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Abstract9

A graph G of order n is arbitrarily partitionable (AP) if, for every sequence (n1, . . . , np)10

partitioning n, there is a partition (V1, . . . , Vp) of V (G) such that G[Vi] is a connected11

graph of order ni for i = 1, . . . , p. The property of being AP is related to other well-known12

graph notions, such as perfect matchings and Hamiltonian cycles, with which it shares13

several properties. This work is dedicated to studying two aspects behind AP graphs.14

On the one hand, we consider algorithmic aspects of AP graphs, which received some15

attention in previous works. We first establish the NP-hardness of the problem of parti-16

tioning a graph into connected subgraphs following a given sequence, for various new graph17

classes of interest. We then prove that the problem of deciding whether a graph is AP is in18

NP for several classes of graphs, confirming a conjecture of Barth and Fournier for these.19

On the other hand, we consider the weakening to APness of sufficient conditions for
Hamiltonicity. While previous works have suggested that such conditions can sometimes
indeed be weakened, we here point out cases where this is not true. This is done by
considering conditions for Hamiltonicity involving squares of graphs, and claw- and net-
free graphs.

Keywords: arbitrarily partitionable graphs; partition into connected subgraphs;20

Hamiltonicity.21

1. Introduction22

1.1. Partitioning Graphs into Connected Subgraphs23

Throughout this work, we call a graph of order G an n-graph. By a graph partition of24

an n-graph G, it is meant a vertex-partition (V1, . . . , Vp) of V (G) such that each G[Vi] has25

particular properties. This work is about partitions into connected subgraphs, which we26

deal with through the following terminology.27

Consider a sequence π = (n1, . . . , np) being a partition of n, i.e., n1 + · · ·+np = n. We28

will sometimes call π an n-sequence to make clear which integer it is a partition of. When29

writing |π|, we mean the size of π (i.e., p), while, by writing ‖π‖, we refer to the sum of30

its elements (i.e., n). The spectrum sp(π) of π is the set of values appearing in π.31

By a realization of π of G, we mean a partition (V1, . . . , Vp) of V (G) such that G[Vi]32

has order ni and is connected for i = 1, . . . , p. In other words, π indicates the number33

of connected subgraphs we want (p), and their respective order (n1, . . . , np). In case G34

admits a realization of every n-sequence, and is hence partitionable into arbitrarily many35

connected subgraphs with arbitrary order, we callG arbitrarily partitionable (AP for short).36

AP graphs can also be found in the literature under different names, such as “arbitrarily37
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vertex-decomposable graphs” [1, 2, 4] or “fully decomposable graphs” [10] (but these terms38

might mislead the readers, as the term “decomposition” has multiple other meanings in39

graph theory).40

Although the notion of AP graphs is relatively recent (it was introduced in 2002 by41

Barth, Baudon and Puech, to deal with a practical resource allocation problem [1]), the42

problem of partitioning graphs into connected subgraphs is much older. Perhaps the most43

influential result is the one from the 70’s due to Lovász and Győri [21, 17], who indepen-44

dently proved that an n-graph G is k-connected if and only if every n-sequence with size k45

is realizable in G, even if the k parts are imposed to contain any k vertices chosen before-46

hand. We refer the interested reader to the literature (such as the Ph.D. thesis of the first47

author [5]) for many more results of this kind.48

As a warm up, let us start by raising notable properties of AP graphs. First, it should be49

noted that, in every AP n-graph, any realization of the n-sequence (2, . . . , 2) (or (2, . . . , 2, 1)50

if n is odd) corresponds to a perfect matching (resp. quasi-perfect matching). Note also51

that every AP graph being spanned by an AP graph is also AP. Since paths are obviously52

AP, this implies that every traceable graph (i.e., graph having a Hamiltonian path) is AP.53

So, in a sense, the class of AP graphs lies in between the class of graphs with a (quasi-54

) perfect matching and the class of traceable graphs (which itself contains the class of55

Hamiltonian graphs), which are well-studied classes of graphs.56

Several aspects of AP graphs have been investigated to date. In this work, we focus57

on two such aspects, namely the algorithmic aspects and the Hamiltonian aspects, which58

are to be developed below. Again, we refer the interested reader to e.g. [5] for an in-depth59

overview of other aspects of interest (such as the structural aspects of AP graphs).60

1.2. Algorithmic Aspects of AP Graphs61

From the previous definitions related to graph partitions into connected subgraphs, the62

following two decision problems naturally arise:63

Realization64

Instance: An n-graph G, and an n-sequence π.65

Question: Is π realizable in G?66

AP67

Instance: A graph G.68

Question: Is G AP?69

The NPness of Realization is obvious. Its NP-hardness was investigated by several70

authors, who established it for numerous restrictions on either G or π. Concerning re-71

strictions on π, Realization remains NP-hard for instances where sp(π) = {k} for every72

k ≥ 3, as shown by Dyer and Frieze [12]. Note that finding a realization of any sequence73

π with sp(π) ⊆ {1, 2} is equivalent to finding a sufficiently large matching, which can be74

done in polynomial time using Edmonds’ Blossom Algorithm [13]; hence, such instances75

of Realization can be solved in polynomial time. In [6], the first author showed that76

Realization remains NP-hard for instances where |π| = k, for any k ≥ 2.77

Concerning restrictions of Realization on G, Barth and Fournier proved, in [2], that78

Realization remains NP-hard for trees with maximum degree 3. In [10], Broersma,79

Kratsch and Woeginger proved that Realization remains NP-hard for split graphs. In [7],80

the first author proved that Realization remains NP-hard when restricted to graphs with81

about a third universal vertices (i.e., vertices neighbouring all other vertices).82
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The status of the AP problem is quite intriguing. A first important point to raise is83

that, contrarily to what one could naively think, the NP-hardness of Realization does84

not imply that of AP. That is, in all reductions imagined by the authors above, the reduced85

n-graph G needs to have a very restricted structure so that a particular n-sequence π is86

realizable under particular circumstances only; this very restricted structure makes many87

other n-sequences not realizable in G, implying that it is far from being AP.88

It is actually not even clear whether the AP problem is in NP or co-NP. For AP to be89

in NP, one would need to provide a polynomial certificate attesting that all n-sequences are90

realizable in G, while the number of such n-sequences is p(n), the partition number of n,91

which is exponential in n. For AP to be in co-NP, one would need to provide a polynomial-92

time algorithm for checking that a given sequence is indeed not realizable in G, while the93

number of possible partitions of G into connected subgraphs is clearly exponential.94

On the other hand, though, as pointed out in [2, 6], the AP problem matches the typical95

structure of Πp
2 problems (“for every sequence, is there a realization?”), and thus belongs96

to Πp
2 (recall that Πp

2 problems are, simply put, those decision problems where we are given97

two sets X,Y of elements, each of these elements ranging in some respective sets of values,98

and the question is whether, whatever the values of the elements in X are, the elements in99

