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Abstract. This paper presents a numerical study of the free and damped forced vibration of simply-supported
beams with composite coats subjected to a moving load by use of finite elements method. Three types of beam
configurations, aluminum, composite and strengthened beam are investigated. The equation of motion of the
beam is solved using the modal superposition method and integrated by applying the Newmark time integration
procedure. Good agreements were achieved between the FEM and analytical solutions. The damped dynamic
response, critical velocities and the dynamic amplification factor of the beam are calculated for different
parameters such as the thickness ratio, the fiber orientation of the coat and damping ratio.

Keywords: dynamic beams / moving load / FEM / strengthened beam / composite coats

Résumé. Réponse dynamique amortie des poutres renforcées par des couches en composites sous
une force mobile en utilisant la MEF. Cet article présente une étude numérique des vibrations libres et
forces amorties des poutres simplement appuyées avec des couches composites soumises à une force en
mouvement en utilisant la méthode des éléments finis. Trois types de configurations de poutre sont étudiés,
poutre en aluminium, en composite et poutre renforcée par matériaux composites. L’équation du mouvement de
la poutre est résolue en utilisant la méthode de superposition modale et elle est intégrée en appliquant la
technique de Newmark. De bons accords ont été conclus entre la MEF et les solutions analytiques. La réponse
dynamique amortie, les vitesses critiques et le facteur d’amplification dynamique de la poutre sont calculés pour
différents paramètres tels que le rapport d’épaisseur, l’orientation des fibres de la couche et le rapport
d’amortissement.

Mots clés: dynamique des poutres / charge mobile / MEF / renforcement des poutres / couches composites
1 Introduction

The use of composite materials in modern engineering has
increased considerably in recent years. As the composite
materials offer many desirable structural properties such as
lightweight and high strength, they are used to increase the
rigidity of civil engineering structures such as girders, rails,
crane and bridges for high speed trains. Thus, the
composite materials are attached to these structures
without any destruction. In the work [1], the observations
of the fracture surfaces revealed the different modes of
damages causing the material fracture and the lifetimes are
chem_nacer@yahoo.fr
characterized by the Wöhler curves. This study evidenced
the influence of the reinforcement orientation on endurance
of the studied material. The degradation of the rigidity
modulus in fatigue for two types of sandwich materials, [04]
and [0/902/0] was determined from the deflection equation
for the two sandwiches [2]. In this study, the experiments
revealed that the modulus of the [04] sandwich degraded
faster than that of [0/902/0]. The evolution of shear
modulus in fatigue of both sandwiches is also described
analytically using exponential and polynomial models.
Many studies exist on the dynamic behavior of isotropic
structures subjected to moving load in which the analytical
and numerical methods are used [3–6]. However, the
number of studies related to the vibration of beams with
composite coats is relatively less [7–9]. Hamada et al. [7]
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Fig. 1. A simply supported strengthened beam under a force
moving.
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studied the variations in natural frequencies and damping
properties of laminated composite coated beams utilizing a
numerical technique to compute the eigen parameters of
coated laminated composite beams (sandwich structures).

