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NEWTONIAN LIMIT FOR WEAKLY VISCOELASTIC FLUID FLOWS

DIDIER BRESCH∗ AND CHRISTOPHE PRANGE†

Abstract. This article addresses the low Weissenberg asymptotic analysis (Newtonian limit) of some macro-
scopic models of viscoelastic �uid �ows in the framework of global weak solutions. We investigate the convergence
of the corotational Johnson-Segalman, the FENE-P, the Giesekus and PTT models. Relying on a priori bounds
coming from energy or free energy estimates, we �rst study the weak convergence toward the Navier-Stokes system.
We then turn to the main focus of our paper, i.e. the strong convergence. The novelty of our work is to address
these issues by relative entropy estimates, which require the introduction of some corrector terms. We also take into
account the presence of defect measures in the initial data, uniform with respect to the Weissenberg number, and
prove that they do not perturb the Newtonian limit of the corotational system.

Key words. Viscoelasticity, Weisenberg number, Deborah number, relative entropy, free energy, Newtonian
limit, weak solutions

1. Introduction. This work is concerned with viscoelastic �uid �ows, which have an elastic
behaviour in short times, and a viscous one in large times. Such non-Newtonian �uids are ubiqui-
tous: glaciers, Earth's mantle, dough, paint, solutions of polymers. They have a complex dynamic.
For instance, phenomena such as the rod climbing e�ect, the tubeless siphon e�ect and die swell
can be observed in polymeric liquids. In order to get an insight into the physics of viscoelastic
�uid �ows, the reader is refered to [32, 22, 30, 29].

Because of elasticity, viscoelastic �uids remember their history, which means that the dynamic
of the �ow at a given time depends on the past. This is in strong constrast with Newtonian �uids
(i.e. purely viscous �uids). The viscoelastic relaxation time is roughly the time on which the �ow
remembers the past. The dimensionless number, which compares the viscoelastic relaxation time
to a time scale relevant to the �uid �ow, is the Weissenberg (or Deborah number) We. The bigger
We, the more important is the elasticity with respect to the viscosity.

The purpose of our paper is to face a problem raised by J.-C. Saut in his recent review
article [34]: the mathematical study of the Newtonian limit of models from non-Newtonian �uid
mechanics, that is to say the limit We → 0. We focus on some macroscopic models of polymeric
viscoelastic �uid �ows. The works presented here are a �rst step toward a better understanding of
the e�ect of a small amount of elasticity on the Newtonian dynamic of a �uid with weak regularity.

1.1. Macroscopic models of viscoelastic �uid �ows. All macro-macro models we con-
sider here are the coupling of a momentum equation on the incompressible velocity u = u(t, x) ∈ Rd
and an equation for the symmetric stress tensor τ = τ(t, x) ∈ Md (R) (or a symmetric structure
tensor A = A(t, x) ∈Md (R), which has a microscopic meaning). In the sequel, we concentrate on
two models: namely the corotational Johnson-Segalman model ∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,

∇ · u = 0,
We (∂tτ + u · ∇τ + τW (u)−W (u)τ) + τ = 2ωD(u),

(1.1)

and the FENE-P model
∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,

∇ · u = 0,

τ = (b+d)ω
b

1
We

(
A

1−TrA
b

− I
)
,

∂tA+ u · ∇A−∇uA−A (∇u)
T

+ 1
We

A
1−TrA

b

= 1
WeI.

(1.2)

Notice that these systems are posed in Ω ⊂ Rd a bounded domain, Ω = Rd or Ω = Td. We recall

that D(u) := ∇u+(∇u)T

2 is the deformation tensor and that W (u) := ∇u−(∇u)T

2 is the vorticity
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tensor. The quantity ∂tτ + u · ∇τ + τW (u) −W (u)τ (resp. ∂tA + u · ∇A − ∇uA − A (∇u)
T
) is

known as the corotational (resp. upper convected) derivative of τ (resp. A).

In addition, we assume that u satis�es a noslip boundary condition on ∂Ω. There is no
condition for τ (nor A) on the boundary. We start from the initial conditions:

u(0, ·) := u0, τ(0, ·) := τ0, A(0, ·) := A0.

We consider only the case of Je�rey �uids, for which 0 < ω < 1, in the framework of global in time
weak solutions. The case ω = 1 turns out to be much more complicated (like Euler in comparison
to Navier-Stokes).

Corotational model. A simple a priori energy estimate on (1.1) leads to

ω ‖u(t, ·)‖2L2(Ω) + 2ω(1− ω)

ˆ t

0

‖∇u‖2L2(Ω) +
We

2
‖τ(t, ·)‖2L2(Ω) +

ˆ t

0

‖τ‖2L2(Ω)

≤ ω ‖u0‖2L2(Ω) +
We

2
‖τ0‖2L2(Ω) . (1.3)

This decay of energy is a consequence of the algebraic identity

(τW (u)−W (u)τ) : τ = 0.

Although it is convenient from a mathematical viewpoint and greatly simpli�es the analysis of the
system, (1.3) points out some drawbacks of the corotational model. Indeed, as underlined in [38],
this decay of energy is not relevant from a physical viewpoint. Furthermore, as noticed in [32,
Chapter 3], the corotational model is unable to predict some behaviours, such as the rod climbing
e�ect.

The existence of weak solutions to the corotational model (1.1) for d = 2 or 3 is due to P.-L.
Lions and N. Masmoudi [24]. The starting point of their analysis is the inequality (1.3). They
intensively rely on the use of defect measures to pass to the limit in the product τnW (un), where
(un, τn) is an approximated smooth solution to (1.1). Note that the regularity provided by (1.3)
is barely τ ∈ L∞

(
(0,∞);L2

)
and ∇u ∈ L2

(
(0,∞);L2

)
. The key of the proof is the control of τ

in L∞ ((0, T );Lq) for a q > 2 and 0 < T <∞.

The initial velocity �eld is taken in the space Ip,q ⊂W−1,q: for all 1 < p, q <∞

Ip,q :=

{
u0 ∈W−1,q;

∥∥∥A− 1
2

q u0

∥∥∥
Lq

+

(ˆ ∞
0

∥∥∥Aqe−tAqA
− 1

2
q u0

∥∥∥
Lq
dt

) 1
p

<∞

}
, (1.4)

where Aq := Pq∆ is the Stokes operator with domain

D(Aq) :=
{
u ∈ Lq,σ; ∇2u ∈ Lq, u|∂Ω = 0

}
,

Pq being the Helmholtz projector on Lq,σ with domain Lq. The space Lq,σ is the closure of the
space {v ∈ C∞0 (Ω) : ∇ · v = 0} in Lq. For more properties about the space Ip,q and the Stokes
operator, we refer to [14].

In more details, their existence result reads:

Result A (P.-L. Lions, N. Masmoudi). There exists a global weak solution (u, τ) of (1.1)
satisfying the energy inequality (1.3) such that for all 0 < T <∞,

∇u ∈ Lp ((0, T );Lq) and τ ∈ C0 ([0,∞);Lq) ,

provided that τ0 ∈ Lq and u0 ∈ Ip,q,
• for some 2 < q < +∞, 1 < p < +∞, if d = 2,
• and for some 2 < q ≤ 3, 1 < p ≤ q

2q−3 , if d = 3.
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FENE-P model. This model is one of the many closure approximations of the microscopic
FENE (Finite Extensible Nonlinear Elastic) dumbbel model (see [11, 12]). Its low computational
costs, compared to micro-macro models, and its acceptable predictions make it a widely used model
for numerical simulation of viscoelastic �uid �ows. However, as pointed out in [19], it does not
capture all the physics of the microscopic model. Note that the parameter b in (1.2) relates to the
extensibility of the elastic dumbbels at the microscopic scale.

The energy is replaced by a non-trivial free energy (or entropy), which has been known from
physicists since the work of L. E. Wedgewood and R. B. Bird [39] (see also [38, 30]). D. Hu and
T. Lelièvre in [17] have recently rediscovered this entropy and showed that it decays in time:

1

2
‖u(t, ·)‖2L2(Ω) + (1− ω)

ˆ t

0

‖∇u‖2L2(Ω)

+
ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA)− bln

(
1− Tr(A)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
‖u0‖2L2(Ω) +

ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA0)− bln

(
1− Tr(A0)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(1.5)

Based on this decay, N. Masmoudi [26] has achieved an existence result for the system (1.2). The
fundamental point is that the decay of the entropy (1.5) yields a control of the L2 ((0,∞)× Ω)
norm of τ .