Y can always be assigned values so that a particular property holds). However, it is still100

not known whether AP is Πp
2-hard. Also, we have no evidence that AP is NP-hard.101

Regarding those questions, the main conjecture is due to Barth and Fournier [2]:102

Conjecture 1.1 (Barth, Fournier [2]). The AP problem is in NP.103

Conjecture 1.1 relies on polynomial kernels of sequences, which are presumed to exist for104

every graph. For an n-graph G, a kernel (of n-sequences) is a set K of n-sequences such105

that G is AP if and only if all sequences of K are realizable in G. That is, a kernel for106

G is a (preferably small) set of sequences attesting the APness of G. We say that K is a107

polynomial kernel if its size is a polynomial function of n.108

Note that the existence of a polynomial kernel K for a given graph class indeed implies109

the NPness of the AP problem for that class. All results towards Conjecture 1.1 so far are110

based on proving the existence of such kernels for particular graph classes. The first result111

of this kind was given by Barth, Baudon and Puech [1], who proved that, for subdivided112

claws of order n (i.e., trees where the unique vertex of degree more than 2 has degree 3),113

the set of all n-sequences of the form (k, . . . , k, r) or (k, . . . , k, k + 1, . . . , k + 1, r) (where114

r < k) is a polynomial kernel. Later on [24], Ravaux showed that, still for subdivided claws115

of order n, the set of n-sequences π with |sp(π)| ≤ 7 is an alternative polynomial kernel116

(although of bigger size, proving that this second set is indeed a kernel for the considered117

graph class is much easier than proving that the first set is). Concerning other polynomial118

kernels, Broersma, Kratsch and Woeginger proved in [10] that the set of n-sequences π with119

sp(π) ⊆ {1, 2, 3} is a polynomial kernel for split n-graphs. The first author also provided120

more examples of polynomial kernels in [7]; in particular, for complete multipartite n-121

graphs, n-sequences π with sp(π) ⊆ {1, 2} form a kernel.122

An interesting side aspect is that, from the existence of these polynomial kernels, some123

of the authors above also derived the polynomiality of the AP problem in certain graph124

classes. In particular, Barth and Fournier proved that AP is polynomial-time solvable125

when restricted to subdivided stars [2], while Broersma, Kratsch and Woeginger proved it126

is polynomial-time solvable when restricted to split graphs [10].127

1.3. Hamiltonian Aspects of AP Graphs128

As mentioned in Section 1.1, the AP property can be regarded as a weakening of129

traceability/Hamiltonicity. In particular, all sufficient conditions implying traceability also130
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imply APness. An interesting line of research is thus to investigate whether such conditions131

can be weakened for the AP property.132

To the best of our knowledge, only a few results of this sort can be found in the133

literature. The first series of such results is related to the following parameter, defined for134

any given graph G:135

σk(G) = min{d(v1) + · · ·+ d(vk) : v1, . . . , vk are non-adjacent vertices of G}.136

A well-known result of Ore [23] states that every n-graph G (n ≥ 3) with σ2(G) ≥ n− 1 is137

traceable. In [22], Marczyk proved that every n-graph G (n ≥ 8) having a (quasi-) perfect138

matching and verifying σ2(G) ≥ n−3 is AP. Later on, this result was improved by Horňák,139

Marczyk, Schiermeyer and Woźniak [18], who proved that every n-graph G (n ≥ 20) having140

a (quasi-) perfect matching and verifying σ2(G) ≥ n− 5 is AP. A similar result for graphs141

G with large σ3(G) was also claimed by Brandt [9].142

The last weakening we are aware of, deals with the number of edges guaranteeing143

APness. From known results, it can be established that connected n-graphs with more144

than
(
n−2
2

)
+ 2 edges are traceable (see [20], Proposition 19). An analogous sufficient145

condition for APness was given by Kalinowski, Pilśniak, Schiermeyer and Woźniak [20],146

who proved that, a few exceptions apart, all n-graphs (n ≥ 22) with more than
(
n−4
2

)
+ 12147

edges are AP.148

1.4. Our Results149

In this work, we establish more results on AP graphs regarding the two aspects devel-150

oped above. More precisely:151

• Regarding the algorithmic aspects, we provide, in Sections 2 and 3, both positive and152

negative results. We start, in Section 2, by providing an easy NP-hardness reduction153

framework, for showing, through slight modifications, that Realization is NP-hard154

when restricted to many graph classes (see, for instance, Theorems 2.3, 2.4, 2.5). In155

Section 3, we provide more polynomial kernels for several graph classes excluding156

particular patterns as induced subgraphs.157

• In Section 4, we consider the weakening of more Hamiltonian conditions for AP158

graphs. Although this line of research seems quite appealing, the results we get159

show that the distance between traceable graphs and AP graphs is more tenuous160

than one could hope. This is done by considering the notions of squares of graphs,161

and claw-free and net-free graphs. More precisely, we show that classical results on162

Hamiltonicity and these notions do not weaken to the AP property (in the obvious163

way, to the least).164

We conclude this work with Section 5, in which we raise some open questions.165

2. An NP-hardness Reduction Framework for Realization166

In this section we introduce another yet natural reduction for showing the NP-hardness167

of Realization. Via several modifications of this reduction, we will, in the next sections,168

establish the NP-hardness of Realization for several of the graph classes we consider.169

The reduction is from the 3-Partition problem, which can be stated as follows (see [16],170

and [11] for more properties of 3-Partition):171

3-Partition172

Instance: A set A = {a1, . . . , a3m} of 3m elements, a bound B ∈ N∗, and a size s : A→ N∗173

such that:174
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• B
4 < s(a) < B

2 for every a ∈ A, and175

•
∑

a∈A s(a) = mB.176

Question: Can A be partitioned intom parts A1∪· · ·∪Am such that we have
∑

a∈Ai
s(a) =177

B for every i = 1, . . . ,m?178

In some of our proofs, we will use the fact that 3-Partition remains NP-complete in179

the contexts below, which obviously hold:180

Observation 2.1. Let <A,B, s> be an instance of 3-Partition where:181

• B
4 < s(a) < B

2 for every a ∈ A, and182

•
∑

a∈A s(a) = mB.183

The following instances of 3-Partition are equivalent to <A,B, s>:184

• <A,B′, s′>, where s′(a) = s(a) + 1 for every a ∈ A, and B′ = B + 3;185

• <A,B′′, s′′>, where (for any α ≥ 1) s′′(a) = α ·s(a) for every a ∈ A, and B′′ = α ·B.186

