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Abstract

An n-graphG is arbitrarily partitionable (AP) if, for every sequence (n1, ..., np) partitioning
n, there is a partition (V1, ..., Vp) of V (G) such that G[Vi] is a connected ni-graph for
i = 1, ..., p. The property of being AP is related to other well-known graph notions, such
as perfect matchings and Hamiltonian cycles, with which it shares several properties. This
work is dedicated to studying two aspects behind AP graphs.

On the one hand, we consider algorithmic aspects of AP graphs, which received some
attention in previous works. We first establish the NP-hardness of the problem of parti-
tioning a graph into connected subgraphs following a given sequence, for various new graph
classes of interest. We then prove that the problem of deciding whether a graph is AP is in
NP for several classes of graphs, confirming a conjecture of Barth and Fournier for these.

On the other hand, we consider the weakening to APness of sufficient conditions for
Hamiltonicity. While previous works have suggested that such conditions can sometimes
indeed be weakened, we here point out cases where this is not true. This is done by
considering conditions for Hamiltonicity involving squares of graphs, and claw- and net-
free graphs.

Keywords: arbitrarily partitionable graphs; partition into connected subgraphs;
Hamiltonicity.

1. Introduction

1.1. Partitioning Graphs into Connected Subgraphs
By a graph partition of an n-graph G, it is meant a vertex-partition (V1, ..., Vp) of V (G)

such that each G[Vi] has particular properties. This work is about partitions into connected
subgraphs, which we deal with through the following terminology.

Consider a sequence π = (n1, ..., np) being a partition of n, i.e., n1 + ...+ np = n. We
will sometimes call π an n-sequence to make clear which integer it is a partition of. When
writing |π|, we mean the size of π (i.e., p), while, by writing ‖π‖, we refer to the sum of
its elements (i.e., n). The spectrum sp(π) of π is the set of values appearing in π.

By a realization of π of G, we mean a partition (V1, ..., Vp) of V (G) such that G[Vi]
has order ni and is connected for i = 1, ..., p. In other words, π indicates the number
of connected subgraphs we want (p), and their respective order (n1, ..., np). In case G
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admits a realization of every n-sequence, and is hence partitionable into arbitrarily many
connected subgraphs with arbitrary order, we callG arbitrarily partitionable (AP for short).
AP graphs can also be found in the literature under different names, such as “arbitrarily
vertex-decomposable graphs” [1, 2, 4] or “fully decomposable graphs” [10] (but these terms
might mislead the readers, as the term “decomposition” has multiple other meanings in
graph theory).

Although the notion of AP graphs is relatively recent (it was introduced in 2002 by
Barth, Baudon and Puech, to deal with a practical resource allocation problem [1]), the
problem of partitioning graphs into connected subgraphs is much older. Perhaps the most
influential result is the one from the 70’s due to Lovász and Győri [21, 17], who indepen-
dently proved that an n-graph G is k-connected if and only if every n-sequence with size k
is realizable in G, even if the k parts are imposed to contain any k vertices chosen before-
hand. We refer the interested reader to the literature (such as the Ph.D. thesis of the first
author [5]) for many more results of this kind.

As a warm up, let us start by raising notable properties of AP graphs. First, it should be
noted that, in every AP n-graph, any realization of the n-sequence (2, ..., 2) (or (2, ..., 2, 1) if
n is odd) corresponds to a perfect matching (resp. quasi-perfect matching). Note also that
every AP graph being spanned by an AP graph is also AP. Since paths are obviously AP,
this implies that every traceable graph (i.e., graph having a Hamiltonian path) is AP. So,
in a sense, the class of AP graphs lies in between the class of graphs with a (quasi-) perfect
matching and the class of traceable graphs (which itself lies in the class of Hamiltonian
graphs), which are well-studied classes of graphs.

Several aspects of AP graphs have been investigated to date. In this work, we focus
on two such aspects, namely the algorithmic aspects and the Hamiltonian aspects, which
are to be developed below. Again, we refer the interested reader to e.g. [5] for an in-depth
overview of other aspects of interest (such as the structural aspects of AP graphs).

1.2. Algorithmic Aspects of AP Graphs
From the previous definitions related to graph partitions into connected subgraphs, the

following two decision problems naturally arise:

Realization
Instance: An n-graph G, and an n-sequence π.
Question: Is π realizable in G?

AP
Instance: A graph G.
Question: Is G AP?

The NPness of Realization is obvious. Its NP-hardness was investigated by several
authors, who established it for numerous restrictions on either G or π. Concerning re-
strictions on π, Realization remains NP-hard for instances where sp(π) = {k} for every
k ≥ 3, as shown by Dyer and Frieze [12]. Note that finding a realization of any sequence
π with sp(π) ⊆ {1, 2} is equivalent to finding a sufficiently large matching, which can be
done in polynomial time using Edmonds’ Blossom Algorithm [13]; hence, such instances
of Realization can be solved in polynomial time. In [6], the first author showed that
Realization remains NP-hard for instances where |π| = k, for any k ≥ 2.

Concerning restrictions of Realization on G, Barth and Fournier proved, in [2], that
Realization remains NP-hard for trees with maximum degree 3. In [10], Broersma,
Kratsch and Woeginger proved that Realization remains NP-hard for split graphs. In [7],
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the first author proved that Realization remains NP-hard when restricted to graphs with
about a third universal vertices (i.e., vertices neighbouring all other vertices).

The status of the AP problem is quite intriguing. A first important point to raise is
that, contrarily to what one could naively think, the NP-hardness of Realization does
not imply that of AP. That is, in all reductions imagined by the authors above, the reduced
n-graph G needs to have a very restricted structure so that a particular n-sequence π is
realizable under particular circumstances only; this very restricted structure makes many
other n-sequences not realizable in G, implying that it is far from being AP.

It is actually not even clear whether the AP problem is in NP or co-NP. For AP to be
in NP, one would need to provide a polynomial certificate attesting that all n-sequences are
realizable in G, while the number of such n-sequences is p(n), the partition number of n,
which is exponential in n. For AP to be in co-NP, one would need to provide a polynomial-
time algorithm for checking that a given sequence is indeed not realizable in G, while the
number of possible partitions of G into connected subgraphs is clearly exponential.

On the other hand, though, as pointed out in [2, 6], the AP problem matches the
typical structure of Πp

2 problems (“for every sequence, is there a realization?”), and thus
belongs to Πp

2. However, it is still not known whether AP is Πp
2-hard. Also, we have no

evidence that AP is NP-hard.
Regarding those questions, the main conjecture is due to Barth and Fournier [2]:

Conjecture 1.1 (Barth, Fournier [2]). The AP problem is in NP.