Result B (N. Masmoudi). Let d ≥ 2. Assume that u0 ∈ L2 is a divergence free vector �eld
and that A0 = A0(x) is a symmetric positive de�nite matrix with TrA0 < b and such that

ˆ
Ω

[
−ln (detA0)− bln

(
1− TrA0

b

)
+ (b+ d)ln

(
b

b+ d

)]
<∞.

Then, there exists a global weak solution (u,A, τ) to (1.2) satisfying (1.5), such that

u ∈ L∞
(
(0,∞);L2

)
∩ L∞

(
(0,∞); Ḣ1

)
, A ∈ L∞ ((0,∞)× Ω) and τ ∈ L2 ((0,∞)× Ω) .

1.2. Outline of our results. The existence theorems of global weak solutions open the way
to the asymptotic analysis at low Weissenberg number. From a formal perspective, it is easy to
see that the velocity �eld u of the non-Newtonian �uid model (1.1) converges toward a solution u0

of the Navier-Stokes system ∂tu
0 + u0 · ∇u0 −∆u0 +∇p0 = 0, Ω,

∇ · u0 = 0, Ω,
u0 = 0, ∂Ω.

(1.6)

Notice that the noslip condition is compatible with the limit, so that no boundary layers are
involved in this limit (at least at the leading order in We). That is why, we state our results for
the whole space domain Ω = Rd.

As far as we know, the Newtonian limit of non-Newtonian �uids has only been studied in the
context of strong solutions. First results in the direction of a better understanding of this limit
have been reached by J.-C. Saut in [33] for Maxwell type �ows (no di�usion term in the momentum
equation) in the linear regime. The only other result we are aware of is the one of L. Molinet and
R. Talhouk [27] for strong solutions of Johnson-Segalman systems (including the corotational and
the Oldroyd-B systems). For these models no energy of the type of (1.3) is available in general, so
they rely on a splitting in low and high frequencies at a cut-o� frequency depending on We.

The originality of our work is to address the Newtonian limit in the framework of weak solutions
relying only on energy (or free energy) methods. Thus our results do not ask for more smoothness
than the natural regularity available.
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The �rst logical step in our study of the limit is to investigate the weak convergence. For the
corotational and the FENE-P models, we easily obtain the weak convergence toward the Navier-
Stokes system. More intricate calculations of relative entropies involving higher-order corrector
terms make it then possible to achieve strong convergence results. The latter are the main focus
of our paper.

1.2.1. Newtonian limit: weak convergence. The mathematical justi�cation of the formal
asymptotics requires a priori bounds uniform inWe. Some bounds, like the L∞

(
(0,∞);L2

)
bound

on τ for (1.1), are not uniform in We. They were usefull for the Cauchy theory, but are useless for
the Newtonian limit.

Notice that the initial data u0, A0 and τ0 may depend on We. In order to get uniform bounds
in We, we have to assume that initial data is well-prepared, in a sense to be made precise later
on. We always start from data meeting the conditions of Result A or B leading to the existence of
weak solutions. We state the weak convergence results for a bounded domain Ω; the results being
the same for the whole space or periodic boundary conditions.

Our �rst result is concerned with the weak convergence in the corotational system.
Proposition 1.1. Let d = 2, 3. Let (u, τ) be a weak solution of (1.1) in the sense of Result

A. Assume that

‖u0‖2L2(Ω) +
We

2
‖τ0‖2L2(Ω) = O(1). (1.7)

Then, there exist

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
such that u (resp. τ) converges to u0 (resp. τ0) at least in the sense of distribution, where u0 is a
weak solution of the Navier-Stokes system (1.6) and τ0 = 2ωD

(
u0
)
.

We turn to the weak convergence for the FENE-P model. It is formally clear that A converges
to A0 := b

b+dI. The key to the convergence of u is a bound on τ in L2 ((0,∞)× Ω) uniform in
We, deduced from the decay of the free energy (1.5).

Proposition 1.2. Let d = 2, 3. We consider a global weak solution (u,A, τ) of (1.2) in the
sense of Result B. Assume that ‖u0‖L2(Ω) = O(1). Then we get several convergence results in the
limit We→ 0.
• Assume that initial data is ill-prepared in the sense that

ˆ
Ω

[
−ln (detA0)− bln

(
1− TrA0

b

)
+ (b+ d)ln

(
b

b+ d

)]
= O (1) .

Then A tends to A0 in L2
(
(0,∞);L2 (Ω)

)
and∥∥A−A0

∥∥
L2((0,∞);L2(Ω))

= O
(√
We
)
. (1.8)

• Assume furthermore that initial data is well-prepared namely

ˆ
Ω

[
−ln (detA0)− bln

(
1− TrA0

b

)
+ (b+ d)ln

(
b

b+ d

)]
= O (We) . (1.9)

Then we have the following improved convergences:∥∥A−A0
∥∥
L∞((0,∞);L2(Ω))

= O
(√
We
)
, (1.10a)∥∥A−A0

∥∥
L2((0,∞);L2(Ω))

= O (We) . (1.10b)

Moreover, τ is bounded uniformly in L2 ((0,∞)× Ω), and u (resp. τ) converges in the sense of
distributions toward u0 (resp. 2ωD(u0)), where u0 satis�es the Navier-Stokes system (1.6).

Before coming to the strong convergence, let us state a slight generalization of Proposition
1.1 allowing to handle the case of oscillating initial data (u0,n, τ0,n). For the sake of easiness, we
temporarily consider initial data independent ofWe and treat only the case d = 2. We assume that
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u0,n strongly converges in L2(Ω) toward u0, and that τ0,n is uniformly equiintegrable in L2(Ω).
In particular, we do not assume that τ0,n converges strongly in L2(Ω). We then call (un, τn) the
associated weak solution of (1.1), which satis�es the energy inequality (1.3). We show that passing
to the limit on n introduces defect measures in the limit system. These defect measures are due
to the oscillations of the initial data τ0,n. We prove that they disappear in the limit We→ 0.

Proposition 1.1 bis. Let d = 2 and Ω = R2. The result is in two points:
• Limit n→∞. There exists

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
, and τ ∈ L∞

(
(0,∞);L2

)
,

such that (un, τn) tends to (u, τ) at least in the sense of distributions and (u, τ) satis�es the system
∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ

∇ · u = 0

We

[
∂tτ + u · ∇τ + τW (u)−W (u) τ +

(
−ε 1

2δ
− 1

2δ ε

)]
+ τ = 2ωD (u)

(1.11)

with defect measures δ, ε ∈ L1
loc

(
(0,∞);L1

)
.

• Limit We→ 0. There exists

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

solving the Navier-Stokes system (1.6) in the sense of distributions and such that (u, τ) converges
weakly toward

(
u0, τ0

)
. This result is quite distant from the main focus of our paper. It is a

natural continuation of some techniques involved in the article [24]. We therefore postpone its
proof to the Appendix A. The main di�culty is to get uniform in We a priori estimates on the
defect measures δ and ε, so as to pass to the limit in (1.11).

1.2.2. Newtonian limit: strong convergence. Our strong convergence results always
follow from the same two steps: �rst we build an ansatz for u, A and τ , and then we compare this
approximation to u, A and τ in an appropriate norm derived from the energy, or the free energy
associated to the system. This is the leitmotiv of relative entropy (or modulated energy) methods.
Since the pioneering works of C. Dafermos [7, 8], of R. Di Perna [10] and of H.-T. Yau [40], relative
entropy methods have become a crucial and widely used tool in the study of asymptotic limits to
kinetic models in the contex of hydrodynamics [25, 15, 2], of the quasineutral limit for the Vlasov-
Poisson system [3, 16], of the behavior of shocks for systems of conservation laws [23] and of the
stability in thermomechanical theories [20, 9]. They have also been successfully implemented in
the approximation of incompressible �uids by hyperbolic systems [4, 28]; see also [37, 21] for an
expository of the general method, which is close to ours, and the use of corrector terms. Let us also
mention the use of relative entropies for the study of the long-time behavior of some micro-macro
models for dilute solutions of polymers, and the convergence to equilibrium by B. Jourdain, C. Le
Bris, T. Lelièvre and F. Otto [18]. Relative entropy methods are also the key to the estimates of
F. Otto and A. Tzavaras in [31].