Zibdeh et al. [8] examined the dynamic response of a
simply supported beam coated with different fiber orienta-
tion of composite coats traversed by a randommoving load.
Tekili et al. [9] examined the free-vibration behavior of
simply-supported laminated composite coated beams with
different boundary conditions. Different definitions of
stiffness parameters of composite structures are presented
in numerous studies. The equivalent stiffness of the beams
with composite coats has been calculated from the formula-
tion of the Vison and Sierakowski [10] and Berthelot [11].
They use the behavior of composite beams as an equivalent
isotropicbehavior.HajianmaleckiandQatu [12] showed that
usingequivalentmodulusofelasticityofeach lamina,onecan
get accurate results for static and dynamic analyses. The
stiffness parameters of composite beams can be presented by
a classical beam theory or Euler Bernoulli beam theory,
where shear deformation and rotary inertia are negligible.
Qatu and Iqbal [13] and Qatu and Elsharkawi [14] used
classical beam theory to study vibration of straight cross-ply
laminated beams. The theories considering shear deforma-
tion are called as Timoshenko beam theories [15,16]. The
numerical methods such as the finite difference method and
finite elements method are used in the analysis of the
dynamic behavior of composite structures. Numayr [17]
studied the free-vibration behavior of symmetrically lami-
nated fiber-reinforced composite beams with different
boundary conditions. The finite-difference method is used
to solve the partial differential equations describing the free-
vibration motion. Kiral et al. [18] studied the dynamic
behavior composite beam subjected to vertical moving force
using a computer code of finite elements. In Kadivar et al.
[19], the one dimensional finite elements based on classical
lamination theory,first-order shear deformation theory, and
higher-order shear deformation theory are developed to
study the dynamic response of an unsymmetric composite
laminatedorthotropicbeam.Mohebpouretal. [20]presented
the freevibrationandmovingoscillatorproblemsof isotropic
and composite laminated beams using the finite element
method. In other researches, they studied the dynamic
behavior of the composite beam using analytical approx-
imations. Kahya [21] presented the approximate analytical
solution for the dynamic response of composites and with
beams subjected to moving mass. For solving dynamic
equationsof compositebeamsanumberofprocedures,which
canbe found inthe literature,are employed. Inthis study, the
damped dynamic response of strengthened beams by
composite coats under action of the moving loads at a
constant speed has been investigated by use of finite element
method with the Newmark integration method. For a large
slenderness ratio, deformation due to effect of shear force is
negligible as compared to deformation due to flexure.
Therefore, here the classical beam theory suffices to
accurately predict the stiffness parameters of composite
coats. As the main goal of this study, the damped dynamic
response of the composite beam is modeled as the Rayleigh
damping which is widely used in structural dynamics. The
effects of variousparameters suchas load speedandposition,
thethickness ratioandfiberorientationofcompositecoatson
natural frequencies mode and damped dynamic responses is
parametrically studied.

2 Theoretical formulation

An aluminum beam is strengthened by composite coats
made from composite material, carbon/epoxy and with a
thickness (H –h),as shown inFigure1.Thecore ismade from
an isotropic material aluminum, where L, b, and 2H are the
length, the width and thickness of the beam, respectively.

According to classical beam theory, which was derived
by [9], moment equation for unit length is obtained in the
case of plane strain and in-plane forces of the symmetrical
laminated beam as [11]:

Mx

My

Mxy

8<
:

9=
; ¼

D11 D12 0
D12 D22 0
0 0 D66
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4

3
5 kx

ky
kxy

8<
:
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where Mx, My, and Mxy, are the bending and twisting
moments, and kx, ky, and kxy are the curvatures of plate,
which are defined by:

kx ¼ ∂’x

∂x
; ky ¼

∂’y

∂y
; kxy ¼ ∂’x

∂y
þ ∂’y

∂x
ð2Þ

with ’xand ’yare rotationsandthestiffnessparametersare:

Dij ¼ 1

3

Xn
k¼1

ðz3k � z3k�1ÞðQ
0
ijÞk ð3Þ

The beam theory makes the assumption that in the case
of bending along x-direction, the bending and twisting
moments My and Mxy are zero. The relation (1) and (2)
thus lead to:

Mx ¼ D11kx ¼ �D11
∂2w
∂x2

ð4Þ

where

D11 ¼ 1

3

Xn
k¼1

z3k � z3k�1

� �
Q

0
11

� �
k

ð5Þ

The reduced stiffness constant of a unidirectional or
orthotropic layer, off its material directions is obtained by:

Q
0
11 ¼ Q11cos

4u þQ22sin
4u þ 2 Q12 þQ66ð Þsin2ucos2u ð6Þ
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where u is the angle between the principal laminate’s
direction and the axis of the beam.