Conjecture 1.1 relies on polynomial kernels of sequences, which are presumed to exist for
every graph. For an n-graph G, a kernel (of n-sequences) is a set K of n-sequences such
that G is AP if and only if all sequences of K are realizable in G. That is, a kernel for
G is a (preferably small) set of sequences attesting the APness of G. We say that K is a
polynomial kernel if its size is a polynomial function of n.

Note that the existence of a polynomial kernel K for a given graph class indeed implies
the NPness of the AP problem for that class. All results towards Conjecture 1.1 so far are
based on proving the existence of such kernels for particular graph classes. The first result
of this kind was given by Barth, Baudon and Puech [1], who proved that, for subdivided
claws with order n (i.e., trees where the unique vertex of degree more than 2 has degree 3),
the set of all n-sequences of the form (k, ..., k, r) or (k, ..., k, k+1, ..., k+1, r) (where r < k)
is a polynomial kernel. Later on [24], Ravaux showed that, still for subdivided claws with
order n, the set of n-sequences π with |sp(π)| ≤ 7 is an alternative polynomial kernel
(although of bigger size, proving that this second set is indeed a kernel for the considered
graph class is much easier than proving that the first set is). Concerning other polynomial
kernels, Broersma, Kratsch and Woeginger proved in [10] that the set of n-sequences π with
sp(π) ⊆ {1, 2, 3} is a polynomial kernel for split n-graphs. The first author also provided
more examples of polynomial kernels in [7]; in particular, for complete multipartite n-
graphs, n-sequences π with sp(π) ⊆ {1, 2} form a kernel.

An interesting side aspect is that, from the existence of these polynomial kernels, some
of the authors above also derived the polynomiality of the AP problem in certain graph
classes. In particular, Barth and Fournier proved that AP is polynomial-time solvable
when restricted to subdivided stars [2], while Broersma, Kratsch and Woeginger proved it
is polynomial-time solvable when restricted to split graphs [10].

1.3. Hamiltonian Aspects of AP Graphs
As mentioned in Section 1.1, the AP property can be regarded as a weakening of

traceability/Hamiltonicity. In particular, all sufficient conditions implying traceability also
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imply APness. An interesting line of research is thus to investigate whether such conditions
can be weakened for the AP property.

To the best of our knowledge, only a few results of this sort can be found in the
literature. The first series of such results is related to the following parameter, defined for
any given graph G:

σk(G) = min{d(v1) + ...+ d(vk) : v1, ..., vk are non-adjacent vertices of G}.

A well-known result of Ore [23] states that every n-graph G (n ≥ 3) with σ2(G) ≥ n− 1 is
traceable. In [22], Marczyk proved that every n-graph G (n ≥ 8) having a (quasi-) perfect
matching and verifying σ2(G) ≥ n−3 is AP. Later on, this result was improved by Horňák,
Marczyk, Schiermeyer and Woźniak [18], who proved that every n-graph G (n ≥ 20) having
a (quasi-) perfect matching and verifying σ2(G) ≥ n− 5 is AP. A similar result for graphs
G with large σ3(G) was also claimed by Brandt [9].

The last weakening we are aware of, deals with the number of edges guaranteeing
APness. From known results, it can be established that connected n-graphs with more
than

(
n−2
2

)
+ 2 edges are traceable (see [20], Proposition 19). An analogous sufficient

condition for APness was given by Kalinowski, Pilśniak, Schiermeyer and Woźniak [20],
who proved that, a few exceptions apart, all n-graphs (n ≥ 22) with more than

(
n−4
2

)
+ 12

edges are AP.

1.4. Our Results
In this work, we establish more results on AP graphs regarding the two aspects devel-

oped above. More precisely:

• Regarding the algorithmic aspects, we provide, in Sections 2 and 3, both positive and
negative results. We start, in Section 2, by providing an easy NP-hardness reduction
framework, for showing, through slight modifications, that Realization is NP-hard
when restricted to many graph classes (see, for instance, Theorems 2.3, 2.4, 2.5). In
Section 3, we provide more polynomial kernels for several graph classes excluding
particular patterns as induced subgraphs.

• In Section 4, we consider the weakening of more Hamiltonian conditions for AP
graphs. Although this line of research seems quite appealing, the results we get
show that the distance between traceable graphs and AP graphs is more tenuous
than one could hope. This is done by considering the notions of squares of graphs,
and claw-free and net-free graphs. More precisely, we show that classical results on
Hamiltonicity and these notions do not weaken to the AP property (in the obvious
way, to the least).

We conclude this work with Section 5, in which we raise some open questions.

2. An NP-hardness Reduction Framework for Realization

In this section we introduce another yet natural reduction for showing the NP-hardness
of Realization. Via several modifications of this reduction, we will, in the next sections,
establish the NP-hardness of Realization for several of the graph classes we consider.
The reduction is from the 3-Partition problem, which can be stated as follows (see [16],
and [11] for more properties of 3-Partition):

3-Partition
Instance: A set A = {a1, ..., a3m} of 3m elements, a bound B ∈ N∗, and a size s : A→ N∗
such that:
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• B
4 < s(a) < B

2 for every a ∈ A, and

•
∑

a∈A s(a) = mB.

Question: Can A be partitioned intom parts A1∪...∪Am such that we have
∑

a∈Ai
s(a) =

B for every i = 1, ...,m?

In some of our proofs, we will use the fact that 3-Partition remains NP-complete in
the contexts below, which obviously hold:

Observation 2.1. Let <A,B, s> be an instance of 3-Partition where:

• B
4 < s(a) < B

2 for every a ∈ A, and

•
∑

a∈A s(a) = mB.

The following instances of 3-Partition are equivalent to <A,B, s>:

• <A,B′, s′>, where s′(a) = s(a) + 1 for every a ∈ A, and B′ = B + 3;

• <A,B′′, s′′>, where (for any α ≥ 1) s′′(a) = α ·s(a) for every a ∈ A, and B′′ = α ·B.

Furthermore, we have:

• B′

4 < s′(a) < B′

2 and B′′

4 < s′′(a) < B′′

2 for every a ∈ A, and

•
∑

a∈A s
′(a) = mB′ and

∑
a∈A s

′′(a) = mB′′.