The very rough idea is work with an energy (resp. free energy) e = e(u,A, τ) like the one in
the left hand side of (1.3) (resp. (1.5)). Notice that e(u,A, τ) = e1(u)+ e2(A)+ e3(τ). The decisive
point, is that the functions ei, for i = 1, . . . 3 are globally convex. Thus, one can make a Taylor
expansion of e around say

(
ũ, Ã, τ̃

)
, and get that the quantity

E(u,A, τ) := e(u,A, τ)− e
(
ũ, Ã, τ̃

)
−∇e1

(
ũ
)
·
(
u− ũ

)
−∇e2

(
Ã
)
·
(
A− Ã

)
−∇e3

(
τ̃
)
·
(
τ − τ̃

)
is positive and controls the norm of

|u− ũ|2 + α
∣∣A− Ã∣∣2 + β |τ − τ̃ |2 ,

with α, β ≥ 0, α = 0 (resp. β = 0) for the corotational (resp. for the FENE-P) model. The
quantity E is called the relative entropy (or modulated energy). Its control is based on an explicit
computation of its total time derivative in order to establish a Gronwall type inequality. These
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computations may be quite tricky (especially in the case of the FENE-P system), as they involve
the algebraic structure of the equations (1.1) or (1.2).

This procedure yields an error estimate between u (resp. A, τ) and its approximation. The
convergence result holds for solutions of (1.1) or (1.2) with very low regularity, typically weak
solutions. However, in order to carry out the estimates of the relative entropies, we need quite a
lot regularity on the pro�les of our ansatz.

The �rst of our two theorems below handles the case of the corotational system.
Theorem 1.3. Let d = 2, 3, u0 ∈ H4,σ (Ω) independent of We and τ0 ∈ L2 (Ω)∩Lq (Ω), with

2 < q ≤ 3. Notice that τ0 may depend on We in the following sense:
∥∥τ0∥∥L2(Ω)

= O(1). Let also

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
, and τ ∈ L∞

(
(0,∞);L2

)
∩ L∞loc ((0,∞);Lq)

be global weak solutions to (1.1) in the sense of Result A associated to the initial data u0 and τ0.
Then, there exists 0 < T ∗ <∞ independent of We and

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
a global weak solution of (1.6) associated to the initial data u0, such that, in addition, u0 belongs
to L∞

(
(0, T );H4

)
for all 0 < T < T ∗. Moreover, for all 0 < T < T ∗,

sup
0<t<T

(
ω
∥∥u(t, ·)− u0(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2

+
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2

) 1
2

= O
(√
We
)
. (1.12)

Let us comment on this theorem:
• The proof is done in the case when Ω = R3. It is not hard to adapt our arguments to the
easier case Ω = R2. Furthermore, as no boundary condition is prescribed on τ , and as
u0 = 0 can be imposed on the boundary for the limit velocity �eld, there is no boundary
layer in the limit We→ 0. Thus, our analysis extends straightforwardly to the case when
Ω is a bounded domain.
• We assume that u0 does not depend on We only in order to alleviate the proof. Of course,
one can start from an initial data for u depending on We and get the convergence (1.12)
on condition that one assumes∥∥u(0, ·)− u0(0, ·)

∥∥
L2(Ω)

= O
(√
We
)
.

• Our result does not require further regularity for (u, τ) than the natural regularity yielded
by (1.3). However, it is quite demanding on the limit pro�le u0. It might be possible
to weaken the regularity requirements on the initial velocity �eld. In particular, we do
not take advantage of the regularizing e�ect of the Navier-Stokes equation, which yields
u0 ∈ L2

(
(0, T );H5

)
, because we need the L∞ bound in time.

• The regularity needed on u0 in order to carry out the computations of the proof is the
reason why the convergence result only holds as long as u0 remains su�ciently regular.
• Note that nothing is prescribed on the initial stress tensor τ0, except the requirements to
get a global weak solution to (1.1). In other words, Theorem 1.3 is a convergence result
for ill-prepared data τ0.
• Our theorem complements the study of L. Molinet and R. Talhouk [27]. They manage
to get a convergence result of strong solutions for ill-prepared data, in the case when the
equation on τ has the additional term a (D(u)τ + τD(u)), with −1 ≤ a ≤ 1. Our system
(1.1) corresponds to a = 0. In the general case, a 6= 0, there is no known energy associated
to the system. Hence their proof, unlike ours, relies on a cutting up of u and τ in low and
high frequencies.
• This convergence result can be used, in the two-dimensional case, to prove the existence
of global in time strong solutions to (1.1) for We small enough. Of course, we would rely
on the global existence of strong solutions to the Navier-Stokes system when d = 2.
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The proof of Theorem 1.3 serves as a guideline for the main result of our paper, which is
concerned with the strong convergence of the FENE-P system:

Theorem 1.4. Let d = 2, 3. Assume that u0 ∈ H4,σ (Ω) is independent of We, that A0 ∈
L2 (Ω) is symmetric positive de�nite and TrA0 < b. Assume furthermore that the initial data is
well-prepared in the sense that

ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA0)− bln

(
1− TrA0

b

)
+ (b+ d)ln

(
b

b+ d

)]
= O (We) . (1.13)

Let

u ∈ L∞
(
(0,∞);L2

)
∩ L2

(
(0,∞); Ḣ1

)
, A ∈ L∞ ((0,∞)× Ω) , τ ∈ L2 ((0,∞)× Ω)

be the solution of (1.2) in the sense of Result B associated to the initial data u0 and A0.
Then, there exists 0 < T ∗ < ∞ independent of We, u0 a global weak solution of (1.6) associated
to the initial data u0 and a corrector A1, such that, in addition, u0 belongs to L∞

(
(0, T );H4

)
and

A1 ∈ L∞
(
(0, T );H3

)
for all 0 < T < T ∗.

Furthermore, u and A converge in the modulated energy norm

sup
t∈[0,T ]

(
1

2

∥∥u− u0
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2

+
ω(b+ d)

2b

1

We

∥∥A−A0 −WeA1
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2

) 1
2

= O
(√
We
)
,

(1.14)

on every time interval [0, T ], with 0 < T < T ∗.
Notice that the estimate (1.14) implies immediately the following strong convergences:∥∥u− u0

∥∥
L∞((0,T );L2)

= O
(√

We
)
,∥∥u− u0

∥∥
L2((0,T );H1)

= O
(√

We
)
,∥∥A−A0

∥∥
L∞((0,T );L2)

= O (We) ,∥∥A−A0 −WeA1
∥∥
L2((0,T );L2)

= O
(
We3/2

)
,∥∥τ − τ0

∥∥
L1((0,T );L1)

= O
(√

We
)
.

(1.15)

Most of the remarks made after the strong convergence Theorem 1.3 have their counterpart
for the FENE-P system. Let us make a few further comments:

• Notice that (1.13) imposes that∥∥A0 −A0
∥∥2

L2(Ω)
= O (We) .

However, looking at the decomposition (3.9) of τ , we note that nothing is prescribed on
the second term in the right hand side, namely

(b+ d)ω

b

1

We
A

TrA− TrA0

b
(
1− TrA0

b

) (
1− TrA

b

) ,
which means that our result holds for ill-prepared data τ , such that τ0 6= 2ωD (u0). Hence,
Theorem 1.4 is in the same spirit as our strong convergence result on the corotational
system, and the work of L. Molinet and R. Talhouk [27] on the convergence of strong
solutions to the generic Johnson-Segalman model.
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• We carry out the proof in the case d = 3. The case d = 2 is even simpler. As in the proof
of Theorem 1.3, the restriction on the dimension comes from the estimate of the term

−
ˆ t

0

ˆ
Ω

((
u− u0 −Weu1

)
· ∇u0

)
·
(
u− u0 −Weu1

)
.

• Note that the smoothness assumption u0 ∈ H4 is enough in the case d = 2 as well as
d = 3. It implies A1 ∈ L∞ ((0, T );Lp), for all 1 ≤ p ≤ ∞.
• The control of the norm (1.14) is obtained through a Taylor expansion of the free energy
(1.5) around the corrector A0 + WeA1. This leads to the study of the positive quantity
(3.17), called the relative entropy, which bounds the norm (1.14). Expanding the free
energy around A0 is not enough. It would yield a bound on A − A0, rather than on
A−A0 −WeA1.