The elastic constants Qij in the principal material
coordinate system are expressed as follows:

Q11 ¼
E11

1� E22=E11ð Þy212
; Q22 ¼

E22

E11
Q11;

t Q12 ¼ y12Q11; Q66 ¼ G12 ð7Þ
where E11, E22,G12, and y12 are the engineering parameters
of the kth lamina.

Lastly, the beam theory makes the additional assump-
tion that the deflection is a function of x only: w=w(x, t).
So, the mode shape of beam only depends on the coordinate
x. In the framework of the beam theory, in this case the
fundamental equations of laminates are simplified as:

rs
∂2w
∂t2

� ∂2Mx

∂x2
¼ Fðx; tÞ ð8Þ

where F(x, t) is load applied to the beam.
Equations (8) and (4) lead to:

rs
∂2w
∂t2

þD11
∂4w
∂x4

¼ Fðx; tÞ ð9Þ

The equivalent mass per unit length of the sandwich
beam is expressed as [9]:

rs ¼ b
Xn
k¼1

rk zk � zk�1ð Þ ¼ 2b rchþ rf H � hð Þ� � ð10Þ

where rc and rf are the densities of the core and faces of the
beam, respectively.

3 Finite elements model

Beam elements are used to model the strengthened beam
by composite coats. In order to simulate the moving load
considered beam is composed of (n) elements, with (n+1)
nodes, with concentrated force moving with constant
velocity, v=L/t, where t is the traveling time across the
beam. The displacement vector of the finite element is
defined by the degrees of freedom at the nodes. Two degrees
of freedom per node, translation w, along x-axis and
rotation u, about y-axis are considered:

qf gTk ¼ wi ui wiþ1 uiþ1f g ð11Þ
For beam element with four degrees-of-freedom, the

number of non-zero entrieswithin external force vectorwill be
four:

FðxÞf g ¼ 0 0 0 ⋯ fk1 fk2 fk3 fk4 ⋯ 0 0 0
� �

ð12Þ
wherefki ðtÞ, (i=1, 2, 3, 4) represent the equivalent nodal
forces and moments, which are given by the following
equations:

fki ðtÞ
� � ¼ F � Nif g i ¼ 1; 4 ð13Þ
where Ni (i=1.4) are shape functions of the beam element
given by [12,13]:

N1 ¼ 1� 3j2 þ 2j3; N2 ¼ lðj� 2j2 þ j3; N3

¼ 3j2 � 2j3; N4 ¼ lð�j2 þ j3Þ ð14Þ

where j ¼ x=l . Using the mode superposition method and
assume that:

wðx; tÞ ¼ FðxÞY ðtÞ ð15Þ
where F(x)=fn(n=1, 2, … , ∞) is the modal matrix, Y
(t)= qn(n=1, 2, … , ∞) is the generalized coordinate
vector.

The stiffness and mass matrices of an element are
obtained from elastic strain energy and kinetic energy of
the laminated beam [11]:

U ¼ 1

2
∫h0bD11

d2w

dx2

� 	2

dx ¼ 1

2
qf gTe ke½ � qf ge ð16Þ

T ¼ 1

2
∫h0rs

dw

dx

� 	2

dx ¼ 1

2
_qf gTe ke½ � _qf ge ð17Þ

The overall mass and stiffness matrices are obtained by
assembling the element matrices. The equation of motion
of structural system is represented as follows:

M½ � €qðtÞf g þ K½ � qðtÞf g ¼ FðtÞf g ð18Þ
where €q�f g, {q} are the acceleration and displacement
vectors for beam, respectively.

The natural vibration properties of the structure are
calculated by analyzing the system by free vibration, which
means the equation of motion, is rewritten without
external forces. The use of a harmonic function describing
the temporal evolution of the displacement in the equation
(18) gives the following algebraic function:

K½ � � v2
j M½ �

� �
f ¼ 0 ð19Þ

where vj is the j-th natural frequency and ’ is the
corresponding modal deflections. The roots of equation
(19) are the characteristic values, which are equal to the
squares of the natural frequencies of the modes.