The key argument behind our NP-hardness reduction framework from 3-Partition to
Realization is the following straightforward equivalence between the two problems:

Theorem 2.2. Realization is NP-hard when restricted to disconnected graphs.

Proof. Consider an instance <A,B, s> of 3-Partition, where |A| = 3m andA = {a1, ..., a3m}.
We produce an instance <G, π> (with G being a disconnected graph) of Realization such
that <A,B, s> admits a solution if and only if π is realizable in G.

Consider, as G, the disjoint union of m complete graphs KB on B vertices. So, we
have |V (G)| = mB =

∑
a∈A s(a). As π, consider the |V (G)|-sequence (s(a1), ..., s(a3m)).

The equivalence between the two instances is then easy to visualize. Consider any part Vi
with size s(ai) from a realization of π in G. Then Vi includes vertices from one connected
component of G only since otherwise G[Vi] would not be connected. Furthermore, since
every connected component is complete, actually Vi can be any subset (with the required
size) of its vertices. So, basically, in any realization of π in G, each of the connected
components of G is covered by three parts with size s(ai1), s(ai2) and s(ai3), and thus
s(ai1) + s(ai2) + s(ai3) = B. A solution to <A,B, s> can then directly be deduced from a
realization of π in G, and conversely by similar arguments.

Note that, in the reduction given in the proof of Theorem 2.2, we can replace the
disjoint union of m complete graphs KB by the disjoint union of any m AP graphs on B
vertices. For instance, one can consider any disjoint union of m traceable graphs of order
B.

In the current paper, most of our proofs for showing that Realization is NP-hard
for some graph class rely on implicitly getting the situation described in the proof of
Theorem 2.2. Namely, we use the fact that if, for some graph G and some |V (G)|-sequence
π, in any realization of π in G some particular parts V1, ..., Vk have to contain particular
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subgraphs in such a way that G− (V1 ∪ ... ∪ Vk) is a disjoint union of m AP graphs with
the same order B, then we essentially get an instance of Realization that is NP-hard.

We illustrate this fact with three easy examples. We start off by considering the class
of subdivided stars (trees with a unique vertex with degree at least 3). In [2], Barth and
Fournier proved that Realization is NP-hard for trees with maximum degree 3 (but hav-
ing many degree-3 vertices). Using our reduction scheme, we provide an easier proof that
Realization is NP-hard for subdivided stars, hence for trees with unbounded maximum
degree but only one large-degree vertex.

In the context of AP graphs, subdivided stars, which played a central role towards
understanding the structure of AP trees, have been also called multipodes (see e.g. [1, 2,
4, 19]). In the next proof, when writing Pk(a1, ..., ak), we refer to the subdivided star with
k branches where the ith branch has (not counting the center vertex) order ai ≥ 1.

Theorem 2.3. Realization is NP-hard when restricted to subdivided stars.

Proof. The reduction is from 3-Partition. Given an instance <A,B, s> of 3-Partition,
we construct a subdivided star G and a |V (G)|-sequence π such that <A,B, s> admits a
solution if and only if π is realizable in G.

According to Observation 2.1, we may assume that s(a) > 1 for every a ∈ A. Let
sm = max{s(a) : a ∈ A}. Consider, as G, the subdivided star Psm+m(1, ..., 1, B, ..., B)
with sm branches of order 1 and m branches of order B. As π, consider π = (sm +
1, s(a1), ..., s(a3m)).

The keystone of the reduction is that, because no element of π is equal to 1, in every
realization of π in G the part containing the center vertex of G necessarily also contains
all vertices from the branches with order 1. Since there are sm branches with order 1 in
G, the part containing the center vertex must thus have size at least sm + 1. So basically
the part with size sm + 1 of every realization of π in G must include the center vertex of
G as well as all the vertices from its sm branches with order 1.

Once this part is picked, what remains is a forest of m paths PB (on B vertices) and
the sequence (s(a1), ..., s(a3m)). Hence, finding a realization of π in G is equivalent to the
problem of finding a realization of (s(a1), ..., s(a3m)) in a forest of m paths PB, while this
problem is equivalent to solving <A,B, s> according to the arguments given in the proof
of Theorem 2.2. The result then follows.

In the next result, we consider series-parallel graphs, for which several NP-hard problems
are known to be polynomial-time solvable. These graphs, each of which contains two special
vertices (source and sink), can be defined inductively as follows:

• K2 is a series-parallel graph, its two vertices being its source and sink, respectively.

• Let G and H be two series-parallel graphs with sources sG and sH , respectively, and
sinks tG and tH , respectively. Then:

– the series-composition of G and H, obtained by identifying tG and sH , is a
series-parallel graph with source sG and sink tH ;

– the parallel-composition of G and H, obtained by identifying sG and sH , and
identifying tG and tH (with keeping the graph simple, i.e., omitting all multiple
edges, if any is created), is a series-parallel graph with source sG = sH and sink
tG = tH .
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In the context of AP graphs, a particular class of series-parallel graphs, called balloons,
has been investigated towards understanding the structure of 2-connected AP graphs (see
e.g. [4, 3]). The balloon (or k-balloon, to make the parameter k clear) Bk(b1, ..., bk) is the
series-parallel graph obtained as follows. Start from two vertices r1 and r2. Then, for every
i = 1, ..., k, we join r1 and r2 via a branch being a new path with bi internal vertices having
r1, r2 as end-vertices. By the order of the ith branch, we mean bi.

Theorem 2.4. Realization is NP-hard when restricted to series-parallel graphs.

Proof. We use the same reduction scheme as that in the proof of Theorem 2.3. This time,
consider, as G, the (2sm + m)-balloon B2sm+m(1, ..., 1, B, ..., B) with 2sm branches with
order 1, and m branches with order B. As π, consider

π = (sm + 1, sm + 1, s(a1), ..., s(a3m)).

Because every vertex from a branch with order 1 of G only neighbours r1 and r2 (who
have degree 2sm + m), it has to belong, in every realization of π in G, to a same part as
one of r1 or r2. Said differently, the at most two parts covering r1 and r2 also have to
cover all of the vertices from the branches with order 1. Because there are 2sm branches
with order 1, these at most two parts must cover at least 2sm + 2 vertices. In view of the
values in π, in every realization of π in G we necessarily have to use the two parts with size
sm + 1 to cover all these vertices. Once these two parts have been picked, what remains is
a forest of m paths PB with order B and the sequence (s(a1), ..., s(a3m)). We thus have
the desired equivalence.

