,1 + d1) ∼ N(0, σ2
1).

(B.4)

The expectation EH1 (Λlr(ek)) and the variance VH1 (Λlr(ek)) can
be expressed by:

EH1 (Λlr(ek))= log(
σ0

σ1
)+

1
2

σ2
1,0+µ

2
1,0

σ2
0

−1

. (B.5)

VH1 (Λlr(ek))=
1
4

2+
VH1 (e2

k,0)

σ4
0

 (B.6)

=
1
2

σ4
1,0 − 2µ2

1,0σ
2
1,0

σ4
0

+1

.
Appendix C. Expectation and Variance of GLR Λ̂lr

1
(ek)

In this practical GLRT (33), we never know the statistical
parameter of the errors ek, that is variance value. Thus, let
us assume that the ML estimated variance σ̂2

j can be obtained
by using Equation (28). In addition, under hypothesis H j of
the GLRT δ̂lr

1 , camera parameters (̃ak, j, b̃k, j) and linear model
parameters (c j, d j) are perfectly known. Therefore, for sim-
plicity, the expectation and variance of Λ̂lr

1 (ek) can be obtained
by putting (̃ak, j, b̃k, j) and σ̂2

j into Equations (B.2), (B.3), (B.5),
(B.6), which are expressed by:

EH0 (Λ̂lr
1 (ek))= log(

σ̂0

σ̂1
)+

1
2

1− σ̂2
0,1 + µ̂2

0,1

σ̂2
1

, (C.1)

VH0 (Λ̂lr
1 (ek))=

1
4

2 +
VH0 (e2

k,1)

σ̂4
1

, (C.2)

where under hypothesis H0, µ̂0,1 = 1
K

∑K
k=1 (̃ak,0 − c1b̃k,0 − d1)

and σ̂2
0,1 = 1

K−1
∑K

k=1 (̃ak,0 − c1b̃k,0 − d1 − µ̂0,1)2 and VH0 (e2
k,1) =

1
K−1

∑K
k=1((̃ak,0 − c1b̃k,0 − d1)2 − 1

K
∑K

k=1 (̃ak,0 − c1b̃k,0 − d1)2)2;

EH1 (Λ̂lr
1 (ek))= log(

σ̂0

σ̂1
)+

1
2

σ̂2
1,0+̂µ

2
1,0

σ̂2
0

−1

, (C.3)

VH1 (Λ̂lr
1 (ek))=

1
4

VH1 (e2
k,0)

σ̂4
0

+2

 , (C.4)

where under hypothesis H1, µ̂1,0 = 1
K

∑K
k=1 (̃ak,1 − c0b̃k,1 − d0)

and σ̂2
1,0 = 1

K−1
∑K

k=1 (̃ak,1 − c0b̃k,1 − d0 − µ̂1,0)2 and VH1 (e2
k,0) =

1
K−1

∑K
k=1((̃ak,1 − c0b̃k,1 − d0)2 − 1

K
∑K

k=1 (̃ak,1 − c0b̃k,1 − d0)2)2.

Appendix D. Expectation and Variance of GLR Λ̂lr
2

(ek)

In the case of GLRT (43), the unknown parameters (c1, d1)
and (̃ak,1, b̃k,1) can be estimated by using several tested images.
Let us estimate parameters (c1, d1) by using LS algorithm, see
Appendix A, and estimate (̃ak,1, b̃k,1) by using the proposed
algorithm of block fingerprints estimation in subsection IIb.
Then, for clarity, it is proposed to replace the unknown param-
eters by their corresponding estimates and put them into the
calculations of expectation and variance of GLR Λ̂lr

1 (ek), see
Equation (C.1)∼(C.4). Finally, it is very easy to obtain the ex-
pectation and variance of GLR Λ̂lr

2 (ek).
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