The natural frequencies of the simply supported of a
symmetric laminate beam are expressed analytically as [9]:

vj ¼ j2p2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rsD
�1
11

s
j ¼ 1; 2;n ð20Þ

The critical speed is:

vcr ¼ vL

2p
ð21Þ

The Rayleigh damping with constant damping ratio is
used for dynamic analyses. The use of proportional
damping provides information about the damped response



Table 1. Material property for the coat and core of the
beam.

Material
property

Core
(aluminium)

Coats
(carbon/epoxy)

rc,f (kg/m
3) 2800 1580

E11 (GPa) 70 147
E22 (GPa) 70 9
G12 (GPa) 27 5
y12 0.29 0.3

Table 2. Comparison between the FE results and the
analytical solution of the natural frequencies.

Mode Natural frequency

1 2 3 4 5

Analytic 98.3 393.2 884.7 1572.9 2457.6
FEM 98.3 3983.1 884.3 1571.4 2454.0
Er (%) 0.0059 0.0238 0.0534 0.0950 0.1483

Fig. 2. First five frequencies of strengthened beam versus
thickness ratio.
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of the considered structure, thus the damping matrix [C] of
structure is formed by the linear combination of matrices of
mass [M] and stiffness [K] as:

C½ � ¼ c0 M½ � þ c1 K½ � ð22Þ
where c0 is the mass proportional damping coefficient and
c1 is the stiffness proportional damping coefficient.

If the damping ratios ja and jb are associated with two
specific fundamental frequencies va and vb, Rayleigh
damping coefficients c0 and c1 can be evaluated by the
solution of the equation (12):

c0
c1

� �
¼ 2vavb

v2
a � v2

b

va vb

�1=va 1=vb

 �
ja
jb

� �
ð23Þ

The first two fundamental modes and associated natural
frequencies are considered with the same damping ratios in
order to calculate the damping coefficients c0 and c1.

The equation of motion with damping matrix is as
follows:

K½ � qf g þ C½ � _qf g þ M½ � €qf g ¼ Fðx; tÞf g ð24Þ
where _qf g is the velocity vector of the beam. The
differential equation (24) is solved by using the implicit
time integration Newmark-b method with parameters
g=0.5 and b=0.25.

4 Numerical results and discussion

A computer code based on the finite element method was
developed and written in MATLAB in order to calculate
the dynamic response of the beams. The material
geometrical properties and physical dimensions of the
beams are the same as reference [7]. The beam has length,
L=500mm, width b=25mm, thicknessH=4mm as show
in Figure 1. The simply supported strengthened beam is
under action of moving force, F=100N. The number of
the finite elements used in vibration analysis is 100. Table 1
shows material properties for the face and core of the beam
models used in the study. The material of the core is
aluminum and faces are made from AS4/3501-6 Carbone/
Epoxy composite material (Fiber is AS4 Carbone and
Matrix is 3501-6 Epoxy).

By varying the thickness and the material of the face
sheet of the beams, it is possible to obtain a desired
performance. Four configuration beams are considered in
this study, the full aluminum beam, beam strengthened
with composite of different thickness ratio (h/H) and the
full composite beam. The thickness of the aluminum core
takes on the value of h=4, 3, 2, 1 and 0mm, for a full
aluminum beam (h/H=1), the beam strengthened with h/
H=0.75, 0.50 and 0.25 and full composite beam (h/H=0),
respectively. The dynamic analyses are also performed for
anisotropic aluminum beam for comparison purpose.

4.1 Free vibration

The strengthened beam, with thickness ratio, h/H=0.75
and a fiber orientation, u=0°, is considered for validation of
the present algorithm for free vibration. From Table 2 one
observes that the first five natural frequencies computed by
the FEM agree well with the analytical method (Eq. (20)).

The maximum relative error is of the order of 0. 15%
corresponding to the fifth frequency, the agreement
between the finite element method and analytic solution
is excellent.