As mentioned in the introductory section, recall that, by the result of Győri and
Lovász [21, 17], all k-connected graphs can always be partitioned into k connected sub-
graphs with arbitrary orders. In the following result, we prove, generalizing the arguments
from the previous proofs, that partitioning a k-connected graph into more than k connected
subgraphs is an NP-hard problem.

Theorem 2.5. For every k ≥ 1, Realization is NP-hard when restricted to k-connected
graphs.

Proof. The reduction is similar to that used in the previous two proofs. Let k ≥ 1 be fixed,
and construct G as follows. Add k vertices r1, ..., rk to G, as well as ksm copies of K1 and
m copies of KB. Finally, for every i = 1, ..., k, add an edge between ri and every vertex of
V (G) \ {r1, ..., rk}. Note that G is indeed k-connected, and {r1, ..., rk} is a k-cutset. As π,
consider

π = (sm + 1, ..., sm + 1, s(a1), ..., s(a3m)),

where the value sm + 1 appears exactly k times at the beginning of π.
Consider any realization of π in G. Because the s(ai)’s are strictly greater than 1, and

the ksm copies of K1 are joined to the ri’s only, every of these K1’s has to belong to the
same part as one of the ri’s. Following these arguments, the k parts with size sm + 1 of a
realization of π in G must each include one of the ri’s and sm of the K1’s. What remains
once these k parts have been picked is m vertex-disjoint connected components isomorphic
to KB, as well as the sequence (s(a1), ..., s(a3m)). This concludes the proof.

3. Polynomial Kernels for Graphs Without Forbidden Subgraphs

For two graphs G and H, we denote by G + H the disjoint union of G and H, which
is the disconnect graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). When
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writing kG for some k ≥ 1, we refer to the disjoint union G + ... + G of k copies of G. If
G is a family of graphs, we write by kG the class of graphs that are the disjoint union of k
members of G. That is, G ∈ kG if there exist G1, ..., Gk ∈ G such that G = G1 + ...+Gk.

We denote by G×H the complete join of G and H, which is the graph with vertex set
V (G)∪ V (H) and edge set E(G)∪E(H)∪ V (G)× V (H). For a family (set) of graphs F ,
we say that a graph G is F-free if G has no member of F as an induced subgraph.

For k ≥ 1, we denote by Gk the class of all connected k-graphs, while we denote by G≤k
the class of all connected graphs with order at most k.

In this section, we exhibit polynomial kernels of sequences for some families of F-
free graphs. We also discuss some consequences of the existence of these kernels on the
complexity of the Realization and AP problems for the considered classes of graphs.

3.1. k-Sequential Graphs
Let k ≥ 1 be fixed, and F be a class of graphs. An F-sequential graph is a graph that

can be defined inductively as follows:

• Graphs in F are F-sequential graphs;

• For an F-sequential graph G and a graph H ∈ F , the graphs G+H and G×H are
F-sequential graphs.

The construction of such graphs can equivalently be seen as a sequence of steps, at each
of which a new graph of F is added, its vertices being possibly joined to all vertices added
during the previous steps. Following that analogy, for any given vertex v of a sequential
graph, we denote by level(v) the level of v, where level(v) = i if v belongs to the graph that
was added during the ith step. A vertex with level i is called a join vertex if a complete
join was performed at the end of the ith step.

In what follows, G≤k-sequential graphs are also called k-sequential graphs. It is worth-
while noting that sequential graphs encapsulate known families of graphs; for instance,
threshold graphs ({P4, C4, 2K2}-free graphs) are precisely the 1-sequential graphs.

We start by proving that, for every k-sequential n-graph, the set

Kk,n = {π : π is an n-sequence and sp(π) ⊆ {1, ..., 2k + 1}}

is a kernel. When k is fixed, this provides a polynomial kernel of sequences for k-sequential
graphs, which implies that the AP problem is in NP for this class of graphs.

Theorem 3.1. For every k, n, the set Kk,n is a kernel for k-sequential n-graphs.

Proof. Let G be a k-sequential n-graph. We need to show that G is AP if and only if all
sequences of Kk,n are realizable in G. If we assume that G is AP, then, by definition, all
sequences of Kk,n are realizable in G. We thus have to focus on the converse direction only.

Assume that all sequences of Kk,n are realizable in G, and consider any n-sequence
π = (n1, ..., np) 6∈ Kk,n. We have to prove that π admits a realization in G. We build an
n-sequence π′ ∈ Kk,n in the following way: we consider every element ni of π in turn, and:

• if ni ∈ {1, ..., 2k + 1}, then we add ni to π′;

• otherwise, we add all elements of any ni-sequence (m1, ...,mx) where k + 1 ≤ mi ≤
2k + 1 for every i = 1, ..., x (such exists since ni ≥ 2k + 2).
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Note that indeed π′ is an n-sequence, and π′ ∈ Kk,n. Let thus R′ be a realization of π′ in
G, which exists by assumption.

We obtain a realization R of π in G in the following way. We consider every ni ∈ π in
turn. If ni ≤ 2k + 1, then there is a corresponding element with value ni in π′, and thus
a connected subgraph with order ni in R′, which we add to R. Now, if ni ∈ π ≥ 2k + 2,
then there are corresponding elements m1, ...,mx with value in {k+1, .., 2k+1} in π′ (such
that m1 + ... + mx = ni), and thus connected subgraphs G1, ..., Gx with order m1, ...,mx

in R′. By the definition of a k-sequential graph (in particular, because all graphs added
sequentially to construct G have order at most k), each of the Gi’s has to contain a join
vertex. The join vertex with maximum level implies that G1, ..., Gx, in G, form a connected
subgraph with order ni; then we add it to R as the part of size ni.

Once every ni has been considered, R is a realization of π in G.

Regarding Theorem 3.1, it is worth mentioning that, in general, the maximum magni-
tude 2k + 1 of the elements in Kk,n cannot be lowered. Rephrased differently, there are
cases where n-sequences π with sp(π) ⊆ {1, ..., x} for some x < 2k + 1 do not form a
kernel for k-sequential graphs. A straight example is that of K2 +K1: for this 1-sequential
graph, the sequence (3) has no realization, while all sequences with spectrum from {1, 2}
are realizable. Hence, for 1-sequential graphs, the APness follows from the realizability of
sequences with elements in {1, 2, 3}, and this is, in a sense, best possible.