After the proof of this theorem in Section 3.2, we comment on the strong convergence for
other macroscopic models of viscoelastic �uid �ows, namely the Giesekus, the PTT and Oldroyd-B
models.

1.3. Organization of the paper. For the reader's convenience we devote the �rst section of
this paper (Section 2) to the proof of the results concerning the corotational system. The proofs are
easier in this case, and shed some light on some features, which help to understand our analysis of
the FENE-P system. We show the weak convergence of Proposition 1.1 in the Section 2.1, and the
strong convergence of Theorem 1.3 in Section 2.2. In Section 3 we address the results related to the
FENE-P system. Proposition 1.2 (weak convergence) is showed in Section 3.1 and we demonstrate
our Theorem 1.4 (strong convergence) in Section 3.2. At the end of this part, we make some brief
comments on the convergence for the Giesekus and PTT models. The proof of Proposition 1.1 bis
is postponed to the Appendix A. In this appendix, we also show re�ned Lp ((0, T );Lq) a priori
estimates on the corotational system. These estimates are also the key for the existence of weak
solutions to the corotational system.

2. Low Weissenberg limit for the corotational system. We concentrate on the low
Weissenberg asymptotic analysis of the corotational system (1.1). The �rst part of this section is
devoted to the weak convergence. In the second subsection, we show the strong convergence result
of Theorem 1.3, relying on a relative entropy method.

2.1. Weak convergence. We carry out the proof of Proposition 1.1 in the case when Ω ⊂ Rd
is a bounded domain and d = 2, 3. Our analysis extends straightforwardly to the case Ω = Td, and
Ω = Rd, as we only work with local in space bounds. Let (u, τ) be a sequence of weak solutions
to (1.1) satisfying the a priori bound (1.3). According to the assumption (1.7) on the initial data,
we deduce that

u is uniformly bounded in We inL∞
(
(0,∞);L2

)
∩ L2

(
(0,∞); Ḣ1

)
,

τ u.b. in We in L2
(
(0,∞);L2

)
.

Let us notice that the bound on τ in L∞
(
(0,∞);L2

)
is not uniform in We.

Compactness. As is usual, the former bounds imply the existence of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

such that the following convergences hold (extracting subsequences if necessary), for all 0 < T <∞,

u ⇀ u0 L2
(
(0, T );H1

)
, (2.1a)

u(t, ·) ⇀ u0(t, ·) L2(Ω), (2.1b)

u
∗
⇀ u0 L∞

(
(0,∞);L2

)
, (2.1c)

∇u ⇀ ∇u0 L2
(
(0,∞);L2

)
, (2.1d)

τ ⇀ τ0 L2
(
(0,∞);L2

)
, (2.1e)

τ(t, ·) ⇀ τ0(t, ·) L2(Ω), (2.1f)
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and

∂tu is uniformly bounded in L4/d ((0, T );V ′) ,

where V ′ is the dual of V := {v ∈ H1
0 , ∇ · v = 0}. For the latter bound we note that ∇ · τ

is bounded in L2
(
(0, T );H−1

)
. The non-linear term is the only tricky one to estimate: for all

ϕσ ∈ C∞c ((0,∞);C∞,σc ), for all 0 < t < T ,∣∣∣〈−u · ∇u(t, ·), ϕσ(t, ·)〉D′,D
∣∣∣ ≤ ‖u(t, ·)‖2−d/2L2 ‖u(t, ·)‖d/2H1 ‖ϕσ(t, ·)‖V .

Therefore, using the Aubin-Lions lemma [5], we get the strong convergence

u −→ u0 L2
(
(0, T );L2

)
. (2.1g)

Weak convergence of τ and u. The simple observation leading to the convergence of τ is that

2ωD(u)− τ = We (∂tτ + u · ∇τ + τW (u)−W (u)τ) .

The Weissenberg number in front of the right hand side makes the convergence follow directly from
the bounds on u and τ above. The Newtonian limit is therefore much more simple than passing to
the limit on a sequence of approximated solutions, when proving the existence of weak solutions.
We do not need re�ned convergence results for τ . For all ψ ∈ C∞c ((0,∞)× Ω),

〈2ωD (u)− τ, ψ〉D′,D
= 〈∂tτ + u · ∇τ + τW (u)−W (u) τ, ψ〉D′,D
= We

[
−〈τ, ∂tψ + u · ∇ψ〉L2,L2 + 〈τW (u)−W (u) τ, ψ〉D′,D

]
We→0−→ 0.

Moreover,

〈2ωD (u)− τ, ψ〉D′,D
We→0−→

〈
2ωD

(
u0
)
− τ0, ψ

〉
D′,D ,

which yields at the limit, τ0 = 2ωD
(
u0
)
.

Let ϕσ ∈ C∞c ((0,∞);C∞,σc ). The strong convergence of the velocity �eld in L2
(
(0, T );L2

)
allows to pass to the weak limit in the nonlinear term u · ∇u. Hence, we can pass to the limit in
the momentum equation and get that u0 satis�es〈

∂tu
0 + u0 · ∇u0 − (1− ω)∆u0, ϕσ

〉
D′,D =

〈
τ0, ϕσ

〉
D′,D = ω

〈
∆u0, ϕσ

〉
D′,D .

It remains to apply De Rham's theorem (see for example [35] for a rigorous statement) to ensure
that u0 is a weak solution to the Navier-Stokes system (1.6).

Remark 1. We can pass to the limit in the inequality (1.3) assuming furthermore that
√
Weτ0

tends to zero in L2. Then using that τ0 = 2ωD(u0) and the obtained weak convergences, we get
the standard energy inequality related to the Navier-Stokes equations.

2.2. Strong convergence. Our goal is to give a proof of Theorem 1.3 stating the strong
convergence of the velocity �eld u and of the symmetric stress tensor τ of the �uid �ow solving
(1.1). Our modus operandi emphasizes in a simple case some features of the relative entropy
method used for the strong convergence in the FENE-P system.

To get the strong convergence, we expand u, p and τ in powers of We:

u ' u0 +Weu1, p ' p0 +Wep1, τ ' τ0 +Weτ1.

Very formal computations yield, as expected, that the lower order term u0 = u0(t, x) ∈ R3 should
solve the three-dimensional Navier-Stokes equation{

∂tu
0 + u0 · ∇u0 −∆u0 +∇p0 = 0

∇ · u0 = 0
, (2.2)
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and that the stress tensor

τ0 = 2ωD(u0). (2.3)

At �rst order in We, we expect u1 = u1(t, x) ∈ R3 and the symmetric tensor τ1 = τ1(t, x) ∈ R3 to
solve  ∂tu

1 + u0 · ∇u1 + u1 · ∇u0 − (1− ω)∆u1 +∇p1 = ∇ · τ1

∇ · u1 = 0
∂tτ

0 + u0 · ∇τ0 + τ0W (u0)−W (u0)τ0 + τ1 = 2ωD(u1)
. (2.4)

We aim at showing, �rst in the case of Ω = R3 that these expansions are in fact correct, as well
for well-prepared as for ill-prepared data τ0. The idea of the proof is classical and consists in using
the relative entropy of the viscoelastic system. We proceed in two steps for the proof: �rst we
show the well-posedness of system (2.4), then we prove a Gronwall type inequality on the relative
entropy.