Furthermore, we have:187

• B′

4 < s′(a) < B′

2 and B′′

4 < s′′(a) < B′′

2 for every a ∈ A, and188

•
∑

a∈A s
′(a) = mB′ and

∑
a∈A s

′′(a) = mB′′.189

The key argument behind our NP-hardness reduction framework from 3-Partition to190

Realization is the following straightforward equivalence between the two problems:191

Theorem 2.2. Realization is NP-hard when restricted to disconnected graphs.192

Proof. Consider an instance <A,B, s> of 3-Partition, where |A| = 3m andA = {a1, . . . , a3m}.193

We produce an instance <G, π> (with G being a disconnected graph) of Realization such194

that <A,B, s> admits a solution if and only if π is realizable in G.195

Consider, as G, the disjoint union of m complete graphs KB on B vertices. So, we196

have |V (G)| = mB =
∑

a∈A s(a). As π, consider the |V (G)|-sequence (s(a1), . . . , s(a3m)).197

The equivalence between the two instances is then easy to visualize. Consider any part Vi198

with size s(ai) from a realization of π in G. Then Vi includes vertices from one connected199

component of G only since otherwise G[Vi] would not be connected. Furthermore, since200

every connected component is complete, actually Vi can be any subset (with the required201

size) of its vertices. So, basically, in any realization of π in G, each of the connected202

components of G is covered by three parts with size s(ai1), s(ai2) and s(ai3), and thus203

s(ai1) + s(ai2) + s(ai3) = B. A solution to <A,B, s> can then be directly deduced from a204

realization of π in G, and conversely by similar arguments.205

Note that, in the reduction given in the proof of Theorem 2.2, we can replace the206

disjoint union of m complete graphs KB by the disjoint union of any m AP graphs on B207

vertices. For instance, one can consider any disjoint union of m traceable graphs of order208

B.209

In the current paper, most of our proofs for showing that Realization is NP-hard210

for some graph class rely on implicitly getting the situation described in the proof of211

Theorem 2.2. Namely, we use the fact that if, for some graph G and some |V (G)|-sequence212

π, in any realization of π in G some particular parts V1, . . . , Vk have to contain particular213
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subgraphs in such a way that G− (V1 ∪ · · · ∪ Vk) is a disjoint union of m AP graphs with214

the same order B, then we essentially get an instance of Realization that is NP-hard.215

We illustrate this fact with three easy examples. We start off by considering the class216

of subdivided stars (trees with a unique vertex with degree at least 3). In [2], Barth and217

Fournier proved that Realization is NP-hard for trees with maximum degree 3 (but hav-218

ing many degree-3 vertices). Using our reduction scheme, we provide an easier proof that219

Realization is NP-hard for subdivided stars, hence for trees with unbounded maximum220

degree but only one large-degree vertex.221

In the context of AP graphs, subdivided stars, which played a central role towards222

understanding the structure of AP trees, have been also called multipodes (see e.g. [1, 2, 4,223

19]). In the next proof, when writing Pk(a1, . . . , ak), we refer to the subdivided star with224

k branches where the ith branch has (not counting the center vertex) order ai ≥ 1.225

Theorem 2.3. Realization is NP-hard when restricted to subdivided stars.226

Proof. The reduction is from 3-Partition. Given an instance <A,B, s> of 3-Partition,227

we construct a subdivided star G and a |V (G)|-sequence π such that <A,B, s> admits a228

solution if and only if π is realizable in G.229

According to Observation 2.1, we may assume that s(a) > 1 for every a ∈ A. Let230

sm = max{s(a) : a ∈ A}. Consider, as G, the subdivided star Psm+m(1, . . . , 1, B, . . . , B)231

with sm branches of order 1 and m branches of order B. As π, consider π = (sm +232

1, s(a1), . . . , s(a3m)).233

The keystone of the reduction is that, because no element of π is equal to 1, in every234

realization of π in G the part containing the center vertex of G necessarily also contains235

all vertices from the branches of order 1. Since there are sm branches of order 1 in G, the236

part containing the center vertex must thus have size at least sm + 1. So basically the part237

with size sm + 1 of every realization of π in G must include the center vertex of G as well238

as all the vertices from its sm branches of order 1.239

Once this part is picked, what remains is a forest of m paths PB (on B vertices) and240

the sequence (s(a1), . . . , s(a3m)). Hence, finding a realization of π in G is equivalent to the241

problem of finding a realization of (s(a1), . . . , s(a3m)) in a forest of m paths PB, while this242

problem is equivalent to solving <A,B, s> according to the arguments given in the proof243

of Theorem 2.2. The result then follows.244

In the next result, we consider series-parallel graphs, for which several NP-hard problems245

are known to be polynomial-time solvable. These graphs, each of which contains two special246

vertices (source and sink), can be defined inductively as follows:247

• K2 is a series-parallel graph, its two vertices being its source and sink, respectively.248

• Let G and H be two series-parallel graphs with sources sG and sH , respectively, and249

sinks tG and tH , respectively. Then:250

– the series-composition of G and H, obtained by identifying tG and sH , is a251

series-parallel graph with source sG and sink tH ;252

– the parallel-composition of G and H, obtained by identifying sG and sH , and253

identifying tG and tH (with keeping the graph simple, i.e., omitting all multiple254

edges, if any is created), is a series-parallel graph with source sG = sH and sink255

tG = tH .256
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In the context of AP graphs, a particular class of series-parallel graphs, called balloons,257

has been investigated towards understanding the structure of 2-connected AP graphs (see258

e.g. [4, 3]). The balloon (or k-balloon, to make the parameter k clear) Bk(b1, . . . , bk) is259

the series-parallel graph obtained as follows. Start from two vertices r1 and r2. Then, for260

every i = 1, . . . , k, we join r1 and r2 via a branch being a new path with bi internal vertices261

having r1, r2 as end-vertices. By the order of the ith branch, we mean bi.262

Theorem 2.4. Realization is NP-hard when restricted to series-parallel graphs.263

Proof. We use the same reduction scheme as that in the proof of Theorem 2.3. This time,
consider, as G, the (2sm + m)-balloon B2sm+m(1, . . . , 1, B, . . . , B) with 2sm branches of
order 1, and m branches of order B. As π, consider

π = (sm + 1, sm + 1, s(a1), . . . , s(a3m)).