There are cases, however, where better kernels can be obtained. For instance, when
k ≥ 2, the set

K′k,n = {π : π is an n-sequence and sp(π) ⊆ {1, ..., b3k/2c+ 1}}

is a better kernel for k-sequential n-graphs.

Theorem 3.2. For every k ≥ 2 and n, the set K′k,n is a kernel for k-sequential n-graphs.

Proof. Let G be a k-sequential n-graph. First assume that G is not connected, i.e., the
last connected component added during the construction of G was not joined to the rest
of the graph. Let H be a connected component of G with smallest order h. By definition,
k ≥ h. Also, n ≥ 2h since G is not connected.

Suppose first that h ≥ 5. If h is odd, then let

A =

{
h+ 1

2
,
h+ 3

2
, ..., h− 1

}
.

If h is even, then let

A =

{
h

2
+ 1,

h

2
+ 2, ..., h− 1

}
.

Note that every integer at least 2h can be expressed as the sum of elements in A. Let thus
π ∈ K′k,n be an n-sequence taking values from A. It can easily be seen that h cannot be
expressed as the sum of elements in A; therefore, there is no realization of π in G.

Now assume that h ≤ 4. As above, we consider some set A of elements, depending on
the value of h:

• if h = 4, then consider A = {3, 5};

• if h = 3, then consider A = {2, 5};

• if h = 2, then consider:

9



– A = {3, 4} if n ≥ 6;

– A = {1, 4} if n = 5;

– A = {1, 3} if n = 4;

• if h = 1, then consider A = {2, 3}.

In every case, it can be noted that every integer at least 2h can be expressed as the sum
of elements in A, while h cannot. Thus, as in the previous case, there exists an n-sequence
of K′k,n that is not realizable in G. So G has to be connected.

So now assume that G is connected, and that G is not AP. According to Theorem 3.1,
graph G is AP if and only if all n-sequences of Kk,n, i.e., with spectrum from {1, ..., 2k+1},
are realizable in G. To prove the claim, it is sufficient to prove that, under the assumption
that all n-sequences of K′k,n are realizable in G, all n-sequences of Kk,n also are.

Let π 6∈ K′k,n be an n-sequence of Kk,n not realizable in G. Our goal is to show that
there is another n-sequence π′ ∈ K′k,n that is also not realizable in G. Among all possible
sequences as π, we choose one that minimizes the maximum element value t appearing
in it. Subject to that condition, we also choose the such sequence π that minimizes the
number of occurrences of t. So 3k+3

2 ≤ t ≤ 2k + 1, and every n-sequence with maximum
element value at most t− 1 is realizable in G.

First assume that the value t appears at least twice in π. Clearly, 3k+ 3 ≤ 2t ≤ 3t− 3.
Let thus π′ be an n-sequence obtained from π by removing two elements with value t and
adding three new elements r1, r2, r3 such that k+1 ≤ r1, r2, r3 ≤ t−1 and r1+r2+r3 = 2t.
By our choice of π, there is a realization R of π′ in G. Since r1, r2, r3 ≥ k + 1 note that
each of the three parts V1, V2, V3 with size r1, r2, r3 of R contains a join vertex. From
this, we can partition G[V1 ∪ V2 ∪ V3] into two connected subgraphs with order t, which
yields a realization of π in G, a contradiction. More precisely, denote by a, b, c the vertices
with maximum level of V1, V2, V3. If, say, level(a) < level(b) ≤ level(c), then it suffices to
move vertices from V1 to V2, V3 so that two connected parts with size t are obtained. Now
assume level(a) = level(b) = level(c). Note that V1 has to contain two vertices u′, u′′ being
not of maximum level. Then we can partition G[V1] into two convenient subgraphs V ′1 , V ′′1
having the number of vertices we would like to move to V2 and V3: start from V ′1 and V ′′1
containing u′ and u′′, respectively, add at least one vertex with level level(a) to V1’ and
V ′′1 if possible (there might be only one such vertex, but this is not an issue), and add the
remaining vertices of V1 to V ′1 , V ′′1 arbitrarily. Note that G[V ′1 ] and G[V ′′1 ] might be not
connected, but, due to the vertices they and V2, V3 include, G[V2 ∪ V ′1 ] and G[V3 ∪ V ′′1 ] are
connected.

So now assume that the value t appears exactly once in π. Here, consider, as π′, the
n-sequence obtained by removing the value t from π, and adding two elements with value 1
and t − 1, respectively. Again, π′ has a realization R in G. Since t − 1 is the maximum
value appearing in π′, we may assume that the part V1 of R with size t − 1 contains a
vertex with maximum level. Indeed, if this is not the case, then we can consider a part V2
containing such a vertex, and move any |V1|−|V2| vertices from V1 to V2 in such a way that
the vertices remaining in V1 still induce a connected subgraph. This is possible because,
by the connectedness of G, the vertices of maximum level are join vertices. We now claim
that a part V1 with size t− 1 and a part V2 with size 1 of R are adjacent, hence yielding a
part with size t, and a realization of π in G, a contradiction. This is because t− 1 > k and
V1 includes a join vertex v with maximum level: either the vertex u of V2 does not have
maximum level and is thus adjacent to v, or u has maximum level and is thus adjacent of
a vertex in V1 being not of maximum level.
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We note that the requirement k ≥ 2 in Theorem 3.2 is best possible, as stars with an
even number of vertices are 1-sequential graphs, but they cannot be partitioned following
(2, ..., 2). On the other hand, the value b3k/2c + 1 is best possible for some values of k.
Namely, K2 + K3 is a 2-sequential graph such that all 5-sequences with spectrum from
{1, 2, 3} are realizable, while (1, 4) is not. Also, K3 +K4 is a 3-sequential graph such that
all 7-sequences with spectrum from {1, 2, 3, 4} are realizable, while (2, 5) is not. For k ≥ 4,
we do not know whether the value b3k/2c + 1 can be lowered in Theorem 3.2; we believe
this would be an interesting aspect to study further on.

In general, it is worth mentioning that Realization is NP-hard when restricted to
k-sequential n-graphs and sequences of Kk,n and K′k,n. Thus, Theorems 3.1 and 3.2 do not
imply the polynomiality of the AP problem when restricted to k-sequential graphs. Note,
though, that this does not imply the NP-hardness of AP when restricted to those graphs,
as there may exist other polynomial kernels for k-sequential n-graphs whose realizability
is easy to check.

Theorem 3.3. Realization is NP-hard when restricted to k-sequential n-graphs and
sequences of Kk,n and K′k,n.