2.2.1. On the necessity of the �rst-order correctors. The �rst-order correctors u1 and
τ1 are needed to achieve our estimates, although there are transparent in the �nal convergence
result (1.12). Indeed, if one stops the expansion of u and τ at order 0, we get the estimate:

ω
∥∥u(t, ·)− u0(t, ·)

∥∥2

L2 + 2ω(1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2 +
We

2
‖τ(t, ·)‖2L2

+

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥2

L2 ≤
We

2
‖τ0‖2L2 − 2ω

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇u0

)
·
(
u− u0

)
− 2ω

ˆ t

0

ˆ
R3

(τ − 2ωD(u)) : D(u0), (2.5)

which does not seem to allow to conclude. In fact, the natural idea would be to bound∣∣∣∣−2ω

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇u0

)
·
(
u− u0

)∣∣∣∣ ≤ 2ω

ˆ t

0

∥∥∇u0
∥∥
L∞

∥∥u− u0
∥∥2

L2 , (2.6)

and to split

− 2ω

ˆ t

0

ˆ
R3

(τ − 2ωD(u)) : D(u0) = −2ω

ˆ t

0

ˆ
R3

(
τ − 2ωD(u0)

)
: D(u0)

− 4ω2

ˆ t

0

ˆ
R3

(
D(u0)−D(u)

)
: D(u0). (2.7)

The term in the right hand side of (2.6) is nice since
∥∥∇u0

∥∥
L∞

is locally integrable in time and
can be dealt with using Gronwall's inequality. The annoying terms are the ones appearing in (2.7).
We can bound the latter by

2ω

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥
L2

∥∥D(u0)
∥∥
L2 + 4Cω2

ˆ t

0

∥∥∇ (u− u0
)∥∥
L2

∥∥D(u0)
∥∥
L2

≤ C
[
ν

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥2

L2 + ν

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2 +
1

ν

ˆ t

0

∥∥D(u0)
∥∥2

L2

]
and absorb some terms for ν small in the left hand side of (2.5). Yet, the term

1

ν

ˆ t

0

∥∥D(u0)
∥∥2

L2

remaining in the right hand side need not to be small in the limit We→ 0.
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2.2.2. Well-posedness of the pro�les. We carry out an Hm a priori estimate on (2.2) in
the same fashion as was done in [36] for the Euler system: there exists C > 0 such that, for m ≥ 3,
for all t su�ciently small,

1

2

∥∥u0(t, ·)
∥∥2

Hm +

ˆ t

0

∥∥∇u0(s, ·)
∥∥2

Hm ds ≤ 1

2

∥∥u0

∥∥2

Hm + C0

∥∥u0(t, ·)
∥∥3

Hm .

Hence, for all 0 < T < 1
C0‖u0‖Hm

=: T ∗,∥∥u0
∥∥
L∞((0,T );Hm)

≤ 1
1

‖u0‖Hm
− C0T

<∞. (2.8)

Therefore, there exists a global weak solution u0 ∈ C0
(
[0,∞);H−1

)
∩L∞

(
(0,∞);L2,σ

)
∩L2

(
(0,∞); Ḣ1

)
of (2.2), such that, for all 0 < T < T ∗, u0 ∈ L∞ ((0, T );Hm). This regularity for m = 4 is su�cient
for the rest of the computations. Note that an L2

(
(0, T );H4

)
bound on u0 is not enough to us,

so that we do not take advantage of the regularizing e�ect of (2.2) to weaken the assumption on
the initial data u0.

From (2.4), one retrieves

τ1 = 2ωD(u1)− ∂tτ0 − u0 · ∇τ0 − τ0W (u0) +W (u0)τ0, (2.9)

so that we can introduce it in the momentum equation at �rst order:{
∂tu

1 + u0 · ∇u1 + u1 · ∇u0 −∆u1 +∇p1 = f1

∇ · u1 = 0
. (2.10)

We complement (2.10) with the initial data u1(0, ·) = 0. Using the equation satis�ed by u0, the
source term may be written under the form

f1 := −∂t
(
∇ · τ0

)
−∇ ·

(
u0 · ∇τ0

)
−∇ ·

(
τ0W (u0)

)
+∇ ·

(
W (u0)τ0

)
= ω∆

(
u0 · ∇u0

)
− ω∆2u0 +∇∆p0 − 2ω∇ ·

(
u0 · ∇D(u0)

)
− 2ω∇ ·

(
D(u0)W (u0)

)
+ 2ω∇ ·

(
W (u0)D(u0)

)
= ω∆

(
u0 · ∇u0

)
− ω∆2u0 −∇∇ ·

(
u0 · ∇u0

)
− 2ω∇ ·

(
u0 · ∇D(u0)

)
− 2ω∇ ·

(
D(u0)W (u0)

)
+ 2ω∇ ·

(
W (u0)D(u0)

)
which is in L∞

(
(0, T );L2

)
. Straightforward energy estimates on (2.10) show that a sequence of

approximated solutions is bounded in L∞
(
(0, T );L2

)
∩L2

(
(0, T );H1

)
, which yields the existence

of a weak solution

u1 ∈ C0
(
[0, T );H−1

)
∩ L∞

(
(0, T );L2,σ

)
∩ L2

(
(0, T );H1

)
.

Using the regularity of u0, we get the extra estimate u1 ∈ L∞((0, T );H1). Hence, one deduces
from the latter, (2.9) and the equation satis�ed by u0, that τ1 ∈ L2

(
(0, T );L2

)
.

2.2.3. Weak strong estimate. We now turn to the estimation of the remainders

U (r) := u− u0 −Weu1 (2.11)

and τ − τ0. In order to carry out the computations below, we need the regularity on the pro�les
u0, u1, τ0 and τ1 we have assumed above. On the one hand

∂tU
(r) + U (r) · ∇u+ u0 · ∇U (r) − (1− ω)∆U (r) +∇

(
p− p0 −Wep1

)
= −We

(
u1 · ∇(u− u0)

)
+∇ ·

(
τ − τ0 −Weτ1

)
,

which yields

1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +

ˆ t

0

ˆ
R3

(
U (r) · ∇u

)
· U (r)

≤ −We

ˆ t

0

ˆ
R3

(
u1 · ∇(u− u0)

)
· U (r) −

ˆ t

0

ˆ
R3

(
τ − τ0 −Weτ1

)
: ∇U (r). (2.12)
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On the other hand

∂t(τ − τ0) + u · ∇(τ − τ0) +
τ − τ0

We
= −(u− u0) · ∇τ0 − (τ − τ0)W (u)− τ0

(
W (u)−W (u0)

)
+W (u)(τ − τ0) +

(
W (u)−W (u0)

)
τ0 + τ1 + 2ω

D
(
U (r)

)
We

,

which gives

1

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

We

ˆ t

0

∥∥τ − τ0
∥∥2

L2 =
1

2
‖τ0 − 2ωD (u0)‖2L2

+

ˆ t

0

ˆ
R3

τ1 :
(
τ − τ0

)
−
ˆ t

0

ˆ
R3

((
u− u0

)
· ∇τ0

)
:
(
τ − τ0

)
+

ˆ t

0

ˆ
R3

(
τ0W (u− u0)

)
: (τ − τ0) +

ˆ t

0

ˆ
R3

(
W (u0 − u)τ0

)
:
(
τ − τ0

)
+

2ω

We

ˆ t

0

ˆ
R3

∇U (r) :
(
τ − τ0

)
.

(2.13)

The linear combination 2ω(2.12)+We(2.13) gives the energy equality

ω
∥∥U (r)(t, ·)

∥∥2

L2 + 2ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +

ˆ t

0

∥∥τ − τ0
∥∥2

L2 (2.14)

≤ We

2
‖τ0 − 2ωD (u0)‖2L2 − 2ω

ˆ t

0

ˆ
R3

(
U (r) · ∇u

)
· U (r)

− 2ωWe

ˆ t

0

ˆ
R3

(
u1 · ∇(u− u0)

)
· U (r) +We

ˆ t

0

ˆ
R3

τ1 :
(
τ − τ0

)
−We

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇τ0

)
:
(
τ − τ0

)
+We

ˆ t

0

ˆ
R3

(
τ0W (u− u0)

)
: (τ − τ0)

+We

ˆ t

0

ˆ
R3

(
W (u0 − u)τ0

)
:
(
τ − τ0

)
+ 4ω2We

ˆ t

0

ˆ
R3

τ1 : ∇U (r)

=
We

2
‖τ0 − 2ωD (u0)‖2L2 +

ˆ t

0

(A + B + C + D + E + F + G) . (2.15)

We estimate each term of the right hand side of (2.15) separately. The goal is to split each
term into a part which is su�ciently small to be absorbed by the left hand side of (2.15), a part
which is controlled through a Gronwall type inequality and remainder terms of order O(We). Let
ν > 0. This parameter is going to be taken small independently of 0 < We < 1 in the sequel. We
have

|A| ≤ 2ω

∣∣∣∣ˆ
R3

(
U (r) · ∇u0

)
· U (r)

∣∣∣∣+ 2ωWe

∣∣∣∣ˆ
R3

(
U (r) · ∇u1

)
· U (r)

∣∣∣∣
≤ 2ω

∥∥U (r)
∥∥
L3

∥∥u0
∥∥
L6

∥∥∇U (r)
∥∥
L2 + 2ωWe

∥∥U (r)
∥∥
L3

∥∥u1
∥∥
L6

∥∥∇U (r)
∥∥
L2

≤ 2ων−
3
4

∥∥U (r)
∥∥ 1

2

L2

∥∥∇u0
∥∥
L2 ν

3
4

∥∥∇U (r)
∥∥ 3

2

L2 + 2ωWe
∥∥U (r)