Because every vertex from a branch of order 1 of G only neighbours r1 and r2 (who264

have degree 2sm + m), it has to belong, in every realization of π in G, to a same part as265

one of r1 or r2. Said differently, the at most two parts covering r1 and r2 also have to cover266

all of the vertices from the branches of order 1. Because there are 2sm branches of order 1,267

these at most two parts must cover at least 2sm + 2 vertices. In view of the values in π,268

in every realization of π in G we necessarily have to use the two parts with size sm + 1 to269

cover all these vertices. Once these two parts have been picked, what remains is a forest270

of m paths PB of order B and the sequence (s(a1), . . . , s(a3m)). We thus have the desired271

equivalence.272

As mentioned in the introductory section, recall that, by the result of Győri and273

Lovász [21, 17], all k-connected graphs can always be partitioned into k connected sub-274

graphs with arbitrary orders. In the following result, we prove, generalizing the arguments275

from the previous proofs, that partitioning a k-connected graph into more than k connected276

subgraphs is an NP-hard problem.277

Theorem 2.5. For every k ≥ 1, Realization is NP-hard when restricted to k-connected278

graphs.279

Proof. The reduction is similar to that used in the previous two proofs. Let k ≥ 1 be fixed,
and construct G as follows. Add k vertices r1, . . . , rk to G, as well as ksm copies of K1 and
m copies of KB. Finally, for every i = 1, . . . , k, add an edge between ri and every vertex
of V (G) \ {r1, . . . , rk}. Note that G is indeed k-connected, and {r1, . . . , rk} is a k-cutset.
As π, consider

π = (sm + 1, . . . , sm + 1, s(a1), . . . , s(a3m)),

where the value sm + 1 appears exactly k times at the beginning of π.280

Consider any realization of π in G. Because the s(ai)’s are strictly greater than 1, and281

the ksm copies of K1 are joined to the ri’s only, every of these K1’s has to belong to the282

same part as one of the ri’s. Following these arguments, the k parts with size sm + 1 of a283

realization of π in G must each include one of the ri’s and sm of the K1’s. What remains284

once these k parts have been picked is m vertex-disjoint connected components isomorphic285

to KB, as well as the sequence (s(a1), . . . , s(a3m)). This concludes the proof.286

3. Polynomial Kernels for Graphs Without Forbidden Subgraphs287

For two graphs G and H, we denote by G + H the disjoint union of G and H, which288

is the disconnect graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). When289
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writing kG for some k ≥ 1, we refer to the disjoint union G+ · · ·+G of k copies of G. If290

G is a family of graphs, we write by kG the class of graphs that are the disjoint union of k291

members of G. That is, G ∈ kG if there exist G1, . . . , Gk ∈ G such that G = G1 + · · ·+Gk.292

We denote by G×H the complete join of G and H, which is the graph with vertex set293

V (G)∪ V (H) and edge set E(G)∪E(H)∪ V (G)× V (H). For a family (set) of graphs F ,294

we say that a graph G is F-free if G has no member of F as an induced subgraph.295

For k ≥ 1, we denote by Gk the class of all connected k-graphs, while we denote by G≤k296

the class of all connected graphs of order at most k.297

In this section, we exhibit polynomial kernels of sequences for some families of F-298

free graphs. We also discuss some consequences of the existence of these kernels on the299

complexity of the Realization and AP problems for the considered classes of graphs.300

3.1. k-Sequential Graphs301

Let k ≥ 1 be fixed, and F be a class of graphs. An F-sequential graph is a graph that302

can be defined inductively as follows:303

• Graphs in F are F-sequential graphs;304

• For an F-sequential graph G and a graph H ∈ F , the graphs G+H and G×H are305

F-sequential graphs.306

The construction of such graphs can equivalently be seen as a sequence of steps, at each307

of which a new graph of F is added, its vertices being possibly joined to all vertices added308

during the previous steps. Following that analogy, for any given vertex v of a sequential309

graph, we denote by level(v) the level of v, where level(v) = i if v belongs to the graph that310

was added during the ith step. A vertex with level i is called a join vertex if a complete311

join was performed at the end of the ith step.312

In what follows, G≤k-sequential graphs are also called k-sequential graphs. It is worth-313

while noting that sequential graphs encapsulate known families of graphs; for instance,314

threshold graphs ({P4, C4, 2K2}-free graphs) are precisely the 1-sequential graphs.315

We start by proving that, for every k-sequential n-graph, the set316

Kk,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , 2k + 1}}317

is a kernel. When k is fixed, this provides a polynomial kernel of sequences for k-sequential318

graphs, which implies that the AP problem is in NP for this class of graphs.319

Theorem 3.1. For every k, n, the set Kk,n is a kernel for k-sequential n-graphs.320

Proof. Let G be a k-sequential n-graph. We need to show that G is AP if and only if all321

sequences of Kk,n are realizable in G. If we assume that G is AP, then, by definition, all322

sequences of Kk,n are realizable in G. We thus have to focus on the converse direction only.323

Assume that all sequences of Kk,n are realizable in G, and consider any n-sequence324

π = (n1, . . . , np) 6∈ Kk,n. We have to prove that π admits a realization in G. We build an325

n-sequence π′ ∈ Kk,n in the following way: we consider every element ni of π in turn, and:326

• if ni ∈ {1, . . . , 2k + 1}, then we add ni to π′;327

• otherwise, we add all elements of any ni-sequence (m1, . . . ,mx) where k + 1 ≤ mi ≤328

2k + 1 for every i = 1, . . . , x (such exists since ni ≥ 2k + 2).329
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Note that indeed π′ is an n-sequence, and π′ ∈ Kk,n. Let thus R′ be a realization of π′ in330

G, which exists by assumption.331

We obtain a realization R of π in G in the following way. We consider every ni ∈ π in332

turn. If ni ≤ 2k+ 1, then there is a corresponding element with value ni in π′, and thus a333

connected subgraph of order ni in R′, which we add to R. Now, if ni ∈ π ≥ 2k + 2, then334

there are corresponding elements m1, . . . ,mx with value in {k + 1, .., 2k + 1} in π′ (such335

that m1 + · · ·+mx = ni), and thus connected subgraphs G1, . . . , Gx of order m1, . . . ,mx336

in R′. By the definition of a k-sequential graph (in particular, because all graphs added337

sequentially to construct G have order at most k), each of the Gi’s has to contain a338

join vertex. The join vertex with maximum level implies that G1, . . . , Gx, in G, form a339

connected subgraph of order ni; then we add it to R as the part of size ni.340

Once every ni has been considered, R is a realization of π in G.341

Regarding Theorem 3.1, it is worth mentioning that, in general, the maximum magni-342

tude 2k + 1 of the elements in Kk,n cannot be lowered. Rephrased differently, there are343

cases where n-sequences π with sp(π) ⊆ {1, . . . , x} for some x < 2k + 1 do not form a344

kernel for k-sequential graphs. A straight example is that of K2 +K1: for this 1-sequential345

graph, the sequence (3) has no realization, while all sequences with spectrum from {1, 2}346

are realizable. Hence, for 1-sequential graphs, the APness follows from the realizability of347

sequences with elements in {1, 2, 3}, and this is, in a sense, best possible.348

There are cases, however, where better kernels can be obtained. For instance, when349

k ≥ 2, the set350

K′k,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , b3k/2c+ 1}}351

is a better kernel for k-sequential n-graphs.352

Theorem 3.2. For every k ≥ 2 and n, the set K′k,n is a kernel for k-sequential n-graphs.353

Proof. Let G be a k-sequential n-graph. First assume that G is not connected, i.e., the354

last connected component added during the construction of G was not joined to the rest355

of the graph. Let H be a connected component of G with smallest order h. By definition,356

k ≥ h. Also, n ≥ 2h since G is not connected.357

Suppose first that h ≥ 5. If h is odd, then let

A =

{
h+ 1

2
,
h+ 3

2
, . . . , h− 1

}
.