Proof. The proof is similar to that of Theorem 2.5; we prove the result for k = B (where
B is part of the input of the given instance of 3-Partition). As G, we consider the
k-sequential graph constructed, through sm +m+ 1 steps, as follows:

• at step i with i ∈ {1, ..., sm + 1}, we add a new isolated vertex ui to G;

• at step i with i ∈ {sm + 2, ..., sm +m}, we add a new isolated copy of KB;

• at step sm +m+ 1, we add a new vertex v∗ joined to all previously-added ones.

Note that indeed G is a k-sequential graph for k = B. The sequence π we consider is
(sm + 1, s(a1), ..., s(a3m)) ∈ Kk,n,K′k,n. The result follows from the same arguments as
earlier: because the s(ai)’s are strictly greater than 1, each ui has to belong to the same
connected part as v∗, which must thus be of size sm + 1. Once this part has been picked,
what remains is a disjoint union ofm copies ofKB, and the sequence (s(a1), ..., s(a3m)).

3.2. 2Gk-Free Graphs
Recall that 2Gk-free graphs are {

⋃
G,H∈Gk G + H}-free graphs. So, in every 2Gk-free

graph G, for every two disjoint subsets V1, V2 of k vertices we take, the graph G[V1 ∪ V2]
is connected as soon as G[V1] and G[V2] are. Note, in particular, that 2G1-free graphs are
exactly complete graphs (graphs with independence number 1), while 2G2-free graphs are
split graphs ({2K2}-free graphs).

In what follows, we prove that the set

Qk,n = {π : π is an n-sequence and sp(π) ⊆ {1, ..., 2k − 1}}

is a kernel for 2Gk-free n-graphs, which proves that the AP problem is in NP for these
graphs (for fixed k). The proof is essentially a generalization of the proof that a split
graph is AP if and only if all sequences with 1’s, 2’s and 3’s are realizable.

Theorem 3.4. For every k, n, the set Qk,n is a kernel for 2Gk-free n-graphs.

Proof. The proof goes the same way as that of Theorem 3.1. Consider any n-sequence
π = (n1, ..., np) 6∈ Qk,n. We prove that π is realizable in G. This time, we consider an
n-sequence π′ ∈ Qk,n obtained from π as follows. For every element ni of π:
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• if ni ∈ {1, ..., 2k − 1}, then we add ni to π′;

• otherwise, we add all elements of any ni-sequence (m1, ...,mx) where k ≤ mi ≤ 2k−1
for every i = 1, ..., x (such exists since ni ≥ 2k).

We obtain a realization R of π in G in the following way. Let R′ be a realization of π′

in G. Consider every ni ∈ π. If ni ≤ 2k − 1, then we directly get a connected subgraph
with order ni in R′, which we add to R. Otherwise, ni ≥ 2k, and there are corresponding
elements m1, ...,mx with value in {k, .., 2k − 1} in π′ (that is, m1 + ... + mx = ni), and
thus connected subgraphs G1, ..., Gx with order m1, ...,mx in R′. Since all Gi’s include a
connected subgraph with order k, and G is 2Gk-free, necessarily every set V (Gi) ∪ V (Gj)
for i 6= j induces a connected subgraph in G. So V (G1) ∪ ... ∪ V (Gx) induces a connected
subgraph with order ni of G, which we add to R as the part of size ni.

Once every ni has been considered, R is a realization of π in G.

The value 2k− 1 in the statement of Theorem 3.4 is best possible for k = 1, 2 (consider
the graph K1+K2). However, it might be not optimal for larger values of k. Let us further
mention that the NP-hardness of Realization for 2Gk-free n-graphs and sequences of Qk,n
might also be established from the reduction in the proof of Theorem 3.3.

4. Weakening Hamiltonian Properties

In this section, we consider two graph notions behind some known sufficient conditions
for Hamiltonicity. Namely, we consider squares of graphs and graphs that are claw-free
and net-free. We show that the most obvious way for weakening these sufficient conditions
for Hamiltonicity does not yield sufficient conditions for the AP property.

4.1. Fleischner’s Theorem
The square G2 of a given graph G is the graph on vertex set V (G) obtained by adding

an edge between every two vertices at distance at most 2 in G. We also say that G2 was
obtained by squaring G (i.e., applying the square operation on G).

In this section, we consider a well-known result of Fleischner on squares of graphs [15].

Theorem 4.1 (Fleischner’s Theorem). If G is a 2-connected graph, then G2 is Hamilto-
nian.

Naturally, Fleischner’s Theorem yields that the square of every 2-connected graph is AP.
Let us point out, however, that this result cannot be weakened to traceability; namely,
one can easily come up with connected graphs G such that G2 is not traceable. Due to
the connection between AP graphs and traceable graphs, one could nevertheless wonder
whether such a statement holds for the AP property. We here prove that this is not
the case. In particular, we show that Realization remains NP-hard when restricted to
squared graphs.

To establish that result, we will make use of copies of the gadget H depicted in Figure 1,
which will be attached to other graphs in a particular fashion. Namely, let G be a graph
with a vertex z. Add a disjoint copy of H to G, and identify z and the (white) vertex u of
H. In the resulting graph, we say that there is a copy of H rooted in z. Equivalently, we
say that the graph was obtained by rooting a copy of H at z.

The property of interest of this rooting operation is the following.
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y1 y2

x1 x2

w1

y3 y4

x3 x4

w2

v

u

Figure 1: The gadget H needed for the proof of Theorem 4.3.

Lemma 4.2. Let G be a graph with order 3n having a copy of H rooted at u. Then, in
any realization R of π = (3, ..., 3) in G2, the 12 vertices of H are covered by exactly four
distinct parts.

Proof. We deal with the vertices of the copy of H following the terminology indicated in
Figure 1. First off, let us note that H2 itself admits a realization of (3, ..., 3); for instance,

({y1, x1, x2}, {y2, w1, v}, {y3, x3, x4}, {y4, w2, u})

is one such.
Assume now the claim is wrong, and assume there exists a realization R of π in G2

such that (at least) one of the parts containing u or v contains a vertex of V (G) \ V (H)
(only these parts can have this property). Note that there cannot be only one such part
as it would otherwise cover only one or two vertices of H, while it has order 12 (hence the
remaining subgraph of H2 cannot be partitioned into connected subgraphs with order 3).
So there are exactly two parts of R that contain both vertices in V (H) and vertices in
V (G) \ V (H). Since H2 is connected, in G2, to the rest of the graph only through u
and v, one of these two parts includes u, w1 (without loss of generality) and a vertex of
V (G)\V (H), while the second part includes v and two vertices of V (G)\V (H) (as otherwise
the remaining subgraph of H2 would have order 8 and thus could not be partitioned into
connected subgraphs with order 3). But then we reach a contradiction, as it can easily be
checked that H2 − {u, v, w1} admits no realization of (3, 3, 3).