∥∥ 1
2

L2

∥∥∇u1
∥∥
L2

∥∥∇U (r)
∥∥ 3

2

L2

≤ ω

2ν3

∥∥U (r)
∥∥2

L2

∥∥∇u0
∥∥4

L2 +
3ων

2

∥∥∇U (r)
∥∥2

L2

+
ω

2ν3
We
∥∥U (r)

∥∥2

L2

∥∥∇u1
∥∥4

L2 +
3ων

2
We
∥∥∇U (r)

∥∥2

L2 .
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The second term is of order O
(
We2

)
. Indeed,

|B| ≤ 2ωWe

∣∣∣∣ˆ
R3

(
u1 · ∇U (r)

)
· U (r)

∣∣∣∣+ 2ωWe2

∣∣∣∣ˆ
R3

(
u1 · ∇u1

)
· U (r)

∣∣∣∣
= 2ωWe2

∣∣∣∣ˆ
R3

(
u1 · ∇u1

)
· U (r)

∣∣∣∣
≤ 2ωWe2

∥∥u1
∥∥
L3

∥∥u1
∥∥
L6

∥∥∇U (r)
∥∥
L2 ≤ 2ωWe2

∥∥u1
∥∥ 1

2

L2

∥∥∇u1
∥∥ 3

2

L2

∥∥∇U (r)
∥∥
L2

≤ ω

ν
We2

∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2 + ωνWe2
∥∥∇U (r)

∥∥2

L2 .

The third term is estimated in a simple way

|C| ≤We
∥∥τ1
∥∥
L2

∥∥τ − τ0
∥∥
L2 ≤

We

2

∥∥τ1
∥∥2

L2 +
We

2

∥∥τ − τ0
∥∥2

L2 ;

so is the last term

|G| ≤ 2ω2

ν
We

∥∥τ1
∥∥2

L2 + 2ω2νWe
∥∥∇U (r)

∥∥2

L2 .

For the fourth term, we rely again on a convexity inequality

|D| ≤We

∣∣∣∣ˆ
R3

(
U (r) · ∇τ0

)
:
(
τ − τ0

)∣∣∣∣+We2

∣∣∣∣ˆ
R3

(
u1 · ∇τ0

)
:
(
τ − τ0

)∣∣∣∣
≤We

∥∥U (r)
∥∥
L2

∥∥∇τ0
∥∥
L∞

∥∥τ − τ0
∥∥
L2 +We2

∥∥u1 · ∇τ0
∥∥
L2

∥∥τ − τ0
∥∥
L2

≤ We

2

∥∥U (r)
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+
We

2

∥∥τ − τ0
∥∥2

L2

+
We2

2

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+
We2

2

∥∥τ − τ0
∥∥2

L2 .

The next two terms are treated analogously:

|E| ≤We

∣∣∣∣ˆ
R3

(
τ0W

(
U (r)

))
:
(
τ − τ0

)∣∣∣∣+We2

∣∣∣∣ˆ
R3

(
τ0W (u1)

)
:
(
τ − τ0

)∣∣∣∣
≤We

∥∥τ0
∥∥
L∞

∥∥∇U (r)
∥∥
L2

∥∥τ − τ0
∥∥
L2 +We2

∥∥τ0
∥∥
L∞

∥∥∇u1
∥∥
L2

∥∥τ − τ0
∥∥
L2

≤ Weν

2

∥∥τ0
∥∥2

L∞

∥∥∇U (r)
∥∥2

L2 +
We

2ν

∥∥τ − τ0
∥∥2

L2

+
We2

2

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2 +
We2

2

∥∥τ − τ0
∥∥
L2 ,

and the same type of estimate holds for F. We deduce from these estimates that there exists a
value of ν > 0, depending (among others) on ω and ‖u0‖H4(Ω), but not on We, such that for all
0 < We < 1,

ω
∥∥U (r)(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2

≤ We

2
‖τ0 − 2ωD (u0)‖2L2

+ Cν

ˆ t

0

(∥∥∇u0
∥∥4

L2 +We
∥∥∇τ0

∥∥2

L∞
+We

∥∥∇u1
∥∥4

L2 + 1
)(

ω
∥∥U (r)

∥∥2

L2 +
We

2

∥∥τ − τ0
∥∥
L2

)
+
ω

ν
We2

ˆ t

0

∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2 +
We

2

ˆ t

0

∥∥τ1
∥∥2

L2 (2.16)

+
We2

2

ˆ t

0

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+

2ω2

ν
We

ˆ t

0

∥∥τ1
∥∥2

L2 +
We2

2

ˆ t

0

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2 .
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The constant Cν depends on the choice of ν, on ω and again on ‖u0‖H4(Ω), but is independent
of We. Via Gronwall's lemma, we �nally manage to control a relative entropy associated to the
viscoelastic system (1.1): for all 0 ≤ t ≤ T < T ∗,

ω
∥∥U (r)(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2 (2.17)

≤We

[
1

2
‖τ0 − 2ωD (u0)‖2L2 +

ˆ t

0

(ω
ν
We

∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2

+
1

2

∥∥τ1
∥∥2

L2 +
We

2

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+
We2

2

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2

+
2ω2

ν

∥∥τ1
∥∥2

L2

)]
exp

(
t+ Cν

ˆ t

0

(∥∥∇u0
∥∥4

L2 +We
∥∥∇τ0

∥∥2

L∞
+We

∥∥∇u1
∥∥4

L2 + 1
))

.

This estimate shows the convergence statement (1.12) of Theorem 1.3 in the modulated energy
norm.

3. Low Weissenberg limit for a FENE-P type �uid. In this section, we focus on the
low Weissenberg limit for global weak solutions of (1.2) posed in a bounded domain Ω ⊂ Rd, in
the torus Ω = Td or in Rd.

The free energy (1.5) is the fundamental tool for the mathematical analysis of the FENE-P
system. It plays a role analogous to the energy (1.3) of the corotational system. However, due to
its non-trivial form, it leads to intricate computations.

Because of its importance, we recall the result of D. Hu and T. Lelièvre [17]

1

2
‖u(t, ·)‖2L2(Ω) + (1− ω)

ˆ t

0

‖∇u‖2L2(Ω)

+
ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA)− bln

(
1− Tr(A)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
‖u0‖2L2(Ω) +

ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA0)− bln

(
1− Tr(A0)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(3.1)

and give an outline of how this a priori estimate is derived. We work with regular solutions of
(1.2). The free energy estimate relies on the computation of the total time derivative of the left
hand side of (3.1) using the formula: for any invertible matrix M = M(t) depending smoothly on
t

(∂t + u · ∇) (ln detM) = Tr
(
M−1(∂t + u · ∇)M

)
. (3.2)

A simple energy estimate yields on the one hand,

1

2

∥∥u(t, ·)
∥∥
L2 + (1− ω)

ˆ t

0

∥∥∇u(t, ·)
∥∥
L2 = −

ˆ t

0

ˆ
Ω

τ : ∇u+
1

2

∥∥u0

∥∥
L2

= − 1

We

(b+ d)ω

b

ˆ t

0

ˆ
Ω

A : ∇u
1− TrA

b

+
1

2

∥∥u0

∥∥
L2 . (3.3)

On the other hand, using (3.2) and the equation on the structure tensor A, we have

−(∂t + u · ∇)ln (detA) =
1

We

d

1− TrA
b

− 1

We
Tr
(
A−1

)
,

−b(∂t + u · ∇)ln

(
1− TrA

b

)
=

2D(u) : A

1− TrA
b

− 1

We

TrA(
1− TrA

b

)2 +
1

We

d

1− TrA
b

,
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which boils down to

ˆ
Ω

[
−ln (detA)− bln

(
1− TrA

b

)
+ (b+ d)ln

(
b

b+ d

)]
(T ) =

ˆ t

0

ˆ
Ω

2D(u) : A

1− TrA
b

− 1

We

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

+

ˆ
Ω

[
−ln (detA0)− bln

(
1− TrA0

b

)
+ (b+ d)ln

(
b

b+ d

)]
(t). (3.4)

The estimate (3.1) is thus seen to hold thanks to the linear combination (3.3)+ 1
We

(b+d)ω
2b (3.4). This

proof actually serves as a model for our more complicated computations of the relative entropy
estimates below.