If h is even, then let

A =

{
h

2
+ 1,

h

2
+ 2, . . . , h− 1

}
.

Note that every integer at least 2h can be expressed as the sum of elements in A. Let thus358

π ∈ K′k,n be an n-sequence taking values from A. It can easily be seen that h cannot be359

expressed as the sum of elements in A; therefore, there is no realization of π in G.360

Now assume that h ≤ 4. As above, we consider some set A of elements, depending on361

the value of h:362

• if h = 4, then consider A = {3, 5};363

• if h = 3, then consider A = {2, 5};364

• if h = 2, then consider:365
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– A = {3, 4} if n ≥ 6;366

– A = {1, 4} if n = 5;367

– A = {1, 3} if n = 4;368

• if h = 1, then consider A = {2, 3}.369

In every case, it can be noted that every integer at least 2h can be expressed as the sum370

of elements in A, while h cannot. Thus, as in the previous case, there exists an n-sequence371

of K′k,n that is not realizable in G. So G has to be connected.372

So now assume that G is connected, and that G is not AP. According to Theorem 3.1,373

graph G is AP if and only if all n-sequences of Kk,n, i.e., with spectrum from {1, . . . , 2k+1},374

are realizable in G. To prove the claim, it is sufficient to prove that, under the assumption375

that all n-sequences of K′k,n are realizable in G, all n-sequences of Kk,n also are.376

Let π 6∈ K′k,n be an n-sequence of Kk,n not realizable in G. Our goal is to show that377

there is another n-sequence π′ ∈ K′k,n that is also not realizable in G. Among all possible378

sequences as π, we choose one that minimizes the maximum element value t appearing in379

it. Subject to that condition, we also choose such sequence π that minimizes the number380

of occurrences of t. So 3k+3
2 ≤ t ≤ 2k + 1, and every n-sequence with maximum element381

value at most t− 1 is realizable in G.382

First assume that the value t appears at least twice in π. Clearly, 3k+ 3 ≤ 2t ≤ 3t− 3.383

Let thus π′ be an n-sequence obtained from π by removing two elements with value t and384

adding three new elements r1, r2, r3 such that k+1 ≤ r1, r2, r3 ≤ t−1 and r1+r2+r3 = 2t.385

By our choice of π, there is a realization R of π′ in G. Since r1, r2, r3 ≥ k + 1 note that386

each of the three parts V1, V2, V3 with size r1, r2, r3 of R contains a join vertex. From this,387

we can partition G[V1 ∪ V2 ∪ V3] into two connected subgraphs of order t, which yields a388

realization of π in G, a contradiction. More precisely, denote by a, b, c the vertices with389

maximum level of V1, V2, V3. If, say, level(a) < level(b) ≤ level(c), then it suffices to move390

vertices from V1 to V2, V3 so that two connected parts with size t are obtained. Now assume391

level(a) = level(b) = level(c). Note that V1 has to contain two vertices u′, u′′ being not392

of maximum level. Then we can partition G[V1] into two convenient subgraphs V ′1 , V ′′1393

having the number of vertices we would like to move to V2 and V3: start from V ′1 and V ′′1394

containing u′ and u′′, respectively, add at least one vertex with level level(a) to V1’ and395

V ′′1 if possible (there might be only one such vertex, but this is not an issue), and add the396

remaining vertices of V1 to V ′1 , V ′′1 arbitrarily. Note that G[V ′1 ] and G[V ′′1 ] might be not397

connected, but, due to the vertices they and V2, V3 include, G[V2 ∪ V ′1 ] and G[V3 ∪ V ′′1 ] are398

connected.399

So now assume that the value t appears exactly once in π. Here, consider, as π′, the400

n-sequence obtained by removing the value t from π, and adding two elements with value 1401

and t − 1, respectively. Again, π′ has a realization R in G. Since t − 1 is the maximum402

value appearing in π′, we may assume that the part V1 of R with size t − 1 contains a403

vertex with maximum level. Indeed, if this is not the case, then we can consider a part V2404

containing such a vertex, and move any |V1|−|V2| vertices from V1 to V2 in such a way that405

the vertices remaining in V1 still induce a connected subgraph. This is possible because,406

by the connectedness of G, the vertices of maximum level are join vertices. We now claim407

that a part V1 with size t− 1 and a part V2 with size 1 of R are adjacent, hence yielding a408

part with size t, and a realization of π in G, a contradiction. This is because t− 1 > k and409

V1 includes a join vertex v with maximum level: either the vertex u of V2 does not have410

maximum level and is thus adjacent to v, or u has maximum level and is thus adjacent of411

a vertex in V1 being not of maximum level.412

10



We note that the requirement k ≥ 2 in Theorem 3.2 is best possible, as stars with an413

even number of vertices are 1-sequential graphs, but they cannot be partitioned following414

(2, . . . , 2). On the other hand, the value b3k/2c + 1 is best possible for some values of k.415

Namely, K2 + K3 is a 2-sequential graph such that all 5-sequences with spectrum from416

{1, 2, 3} are realizable, while (1, 4) is not. Also, K3 +K4 is a 3-sequential graph such that417

all 7-sequences with spectrum from {1, 2, 3, 4} are realizable, while (2, 5) is not. For k ≥ 4,418

we do not know whether the value b3k/2c + 1 can be lowered in Theorem 3.2; we believe419

this would be an interesting aspect to study further on.420

In general, it is worth mentioning that Realization is NP-hard when restricted to421

k-sequential n-graphs and sequences of Kk,n and K′k,n. Thus, Theorems 3.1 and 3.2 do not422

imply the polynomiality of the AP problem when restricted to k-sequential graphs. Note,423

though, that this does not imply the NP-hardness of AP when restricted to those graphs,424

as there may exist other polynomial kernels for k-sequential n-graphs whose realizability425

is easy to check.426

Theorem 3.3. Realization is NP-hard when restricted to k-sequential n-graphs and427

sequences of Kk,n and K′k,n.428

Proof. The proof is similar to that of Theorem 2.5; we prove the result for k = B (where429