We are now ready to prove the following result, which, in a sense, indicates that the
natural weakening of Fleischner’s Theorem to the AP property does not hold in general.

Theorem 4.3. Realization is NP-hard when restricted to squared bipartite graphs.

Proof. The proof is by reduction from Realization when restricted to instances where
π = (3, ..., 3), which was proved to be NP-hard by Dyer and Frieze [12]. From a given
graph G, we construct, in polynomial time, another graph G′ such that π is realizable in
G if and only if π′ = (3, ..., 3) is realizable in G′2. Furthermore, the graph G′ we construct
is bipartite.

We start from G′ being exactly G. We then consider every edge e of G, and subdivide
it in G′; we call ve the resulting vertex in G′. Finally, for every such vertex ve in G′, we add
a copy of the gadget H from Figure 1, and root it at ve. Note that G′ is indeed bipartite
(due to the subdivision process and because H is a tree), and, because both G and H have
order divisible by 3, so does G′.

The equivalence between partitioning G and G′2 (following (3, ..., 3)) follows from the
fact that, according to Lemma 4.2, in every realization R′ of (3, ..., 3) in G′2, the 12 vertices
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y1 y2

x1 x2

w1

y3 y4

x3 x4

w2

v1

y5 y6

x5 x6

w3

y7 y8

x7 x8

w4

v2

y9 y10

x9 x10

w5

y11 y12

x11 x12

w6

v3

u

Figure 2: The tree T described in the proof of Theorem 4.5.

from any copy of H are included in exactly four parts. By construction, when removing
the copies of H from G′2, the graph we obtain is exactly G. Hence, when removing from
R′ the parts covering the copies of H, what remains are parts covering the vertices of G
only, and inducing connected subgraphs. These parts thus form a realization of π in G.
Hence, a realization of π in G exists if and only if G′2 admits one of (3, ..., 3).

We proved Theorem 4.3 for squared bipartite graphs, but we do think it would be
interesting knowing whether Realization remains NP-hard when restricted to squared
trees. We leave this question open for now.

Question 4.4. Is Realization NP-hard when restricted to squared trees?

It is worthwhile pointing out that squared trees without the AP property do exist,
which makes Question 4.4 legitimate.

Theorem 4.5. There exist trees T with ∆(T ) = 3 such that T 2 is not AP.

Proof. We give a single example illustrating the claim, but it naturally generalizes to an
infinite family of such trees. Also, considering trees with larger maximum degree might
simplify the proof a lot, but we think having the result for subcubic trees is more significant.

Consider, as T , the following tree (see Figure 2):

• T has a degree-3 vertex u with neighbours v1, v2, v3;

• each of v1, v2, v3 has two other degree-3 neighbours, w1, ..., w6;

• each of w1, ..., w6 has two other degree-2 neighbours, call these x1, ..., x12;

• each of x1, ..., x12 has another degree-1 neighbour, call these y1, ..., y12.

In what follows, we deal with the vertices of T labelled as depicted in Figure 2. Note
that n = |V (T )| = 34. To prove the claim, we show that T 2 has not realization of the
n-sequence π = (1, 3, ..., 3). Towards a contradiction, assume this is not true, and consider
a realization R = (V1, ..., Vp) of π in T 2, where V1 is the unique part with size 1.

First, we note that it is not possible that V1 = {u}. Indeed, in that case, because
T − {u} has three connected components with order 11, necessarily, in R, one of the
parts with size 3, say V2, has to contain at least two of v1, v2, v3. No matter which three
vertices are contained in V2, we note that, in all cases, the graph T 2− V1− V2 has at least
one connected component with order 10, which thus cannot be partitioned into connected
subgraphs with order 3.
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u1 u2

u1 u2

r

u1 u2

r

Figure 3: The graphs S1 (left), S2 (middle) and S3 (right).

So we may assume that u belongs to a part of R with size 3. Then V1 6= {u} includes a
vertex from one of the three connected components of G− {u}. The other two connected
components, together with u, induce two copies, both rooted at u, of the gadget depicted in
Figure 1. According to Lemma 4.2, each of these two gadgets must entirely be covered by
parts of size 3 of R. This is not possible, since they share the same root u; a contradiction.

4.2. Forbidding Claws and Nets
Another condition guaranteeing Hamiltonicity of graphs is the absence of two induced

subgraphs, the claw and the net. The claw is the complete bipartite graph K1,3, while the
net Z1 is the graph obtained by attaching a pendant vertex to every vertex of a triangle.

Theorem 4.6 (e.g. [14]). Every 2-connected (resp. connected) {K1,3, Z1}-free graph is
Hamiltonian (resp. traceable).

One could again wonder how Theorem 4.6 could be weakened to the AP property. In this
section, we point out that such a sufficient condition for APness cannot be obtained by
just dropping any of K1,3 or Z1 from the equation.

Let us first point out that the reduction in the proof of Theorem 2.2 yields disconnected
graphs that are {K1,3, Z1}-free. From this, we directly get that Realization is NP-hard
for such disconnected graphs. This is not satisfactory, however, as, in the context of AP
graphs, it makes more sense considering connected graphs.

The counterpart of that result for connected net-free graphs, though, follows directly
from the proof of Theorem 2.3, as subdivided stars are clearly net-free graphs.

Theorem 4.7. Realization is NP-hard when restricted to connected net-free graphs.

Unfortunately, the similar result for claw-free graphs does not follow immediately from
another of the reductions we have introduced in the previous sections. Below, we thus pro-
vide another reduction for establishing such a claim (upcoming Theorem 4.9). We actually
even establish the NPness of Realization for line graphs (graphs of edge adjacencies), a
well-known subclass of claw-free graphs.