As for the asymptotic analysis of the corotational system, we �rst investigate the weak con-
vergence of u. In a second part, introducing corrector terms, we manage to prove the strong
convergence of u, A and τ . The strong convergence is the truly tricky point.

3.1. Weak convergence. LettingWe go to 0 in (1.2) yields formally that A converges toward

A0 :=
b

b+ d
I.

In the rest of this section we handle the proof of Proposition 1.2.
The convergence of A toward A0 comes directly from the entropy inequality (3.1). The main

observations, which lead to such a convergence result, are that the functionals

F : A 7−→ −ln (detA)− bln
(

1− TrA

b

)
+ (b+ d)ln

(
b

b+ d

)
(3.5)

H : A 7−→ TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
(3.6)

de�ned for appropriate symmetric positive de�nite matrices A with 0 < TrA < b,
• have a global minimum at A = A0 = b

b+dI with value 0,
• are globally strictly convex,

• and thus yield a bound on
∣∣A−A0

∣∣2.
Hence, one can use the decay of the free energy to prove the estimates (1.8), (1.10a) and (1.10b).
Notice that we also have the inequality 0 ≤ F ≤ H.

We conclude, using these properties and the decay of the free energy that for all t > 0,

0 ≤
ˆ

Ω

∣∣A−A0
∣∣2 (t) ≤ C

ˆ
Ω

[
−ln (detA)− bln

(
1− Tr(A)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(t)

≤ CWe ‖u0‖2L2(Ω)

+
ω(b+ d)

2b

ˆ
Ω

[
−ln (detA0)− bln

(
1− Tr(A0)

b

)
+ (b+ d)ln

(
b

b+ d

)]
.

(3.7)

and that

0 ≤
ˆ t

0

ˆ
Ω

∣∣A−A0
∣∣2

≤ C
ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
We2 ‖u0‖2L2(Ω)

+
ω(b+ 2)

2b
We

ˆ
Ω

[
−ln (detA0)− bln

(
1− Tr(A0)

b

)
+ (b+ d)ln

(
b

b+ d

)]
.

(3.8)
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The bounds (3.7) and (3.8) imply the estimates of Proposition 1.2.
It remains to establish the convergence of u and τ . Assume now that initial data is well-

prepared, i.e. that (1.9) is satis�ed. We deduce a uniform L2
(
(0,∞);L2

)
bound on τ from the

convergence of A. Indeed, let us rewrite τ in the following way:

τ =
(b+ d)ω

b

1

We

[
A

1− TrA
b

− I

]
=

(b+ d)ω

b

1

We

[
A−A0

1− TrA0

b

+A
TrA− TrA0

b
(
1− TrA0

b

) (
1− TrA

b

)] . (3.9)
The �rst term in the right hand side of (3.9)

1

We

A−A0

1− TrA0

b

is bounded in L2
(
(0,∞);L2

)
uniformly in We, thanks to the convergence result (1.10b) for well-

prepared data. For the second term, we notice that A is bounded in L∞ ((0,∞);L∞) by b and
that

(b+ d)ω

b

1

We

TrA− TrA0(
1− TrA0

b

) (
1− TrA

b

) =
(b+ d)ω

b

1

We

[
TrA

1− TrA
b

− TrA0

1− TrA0

b

]
= Trτ.

This part is bounded thanks to the decay of the free energy. Indeed, using the inequality

TrATr
(
A−1

)
≥ d2

valid for the positive de�nite matrices A, we �nd that the fourth term in the right hand side of
(3.1) bounds the L2

(
(0,∞);L2

)
norm of Trτ :

TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+ TrA−1 ≥ TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+
d2

TrA

≥
[
TrA− d

(
1− TrA

b

)]2
TrA

(
1− TrA

b

)2
≥
[
TrA− d

(
1− TrA

b

)]2
b
(
1− TrA

b

)2
=

1

b

[
TrA

1− TrA
b

− d

]2

≥ b

(b+ d)2ω2
We2 (Trτ)

2
. (3.10)

It remains to see the convergence of τ and u. Assume that d = 2, 3. From (3.1), it comes
that u is uniformly bounded in We in L∞

(
(0,∞);L2

)
and L2

(
(0,∞); Ḣ1

)
. Reasoning in the same

manner as in Section 2.1, we deduce from the uniform bound on τ in L2 ((0,∞)× Ω) the existence
of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
,

such that u converges to u0 in a fashion similar to (2.1). To see the weak convergence of τ , the
idea is to use the equation on A in the system (1.2):

τ = − (b+ d)ω

b

[
∂tA+∇ · (uA)−∇uA−A (∇u)

T
]
. (3.11)

The right hand side of (3.11) converges in the sense of distributions toward

− (b+ d)ω

b

[
∂tA

0 + u0 · ∇A0 − 2
b

b+ d
D
(
u0
)]

= 2ωD
(
u0
)
.

Finally, we can pass to the weak limit in the equation for u0, and get that u0 solves the Navier-
Stokes system (1.6).

Remark 2. Notice that if one further assumes (1.9) with o (We) instead of O (We), we can
prove that u0 satis�es the energy estimate associated to the Navier-Stokes system.
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3.2. Strong convergence. This section is devoted to the proof of our main convergence
result, namely Theorem 1.4. We aim at showing that u converges strongly toward u0 solving the
Navier-Stokes system, for su�ciently nice initial data. Let

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
be a global weak solution of the Navier-Stokes system (1.6), with no-slip boundary condition,
associated to the regular initial data u0 ∈ H4,σ (Ω). As in Section 2.2.2, there exists 0 < T ∗ ≤ ∞
independent of We such that u0, in addition, belongs to L∞

(
(0, T );H4

)
for all 0 < T < T ∗.

We follow the same steps as in the proof of the strong convergence for the corotational model
(cf. Section 2.2):

1. Thanks to formal computations we identify relevant corrector terms for u, A and τ .
2. From the entropy for the FENE-P system, we then derive a formula for the relative entropy.
3. We �nally show a Gronwall type estimate on the relative entropy.
This scheme proves more complicated due to the complex form of the free energy (3.1) associ-

ated to the FENE-P system in comparison to the simple energy estimate (1.3). From the analysis
carried out in Section 3.1, we already know that we have the following control

ω(b+ d)

2b

1

We

∥∥A(t, ·)−A0(t, ·)
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0
∥∥2

L2

≤ ω(b+ d)

2b

1

We

ˆ
Ω

[
−ln (detA)− bln

(
1− Tr(A)

b

)
+ (b+ d)ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]
.

However, as emphasized in the proof of the strong convergence for the corotational model, we
need to push the expansions of u, A and τ up to the order 1 in We, in order end up at a Gronwall
inequality with a small source term, of order O (We). This requires to handle the term

−
(
τ − τ0

)
: ∇
(
u− u0 −Weu1

)
(3.12)

coming from a weak strong energy estimate on the momentum equation. One of our main di�culties
is that for the FENE-P system the transport equation holds on the structure tensor A, not on the
stress tensor τ as in the corotational system (1.1), and that A and τ are related by a non-trivial
nonlinear relation. This accounts for the di�culty to extract the terms in (3.12) from our equations.

We face this issue by expanding the entropy (3.1) around the corrector A0 +WeA1. We thus
derive a new entropy, the relative entropy (3.17), for the FENE-P system, relevant to the study
of the low Weissenberg asymptotics. Notice that expanding the entropy around A0 rather than
around A0 +WeA1 would not be enough.

The expansion of the relative entropy in terms of We makes it possible to underline the
correspondence between the corotational and the FENE-P systems. Roughly speaking, our leading
idea is that the terms at main order O(1) in We can be handled similarly in both cases. The other
terms are remainder terms, which are shown to be small and hence do not make a di�erence at
the limit.

3.2.1. Formal computation of the corrector terms. We simply rewrite the FENE-P
system in terms of Π(A) := A

1−TrA
b

− I:
∂tu+ u · ∇u− (1− ω)∆u+∇p = (b+d)ω

b
1
We∇ ·Π(A)

∇ · u = 0

∂tA+ u · ∇A−∇uA−A (∇u)
T

+ 1
WeΠ(A) = 0

τ = (b+d)ω
b

1
WeΠ(A)

. (3.13)

As for the corotational system, we begin with the formal computation of the corrector terms. Let
us assume that

u ' u0 +Weu1, p ' p0 +Wep1, A ' A0 +WeA1 +We2A2.
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Expanding Π near A0 yields:

Π(A0 +H) = Π(A0) + (DΠ)(A0)H +
1

2
(D2Π)(A0)(H,H) +O(H3).