B is part of the input of the given instance of 3-Partition). As G, we consider the430

k-sequential graph constructed, through sm +m+ 1 steps, as follows:431

• at step i with i ∈ {1, . . . , sm + 1}, we add a new isolated vertex ui to G;432

• at step i with i ∈ {sm + 2, . . . , sm +m}, we add a new isolated copy of KB;433

• at step sm +m+ 1, we add a new vertex v∗ joined to all previously-added ones.434

Note that indeed G is a k-sequential graph for k = B. The sequence π we consider is (sm+435

1, s(a1), . . . , s(a3m)) ∈ Kk,n,K′k,n. The result follows from the same arguments as earlier:436

because the s(ai)’s are strictly greater than 1, each ui has to belong to the same connected437

part as v∗, which must thus be of size sm+1. Once this part has been picked, what remains438

is a disjoint union of m copies of KB, and the sequence (s(a1), . . . , s(a3m)).439

3.2. 2Gk-Free Graphs440

Recall that 2Gk-free graphs are {
⋃
G,H∈Gk G + H}-free graphs. So, in every 2Gk-free441

graph G, for every two disjoint subsets V1, V2 of k vertices we take, the graph G[V1 ∪ V2]442

is connected as soon as G[V1] and G[V2] are. Note, in particular, that 2G1-free graphs are443

exactly complete graphs (graphs with independence number 1), while 2G2-free graphs are444

split graphs ({2K2}-free graphs).445

In what follows, we prove that the set446

Qk,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , 2k − 1}}447

is a kernel for 2Gk-free n-graphs, which proves that the AP problem is in NP for these448

graphs (for fixed k). The proof is essentially a generalization of the proof that a split449

graph is AP if and only if all sequences with 1’s, 2’s and 3’s are realizable.450

Theorem 3.4. For every k, n, the set Qk,n is a kernel for 2Gk-free n-graphs.451

Proof. The proof goes the same way as that of Theorem 3.1. Consider any n-sequence452

π = (n1, . . . , np) 6∈ Qk,n. We prove that π is realizable in G. This time, we consider an453

n-sequence π′ ∈ Qk,n obtained from π as follows. For every element ni of π:454
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• if ni ∈ {1, . . . , 2k − 1}, then we add ni to π′;455

• otherwise, we add all elements of any ni-sequence (m1, . . . ,mx) where k ≤ mi ≤ 2k−1456

for every i = 1, . . . , x (such exists since ni ≥ 2k).457

We obtain a realization R of π in G in the following way. Let R′ be a realization of π′458

in G. Consider every ni ∈ π. If ni ≤ 2k − 1, then we directly get a connected subgraph459

of order ni in R′, which we add to R. Otherwise, ni ≥ 2k, and there are corresponding460

elements m1, . . . ,mx with value in {k, .., 2k − 1} in π′ (that is, m1 + · · · + mx = ni), and461

thus connected subgraphs G1, . . . , Gx of order m1, . . . ,mx in R′. Since all Gi’s include a462

connected subgraph of order k, and G is 2Gk-free, necessarily every set V (Gi) ∪ V (Gj) for463

i 6= j induces a connected subgraph in G. So V (G1) ∪ · · · ∪ V (Gx) induces a connected464

subgraph of order ni of G, which we add to R as the part of size ni.465

Once every ni has been considered, R is a realization of π in G.466

The value 2k− 1 in the statement of Theorem 3.4 is best possible for k = 1, 2 (consider467

the graph K1+K2). However, it might be not optimal for larger values of k. Let us further468

mention that the NP-hardness of Realization for 2Gk-free n-graphs and sequences of Qk,n469

might also be established from the reduction in the proof of Theorem 3.3.470

4. Weakening Hamiltonian Properties471

In this section, we consider two graph notions behind some known sufficient conditions472

for Hamiltonicity. Namely, we consider squares of graphs and graphs that are claw-free473

and net-free. We show that the most obvious way for weakening these sufficient conditions474

for Hamiltonicity does not yield sufficient conditions for the AP property.475

4.1. Fleischner’s Theorem476

The square G2 of a given graph G is the graph on vertex set V (G) obtained by adding477

an edge between every two vertices at distance at most 2 in G. We also say that G2 was478

obtained by squaring G (i.e., applying the square operation on G).479

In this section, we consider a well-known result of Fleischner on squares of graphs [15].480

Theorem 4.1 (Fleischner’s Theorem). If G is a 2-connected graph, then G2 is Hamilto-481

nian.482

Naturally, Fleischner’s Theorem yields that the square of every 2-connected graph is AP.483

Let us point out, however, that this result cannot be weakened to traceability; namely,484

one can easily come up with connected graphs G such that G2 is not traceable. Due to485

the connection between AP graphs and traceable graphs, one could nevertheless wonder486

whether such a statement holds for the AP property. We here prove that this is not487

the case. In particular, we show that Realization remains NP-hard when restricted to488

squared graphs.489

To establish that result, we will make use of copies of the gadget H depicted in Figure 1,490

which will be attached to other graphs in a particular fashion. Namely, let G be a graph491

with a vertex z. Add a disjoint copy of H to G, and identify z and the (white) vertex u of492

H. In the resulting graph, we say that there is a copy of H rooted in z. Equivalently, we493

say that the graph was obtained by rooting a copy of H at z.494

The property of interest of this rooting operation is the following.495
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y1 y2

x1 x2

w1

y3 y4

x3 x4

w2

v

u

Figure 1: The gadget H needed for the proof of Theorem 4.3.

Lemma 4.2. Let G be a graph of order 3n having a copy of H rooted at u. Then, in496

any realization R of π = (3, . . . , 3) in G2, the 12 vertices of H are covered by exactly four497

distinct parts.498

Proof. We deal with the vertices of the copy of H following the terminology indicated in
Figure 1. First off, let us note that H2 itself admits a realization of (3, . . . , 3); for instance,

({y1, x1, x2}, {y2, w1, v}, {y3, x3, x4}, {y4, w2, u})

is one such.499

Assume now the claim is wrong, and assume there exists a realization R of π in G2
500

such that (at least) one of the parts containing u or v contains a vertex of V (G) \ V (H)501

(only these parts can have this property). Note that there cannot be only one such part502

as it would otherwise cover only one or two vertices of H, while it has order 12 (hence503

the remaining subgraph of H2 cannot be partitioned into connected subgraphs of order 3).504

So there are exactly two parts of R that contain both vertices in V (H) and vertices in505

V (G) \ V (H). Since H2 is connected, in G2, to the rest of the graph only through u506

and v, one of these two parts includes u, w1 (without loss of generality) and a vertex of507