The natural frequencies corresponding tomode 1, 2, 3, 4
and 5 are plotted in Figure 2. As can be seen from the figure,
the natural frequencies are affected by the thickness ratio
for high modes. However, for mode 1, the curve of the
frequency is almost horizontal, it remains nearly indepen-
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dent of the thickness ratio, relatively compared to the
higher modes. According to Figure 2, we note that the
natural frequencies of the aluminum beam are almost
Fig. 3. First five frequencies of strengthened beam versus fiber
orientation.
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Fig. 4. Dynamic deflection of beam center with u=0° and vel
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identical to those of the composite beam and this is for low
frequencies, however for the high frequencies, large
difference is found. This difference is due to differences
in stiffness of two materials.

The Figure 3 shows the variation of the first five natural
frequencies of the strengthened beam versus the fiber
orientation. In general, the frequency decreases with the
increase in the fiber orientation. On the other hand, the
frequency is almost constant (linear) for mode 1 compared
to other modes. The maximum frequency is reached for the
strengthened beam with u=0°.

4.2 Damped forced vibration

The analyses of the forced vibration of the beam are
estimated by superposition of the modes up to the 20th.
The effect of damping ratio on the dynamic deflection of the
beam is investigated with different configurations, full
aluminum beam, strengthened beam and full composite
beam and the composite coat with fiber orientation u=0°.
The dynamic response of simply supported beam can be
separated by critical speed into two regions: undercritical
and overcritical region. Figures 4 and 5 illustrate the
damped displacement response of the beam for different
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configurations h/H=1, 0.75, 0.25 and 0 in the undercritical
region (v=10m/s) and the overcritical region (v=80m/s)
and the overcritical region (v=80m/s), respectively.

Figure 4 shows the time history of dynamic deflection
vs. force when moving force passes the position of 0.5, 0.58,
0.44 and 0.56 of the beam length, for h/H=1, 0.75, 0.25 and
0, respectively. Then, the maximum deflection of the beam
center is 4.15, 2.4, 2.0 and 0.18mm.

One can see from Figure 4, when the force leaves the
beam, in free vibration that the beam oscillates about its
equilibrium position with progressively decreasing ampli-
tude.Thehigherthedampingratioof thebeamthehigherthe
rate of reduction, however, the inverse trend is observed for
aluminum beam h/H=1 (Fig. 4a). As can be expected, in
forced vibration the dynamic deflections decrease with the
increase in the damping ratio. The effect of damping ratio
on the dynamic response is larger in free vibration. On the
other hand, the effect of damping ratio is greater for case
h/H=0.75 (Fig. 4c) than those obtained for other.

By referring to Figure 5, it can be concluded that the
maximum deflection of beam has a delay respective to the
position of moving load when the velocity is overcritical. In
Figure 5, the effect of damping ratio is almost the same for
all configurations of the beam. The maximum deflection
occurs when the force is near or after exit of the beam.

As shown in Figures 4 and 5, for the two cases
undercritical and overcritical, the dynamic deflection of
beam center decreases with the increase of the thickness of
the composite coat. Because, when the thickness ratio
increases, stiffness of the beam also increases, and thus the
beam deflections decrease. The dynamic response of the
beam to a moving load is defined in terms of the dynamic
amplification factor (DAF), which is calculated for the
mid-point of the beam. The DAF is defined as the ratio of
the maximum dynamic displacement to the static
displacement. The critical velocity is the velocity in which
the maximum DAF occurs. From the static analysis of
simply supported beam under the act of a concentrated
force of F0, the maximum static deflection is F0l