The proof is another implementation of the reduction framework introduced in Sec-
tion 2, which relies on the use of the following infinite family S of claw-free gadgets. S
contains graphs S1, S2, ... defined inductively as follows (see Figure 3 for an illustration).
Each Si contains a unique degree-2 vertex which we call the root of Si. S1 is the graph
obtained by considering a triangle ru1u2r, then joining u1 to a pendant vertex, and then
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Sα Sα Sα

KB−2 KB−1 KB−2

Figure 4: Illustration of the reduced graph constructed in the proof of Theorem 4.9, for m = 3.

joining u2 to a pendant vertex. The root of S1 is r. Now consider any i ≥ 2 such that Si−1
can be constructed. Then Si is obtained from a triangle ru1u2r by adding two disjoint
copies S′ and S′′ of Si−1, identifying the root of S′ and u1, and similarly identifying the
root of S′′ and u2. The root of Si is r.

For every i ≥ 1, let ni denote the number of vertices of Si. So n1 = 5, and, for every
i ≥ 2, we have ni = 2ni−1 + 1. More precisely, we have ni = 5× 2i−1 + 2i−1 − 1. To every
member Si ∈ S, we associate a set Ii of integers defined as follows:

• I1 = {3}, and

• Ii = {ni−1 + 1, ..., 2ni−1 − 1} of integers, for every i ≥ 2.

Note that |I1| < |I2| < .... Furthermore, every Si has the following property regarding Ii:

Observation 4.8. Let i ≥ 1 be fixed. For every α ∈ Ii, the graph Si has no subset
Vα ⊂ V (Si) such that Si[Vα] is a connected α-graph and Si − Vα is a connected graph
containing the root of Si.

Proof. Assume such a part Vα exists. Let r denote the root of Si. Note that every non-leaf
vertex of Si different from r is a cut-vertex. Under all assumptions, this yields that, by
the value of α, necessarily the two neighbours r′ and r′′ of r belong to Vα. Since r′r′′ is a
cut-edge of Si, this means that Vα has to cover all vertices different from r; but this is not
possible due to the value of α. This is a contradiction.

We are now ready to prove the NP-hardness of Realization for claw-free graphs.

Theorem 4.9. Realization is NP-hard when restricted to connected claw-free graphs.

Proof. We follow the lines of the proofs of Theorems 2.3, 2.4 and 2.5. Let <A,B, s> be an
instance of 3-Partition, where we use the same terminology as in these proofs. We may
assume that s(a1) ≤ ... ≤ s(a3m). Free to modify this instance following Observation 2.1,
we can assume that there is an α such that s(a1), ..., s(a3m) ∈ Iα.

We construct G as follows (see Figure 4 for an illustration). We add m disjoint copies
of K4 to the graph, where the vertices of the ith copy are denoted by ai, bi, ci, di. For every
i = 1, ...,m− 1, we then identify the vertices di and ai+1, so that the K4’s form a kind of
path connected via cut-vertices. For every i = 1, ...,m − 1, we then add a copy of Sα to
the graph, and we identify its root with bi. Finally, we consider every i = 1, ...,m, and:
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• for i = 1 or i = m, we add a complete graph KB−2 to the graph, and we identify one
of its vertices and ci;

• for i ∈ {2, ...,m− 1}, we add a complete graph KB−1 to the graph, and we identify
one of its vertices and ci.

Note that G is claw-free (it is actually a line graph). The |V (G)|-sequence π we consider
for the reduction is π = (mnα +m− 1, s(a1), ..., s(a3m)).

Recall that nα > s(a3m), and that α was chosen so that s(a1), ..., s(a3m) ∈ Iα. For this
reason, by Observation 4.8, in any realization of π in G, the part V1 with size mnα+m−1
has to contain the vertices of all Sα’s added to G, and, because G[V1] must be connected,
also all vertices d1, ..., dm−1. Then G−V1 is a disjoint union of traceable B-graphs, and we
have to find a realization of (s(a1), ..., s(a3m)) in it. This is equivalent to finding a solution
to <A,B, s>.

5. Conclusion

In this work, we have first considered the algorithmic complexity of the Realization
and AP problems. On the one hand, we have mainly established, along all sections, the
NP-hardness of Realization for more classes of graphs with various structure. On the
other hand, we have provided, in Section 3, new kernels of sequences showing that the AP
problem is in NP for a few more classes of graphs. However, we are still far from a proof
that 1) every graph has a polynomial kernel of sequences (which would establish the full
NPness of AP), and that 2) the AP problem is complete for some complexity class (NP or
Πp

2 being candidate classes). More efforts should thus be dedicated to these points.
One particular appealing case in the one of cographs ({P4}-free graphs), which was

mentioned in [10] by Broersma, Kratsch and Woeginger. It can easily be noted that the
reduction in our proof of Theorem 3.3 yields cographs, so Realization is NP-hard for
these graphs. It is still open, though, whether there is a polynomial kernel of sequences for
cographs. Note that Theorem 3.1 makes a step in that direction, as 1-sequential graphs
(threshold graphs) form a subclass of cographs.

The second line of research we have considered in this work is the weakening, to AP-
ness, of well-known sufficient conditions for Hamiltonicity (or traceability). It would be
interesting if there were such a weakening for every condition for Hamiltonicity, as it would
emphasize the relationship between Hamiltonicity and APness. However, previous investi-
gations and some of our results seem to indicate that this connection is not as tight as one
could expect.

We believe, however, that it would be nice dedicating more attention to this direction;
let us thus raise an open question which might be interesting. As mentioned in the intro-
ductory section, Ore’s well-known condition for Hamiltonicity can be weakened to APness.
In particular, all n-graphs G with σ2(G) ≥ n − 2 having a (quasi-) perfect matching are
AP. This result implies one direction of upcoming Conjecture 5.1, which, if true, would
stand as a result à la Bondy-Chvátal.

Namely, for a graph G, the k-closure of G is the (unique) graph obtained by repeatedly
adding an edge between two non-adjacent vertices with degree sum at least k. A celebrated
result of Bondy and Chvátal states that an n-graph is Hamiltonian if and only if its n-closure
is Hamiltonian [8]. Analogously, an n-graph is traceable if and only if its (n− 1)-closure is
traceable. However, it is not true that every n-graph is AP if and only if its (n−2)-closure
it AP: In the complete bipartite graph Kn/2−1,n/2+1, every two non-adjacent vertices have
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degree sum at least n − 2, so its (n − 2)-closure is complete and thus AP; however, note
that Kn/2−1,n/2+1 has no perfect matching (realization of (2, ..., 2)) and is thus no AP. But,
if we omit this extreme case, then perhaps this becomes true:

Conjecture 5.1. Let G be an n-graph having a (quasi-) perfect matching. Then G is AP
if and only if the (n− 2)-closure of G is AP.
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