V (G)\V (H), while the second part includes v and two vertices of V (G)\V (H) (as otherwise508

the remaining subgraph of H2 would have order 8 and thus could not be partitioned into509

connected subgraphs of order 3). But then we reach a contradiction, as it can easily be510

checked that H2 − {u, v, w1} admits no realization of (3, 3, 3).511

We are now ready to prove the following result, which, in a sense, indicates that the512

natural weakening of Fleischner’s Theorem to the AP property does not hold in general.513

Theorem 4.3. Realization is NP-hard when restricted to squared bipartite graphs.514

Proof. The proof is by reduction from Realization when restricted to instances where515

π = (3, . . . , 3), which was proved to be NP-hard by Dyer and Frieze [12]. From a given516

graph G, we construct, in polynomial time, another graph G′ such that π is realizable in G517

if and only if π′ = (3, . . . , 3) is realizable in G′2. Furthermore, the graph G′ we construct518

is bipartite.519

We start from G′ being exactly G. We then consider every edge e of G, and subdivide520

it in G′; we call ve the resulting vertex in G′. Finally, for every such vertex ve in G′, we add521

a copy of the gadget H from Figure 1, and root it at ve. Note that G′ is indeed bipartite522

(due to the subdivision process and because H is a tree), and, because both G and H have523

order divisible by 3, so does G′.524

The equivalence between partitioning G and G′2 (following (3, . . . , 3)) follows from the525

fact that, according to Lemma 4.2, in every realization R′ of (3, . . . , 3) in G′2, the 12 vertices526
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y7 y8

x7 x8
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v2

y9 y10
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w5
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x11 x12

w6

v3

u

Figure 2: The tree T described in the proof of Theorem 4.5.

from any copy of H are included in exactly four parts. By construction, when removing527

the copies of H from G′2, the graph we obtain is exactly G. Hence, when removing from528

R′ the parts covering the copies of H, what remains are parts covering the vertices of G529

only, and inducing connected subgraphs. These parts thus form a realization of π in G.530

Hence, a realization of π in G exists if and only if G′2 admits one of (3, . . . , 3).531

We proved Theorem 4.3 for squared bipartite graphs, but we do think it would be532

interesting knowing whether Realization remains NP-hard when restricted to squared533

trees. We leave this question open for now.534

Question 4.4. Is Realization NP-hard when restricted to squared trees?535

It is worthwhile pointing out that squared trees without the AP property do exist,536

which makes Question 4.4 legitimate.537

Theorem 4.5. There exist trees T with ∆(T ) = 3 such that T 2 is not AP.538

Proof. We give a single example illustrating the claim, but it naturally generalizes to an539

infinite family of such trees. Also, considering trees with larger maximum degree might540

simplify the proof a lot, but we think having the result for subcubic trees is more significant.541

Consider, as T , the following tree (see Figure 2):542

• T has a degree-3 vertex u with neighbours v1, v2, v3;543

• each of v1, v2, v3 has two other degree-3 neighbours, w1, . . . , w6;544

• each of w1, . . . , w6 has two other degree-2 neighbours, call these x1, . . . , x12;545

• each of x1, . . . , x12 has another degree-1 neighbour, call these y1, . . . , y12.546

In what follows, we deal with the vertices of T labelled as depicted in Figure 2. Note547

that n = |V (T )| = 34. To prove the claim, we show that T 2 has not realization of the548

n-sequence π = (1, 3, . . . , 3). Towards a contradiction, assume this is not true, and consider549

a realization R = (V1, . . . , Vp) of π in T 2, where V1 is the unique part with size 1.550

First, we note that it is not possible that V1 = {u}. Indeed, in that case, because T−{u}551

has three connected components of order 11, necessarily, in R, one of the parts with size 3,552

say V2, has to contain at least two of v1, v2, v3. No matter which three vertices are contained553

in V2, we note that, in all cases, the graph T 2−V1−V2 has at least one connected component554

of order 10, which thus cannot be partitioned into connected subgraphs of order 3.555

So we may assume that u belongs to a part of R with size 3. Then V1 6= {u} includes a556

vertex from one of the three connected components of G− {u}. The other two connected557
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u1 u2
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r
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Figure 3: The graphs S1 (left), S2 (middle) and S3 (right).

components, together with u, induce two copies, both rooted at u, of the gadget depicted in558

Figure 1. According to Lemma 4.2, each of these two gadgets must entirely be covered by559

parts of size 3 of R. This is not possible, since they share the same root u; a contradiction.560

561

4.2. Forbidding Claws and Nets562

Another condition guaranteeing Hamiltonicity of graphs is the absence of two induced563

subgraphs, the claw and the net. The claw is the complete bipartite graph K1,3, while the564

net Z1 is the graph obtained by attaching a pendant vertex to every vertex of a triangle.565

Theorem 4.6 (e.g. [14]). Every 2-connected (resp. connected) {K1,3, Z1}-free graph is566

Hamiltonian (resp. traceable).567

One could again wonder how Theorem 4.6 could be weakened to the AP property. In this568

section, we point out that such a sufficient condition for APness cannot be obtained by569

just dropping any of K1,3 or Z1 from the equation.570

Let us first point out that the reduction in the proof of Theorem 2.2 yields disconnected571

graphs that are {K1,3, Z1}-free. From this, we directly get that Realization is NP-hard572

for such disconnected graphs. This is not satisfactory, however, as, in the context of AP573

graphs, it makes more sense considering connected graphs.574

The counterpart of that result for connected net-free graphs, though, follows directly575

from the proof of Theorem 2.3, as subdivided stars are clearly net-free graphs.576

Theorem 4.7. Realization is NP-hard when restricted to connected net-free graphs.577

Unfortunately, the similar result for claw-free graphs does not follow immediately from578

another of the reductions we have introduced in the previous sections. Below, we thus pro-579

vide another reduction for establishing such a claim (upcoming Theorem 4.9). We actually580

even establish the NPness of Realization for line graphs (graphs of edge adjacencies), a581

well-known subclass of claw-free graphs.582

The proof is another implementation of the reduction framework introduced in Sec-583

tion 2, which relies on the use of the following infinite family S of claw-free gadgets. S584

contains graphs S1, S2, . . . defined inductively as follows (see Figure 3 for an illustration).585

Each Si contains a unique degree-2 vertex which we call the root of Si. S1 is the graph586

obtained by considering a triangle ru1u2r, then joining u1 to a pendant vertex, and then587

joining u2 to a pendant vertex. The root of S1 is r. Now consider any i ≥ 2 such that Si−1588

can be constructed. Then Si is obtained from a triangle ru1u2r by adding two disjoint589
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a1

b1
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d1, a2

b2
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d2, a3

b3

c3
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Sα Sα Sα

KB−2 KB−1 KB−2

Figure 4: Illustration of the reduced graph constructed in the proof of Theorem 4.9, for m = 3.