3/48D11.
The effect of damping ratio on the dynamic magnifica-

tion factor of the beam with different configurations of the
beam, h/H=1, 0.75, 0.25 and 0 is shown in Figure 6a–d,
respectively. For all cases, in undercritical region the
dynamic magnification factor is increased by increasing the
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Fig. 6. DAF versus load velocity for different damping ratios and configuration beam. (a) h/H=1, (b) h/H=0.75, (c) h/H=0.25,
(d) h/H=0.
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velocity of the moving load, but in the overcritical region
dynamic magnification factor is decreased when the
moving load velocity increases. It is shown in this figure
for h/H=1, 0.75, 0.25 and 0, the maximum DAF occurs at
critical velocity vc= 36.06, 48.86, 63.43, 69.56m/s,
respectively. As shown from the Figure 6, the strength-
ened beam h/H=0.75 has greater dynamic amplification
factor for values from 1.7619. It remains nearly indepen-
dent of the load velocity in the moderate to high speed
range (60 to 70m/s) for h/H=0.25 (Fig. 6c) and full
composite beam h/H=0 (Fig. 6c) with asymptotic value
1.58824.

The DAFs decreased with the increase in the damping
ratio, as can be expected. However, for the range of v> vcr,
the damping ratio has a significant effect onDAF compared
to lower speeds. For all cases, the effect of damping ratio is
small on the critical velocity. However, the critical speed
increased with the increase of the thickness of the
composite coat, thus by using the composite coats; we
can augment the critical velocity considerably.

The effect of damping ratio on the response dynamic of
the beam with different orientation of fiber and h/H=0.75
is analyzed and shown in Figures 7 and 8. Figure 7 shows
the time history of dynamic deflections vs. force at velocity
of moving load v=15m/s, for different coated beams,
u=0°, 30°, 60° and 90°. It can be indicated that the
maximum deflection at the beam center is 2.6, 9.8, 5.2 and
9.65mm, occurs when the moving force passes the position
of 0.47, 0.415, 0.38 and 0.41 of the beam length and for
u=0°, 30°, 60° and 90°, respectively. The dynamic
deflection of the beam coated by 0° fiber orientation is
relatively low compared with the others. This is due to the
maximum equivalent stiffness at this orientation. Thereby
the effect of damping ratio is largest in this case.
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Fig. 7. Dynamic deflection of strengthened beam h/H=0.75 with velocity of moving load v=15m/s. (a) u=0°, (b) u=30°, (c) u=60°,
(d) u=90°.
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The effect of damping ratio on the dynamic magnifica-
tion factor of the beam with different fiber orientations,
u=0°, 30°, 60°, and 90° is shown in Figure 8a–d,
respectively. It is shown in this figure for u=0°, 30°, 60°
and 90°, the maximum DAF occurs at critical velocity
vc=48.86, 26.92, 33.73, 27.07m/s, respectively. However,
one expected that the critical velocities decrease as the fiber
orientation increases.

From Figure 8 one observes that in undercritical region
the damping ratio does not have a great effect on DAF. For
damping ratio j=0.0, 0.005, and 0.01, the dynamic
amplification factor values of strengthened beam are very
close for all cases. The exponential decay in the dynamic
amplification factor can be observed for the damping ratios
greater than or equal to 0.05.
5 Conclusions

The dynamic behavior of aluminum, full composite and
strengthened aluminum beam under action of the moving
loads at a constant speed has been investigated by use of
finite element. The agreement between the finite element
method and analytic solution is excellent. The effects of
fiber orientation of the coat, thickness ratio and damping
ratio are examined out through a parametric study. Based
on obtained results followings are concluded: DAFs
decrease with the increase in the damping ratio; however,
for speed ranges above the critical speed, the damping ratio
has a significant effect on DAF compared to lower speeds;
the exponential decay in the dynamic amplification factor
can be observed for the damping ratios greater than or
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Fig. 8. DAF of the strengthened beam h/H=0.75 versus load velocity for different damping ratio. (a) u=0°, (b) u=30°, (c) u=60°,
(d) u=90°.

A. Chemami et al.: Matériaux & Techniques 106, 206 (2018) 9
equal to 0.05; the critical speed increased with the increase
of the thickness of the composite coat and it decreased, in
general, with the increase of fiber orientation; thus by using
the composite coats; we can augment the critical velocity
considerably
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