copies S′ and S′′ of Si−1, identifying the root of S′ and u1, and similarly identifying the590

root of S′′ and u2. The root of Si is r.591

For every i ≥ 1, let ni denote the number of vertices of Si. So n1 = 5, and, for every592

i ≥ 2, we have ni = 2ni−1 + 1. More precisely, we have ni = 5× 2i−1 + 2i−1 − 1. To every593

member Si ∈ S, we associate a set Ii of integers defined as follows:594

• I1 = {3}, and595

• Ii = {ni−1 + 1, . . . , 2ni−1 − 1} of integers, for every i ≥ 2.596

Note that |I1| < |I2| < . . . . Furthermore, every Si has the following property regarding Ii:597

Observation 4.8. Let i ≥ 1 be fixed. For every α ∈ Ii, the graph Si has no subset598

Vα ⊂ V (Si) such that Si[Vα] is a connected α-graph and Si − Vα is a connected graph599

containing the root of Si.600

Proof. Assume such a part Vα exists. Let r denote the root of Si. Note that every non-leaf601

vertex of Si different from r is a cut-vertex. Under all assumptions, this yields that, by602

the value of α, necessarily the two neighbours r′ and r′′ of r belong to Vα. Since r′r′′ is a603

cut-edge of Si, this means that Vα has to cover all vertices different from r; but this is not604

possible due to the value of α. This is a contradiction.605

We are now ready to prove the NP-hardness of Realization for claw-free graphs.606

Theorem 4.9. Realization is NP-hard when restricted to connected claw-free graphs.607

Proof. We follow the lines of the proofs of Theorems 2.3, 2.4 and 2.5. Let <A,B, s> be an608

instance of 3-Partition, where we use the same terminology as in these proofs. We may609

assume that s(a1) ≤ · · · ≤ s(a3m). Free to modify this instance following Observation 2.1,610

we can assume that there is an α such that s(a1), . . . , s(a3m) ∈ Iα.611

We construct G as follows (see Figure 4 for an illustration). We add m disjoint copies612

of K4 to the graph, where the vertices of the ith copy are denoted by ai, bi, ci, di. For every613

i = 1, . . . ,m− 1, we then identify the vertices di and ai+1, so that the K4’s form a kind of614

path connected via cut-vertices. For every i = 1, . . . ,m − 1, we then add a copy of Sα to615

the graph, and we identify its root with bi. Finally, we consider every i = 1, . . . ,m, and:616
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• for i = 1 or i = m, we add a complete graph KB−2 to the graph, and we identify one617

of its vertices and ci;618

• for i ∈ {2, . . . ,m− 1}, we add a complete graph KB−1 to the graph, and we identify619

one of its vertices and ci.620

Note that G is claw-free (it is actually a line graph). The |V (G)|-sequence π we consider621

for the reduction is π = (mnα +m− 1, s(a1), . . . , s(a3m)).622

Recall that nα > s(a3m), and that α was chosen so that s(a1), . . . , s(a3m) ∈ Iα. For this623

reason, by Observation 4.8, in any realization of π in G, the part V1 with size mnα+m−1624

has to contain the vertices of all Sα’s added to G, and, because G[V1] must be connected,625

also all vertices d1, . . . , dm−1. Then G− V1 is a disjoint union of traceable B-graphs, and626

we have to find a realization of (s(a1), . . . , s(a3m)) in it. This is equivalent to finding a627

solution to <A,B, s>.628

5. Conclusion629

In this work, we have first considered the algorithmic complexity of the Realization630

and AP problems. On the one hand, we have mainly established, along all sections, the631

NP-hardness of Realization for more classes of graphs with various structure. On the632

other hand, we have provided, in Section 3, new kernels of sequences showing that the AP633

problem is in NP for a few more classes of graphs. However, we are still far from a proof634

that 1) every graph has a polynomial kernel of sequences (which would establish the full635

NPness of AP), and that 2) the AP problem is complete for some complexity class (NP or636

Πp
2 being candidate classes). More efforts should thus be dedicated to these points.637

One particular appealing case is the one of cographs ({P4}-free graphs), which was638

mentioned in [10] by Broersma, Kratsch and Woeginger. It can easily be noted that the639

reduction in our proof of Theorem 3.3 yields cographs, so Realization is NP-hard for640

these graphs. It is still open, though, whether there is a polynomial kernel of sequences for641

cographs. Note that Theorem 3.1 makes a step in that direction, as 1-sequential graphs642

(threshold graphs) form a subclass of cographs.643

The second line of research we have considered in this work is the weakening, to AP-644

ness, of well-known sufficient conditions for Hamiltonicity (or traceability). It would be645

interesting if there were such a weakening for every condition for Hamiltonicity, as it would646

emphasize the relationship between Hamiltonicity and APness. However, previous investi-647

gations and some of our results seem to indicate that this connection is not as tight as one648

could expect.649

We believe, however, that it would be nice dedicating more attention to this direction;650

let us thus raise an open question which might be interesting. As mentioned in the intro-651

ductory section, Ore’s well-known condition for Hamiltonicity can be weakened to APness.652

In particular, all n-graphs G with σ2(G) ≥ n − 2 having a (quasi-) perfect matching are653

AP. This result implies one direction of upcoming Question 5.1, which, if true, would stand654

as a result à la Bondy-Chvátal.655

Namely, for a graph G, the k-closure of G is the (unique) graph obtained by repeatedly656

adding an edge between two non-adjacent vertices with degree sum at least k. A celebrated657

result of Bondy and Chvátal states that an n-graph is Hamiltonian if and only if its n-closure658

is Hamiltonian [8]. Analogously, an n-graph is traceable if and only if its (n− 1)-closure is659

traceable. However, it is not true that every n-graph is AP if and only if its (n−2)-closure660

is AP: In the complete bipartite graph Kn/2−1,n/2+1, every two non-adjacent vertices have661
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degree sum at least n−2, so its (n−2)-closure is complete and thus AP; however, note that662

Kn/2−1,n/2+1 has no perfect matching (realization of (2, . . . , 2)) and is thus no AP. This is663

actually not the only exception. Indeed, let G be a graph of order n = 4k + 2 consisting664

of two complete graphs Kn/2 with a common vertex and a pendant edge attached to this665

vertex. Then the (n − 2)-closure of this graph is complete, but G has not realization of666

(n/2, n/2). We wonder whether there are many such exceptions, in the following sense:667

Question 5.1. Is there an “easy” class of graphs G, such that if G 6∈ G is an n-graph, then668

G is AP if and only if the (n− 2)-closure of G is AP?669
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