Hence, one infers

Π(A0 +WeA1 +We2A2) =
A0

1− TrA0

b

− I

+We

[
A0TrA1

b
(
1− TrA0

b

)2 +
A1

1− TrA0

b

]

+We2

[
A0TrA2

b
(
1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(
1− TrA0

b

)3 +
A1TrA1

2b
(
1− TrA0

b

)2
]

+O
(
We3

)
.

Plugging the ansatz in the momentum equation, we get that u0 solves the Navier-Stokes system
(1.6), and at �rst order in We that u1 solves

∂tu
1 + u0 · ∇u1 + u1 · ∇u0 − (1− ω)∆u1 +∇p1

=
(b+ d)ω

b
∇ ·

[
A0TrA2

b
(
1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(
1− TrA0

b

)3 +
A1TrA1

2b
(
1− TrA0

b

)2
]
.

Note that both u0 and u1 are incompressible �elds, and meet the no-slip boundary condition on
∂Ω. We impose the initial condition u1(0, ·) = 0.

Plugging now the ansatz in the equation on the structure tensor A and identifying the orders
in We leads to

A0

1− TrA0

b

− I = 0,

∂tA
0 + u0 · ∇A0 −∇u0A0 −A0

(
∇u0

)T
+

A0TrA1

b
(
1− TrA0

b

)2 +
A1

1− TrA0

b

= 0,

∂tA
1 + u0 · ∇A1 + u1 · ∇A0 −∇u1A0 −∇u0A1 −A1

(
∇u0

)T −A0
(
∇u1

)T
+

A0TrA2

b
(
1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(
1− TrA0

b

)3 +
A1TrA1

2b
(
1− TrA0

b

)2 = 0,

from which we retrieve

A0 =
b

b+ d
I,

A1 = 2

(
b

b+ d

)2

D(u0) and TrA1 = 0,

T rA2 = 4

(
b

b+ d

)4

D(u0) : D(u0).

(3.14)

Letting

τ1 :=
(b+ d)ω

b

[
A0TrA2

b
(
1− TrA0

b

)2 +
A2

1− TrA0

b

]
,

we notice that

∂tA
1 + u0 · ∇A1 −∇u1A0 −A0

(
∇u1

)T −∇u0A1 −A1
(
∇u0

)T
+

b

ω(b+ d)
τ1 = 0. (3.15)

18



Remark 3 (Analogy with the corotational system). Again, there are some similarities between
the correctors τ0 for the corotational system, and A1 for the FENE-P system. The equation (2.4)
for τ0 and the equation (3.15) have an analogous structure, and A1 and τ0 are equal up to a
constant. This parallel is a leitmotiv of our further computations.

Remark 4 (On the regularity of the corrector terms). Let us say some words about the
regularity of the pro�les. We argue exactly as in Section 2.2.2. As soon as u0 ∈ H4(Ω), we get
that

u0 ∈ L∞
(
(0, T );H4

)
,

u1 ∈ L∞
(
(0, T );H1

)
,

A1 ∈ L∞
(
(0, T );H3

)
⊂ L∞ ((0, T )× Ω) ,

τ0 ∈ L∞
(
(0, T );H3

)
,

τ1 ∈ L2
(
(0, T );L2

)
.

(3.16)

Remark 5 (On the de�nite positivity of the correctors). The �rst-order corrector A0 is
evidently de�nite positive. For We su�ciently small, this happens to be also the case for A0 +
WeA1, uniformly in t and x. This follows from the fact that D(u0) belongs to L∞ ((0, T )× Ω).

3.2.2. Relative entropy: expansion of the free energy at �rst-order.

Expansion of F . Let us consider

F̃ : A 7−→ F(A)−F
(
A0 +WeA1

)
−DF

(
A0 +WeA1

) (
A−A0 −WeA1

)
,

where F is de�ned by (3.5). Expanding F by the Taylor formula yields

−ln (det(B +H)) = −ln(det(B))− Tr
(
B−1H

)
+O

(
H2
)
,

−bln
(

1− Tr(B +H)

b

)
= −bln

(
1− TrB

b

)
+

TrH

1− TrB
b

+O
(
H2
)
,

F(B +H) = F(B)− Tr
(
B−1H

)
+

TrH

1− TrB
b

+O(H2).

Therefore,

F̃(A) = −ln(det(A))− bln
(

1− TrA

b

)
+ ln

(
det(A0 +WeA1)

)
+ bln

(
1−

Tr
(
A0 +WeA1

)
b

)

+ Tr
((
A0 +WeA1

)−1 (
A−A0 −WeA1

))
−
Tr
(
A−A0 −WeA1

)
1− TrA0

b

.

The positivity of the Hessian matrix and the Taylor formula with integral rest at order 1

F(A) = F
(
A0 +WeA1

)
+DF

(
A0 +WeA1

) (
A−A0 −WeA1

)
+

ˆ 1

0

(1− t)D2F
(
A0 +WeA1 + t

(
A−A0 −WeA1

)) (
A−A0 −WeA1

)2
dt

shows that F̃(A) is positive and bounds |A−A0 −WeA1|2.
Expansion of H. In the same fashion, we consider

H̃ : A 7−→ H(A)−H
(
A0 +WeA1

)
−DH

(
A0 −WeA1

) (
A−A0 −WeA1

)
.

where H is de�ned by (3.6). Expanding H by the Taylor formula yields

Tr(B +H)(
1− Tr(B+H)

b

)2 =
TrB(

1− TrB
b

)2 +
1(

1− TrB
b

)2
[

1 +
2TrB

b
(
1− TrB

b

)]TrH +O
(
H2
)
,

− 2d

1− Tr(B+H)
b

= − 2d

1− TrB
b

− 2dTrH

b
(
1− TrB

b

)2 +O
(
H2
)
,

T r
(
(B +H)−1

)
= Tr

(
B−1

)
− Tr

(
H

B2

)
+O

(
H2
)
,
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so that

H̃(A) =
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
−

Tr
(
A0 +WeA1

)(
1− Tr(A0+WeA1)

b

)2 +
2d

1− Tr(A0+WeA1)
b

− Tr
((
A0 +WeA1

)−1
)

− 1(
1− Tr(A0+WeA1)

b

)2

1 +
2Tr

(
A0 +WeA1

)
b
(

1− Tr(A0+WeA1)
b

)
Tr (A−A0 −WeA1

)

+
2dTr

(
A−A0 −WeA1

)
b
(

1− Tr(A0+WeA1)
b

)2 + Tr

(
A−A0 −WeA1

(A0 +WeA1)
2

)

=
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
− TrA0(

1− TrA0

b

)2 +
2d

1− TrA0

b

− Tr
((
A0 +WeA1

)−1
)

−
Tr
(
A−A0 −WeA1

)(
1− TrA0

b

)2 + Tr

(
A−A0 −WeA1

(A0 +WeA1)
2

)
.

The positivity of the Hessian matrix and the Taylor formula with integral rest at order 1

H(A) = H
(
A0 +WeA1

)
+DH

(
A0 +WeA1

) (
A−A0 −WeA1

)
+

ˆ 1

0

(1− t)D2H
(
A0 +WeA1 + t

(
A−A0 −WeA1

)) (
A−A0 −WeA1

)2
dt

shows that H̃(A) is positive and bounds |A−A0 −WeA1|2.
These remarks lead us to consider the quantity

E(t) :=
1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

+
ω(b+ d)

2b

1

We

ˆ
Ω

F̃(A)(t, ·) +
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

H̃(A). (3.17)

We call it the relative entropy of our system. Its role is analogous to the relative entropy (2.17)
for the corotational system.

3.2.3. Estimate of the relative entropy. To put it in a nutshell, our purpose is to establish
a Gronwall type inequality on

D :=
1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

+
ω(b+ d)

2b

1

We

∥∥A−A0 −WeA1
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2 ,

for d = 2, 3. This latter quantity is, of course, smaller than the relative entropy: D ≤ CE. Roughly
speaking, the Gronwall inequality should look like

D ≤ E(0) +

ˆ t

0

C(s)D(s)ds+O(We), (3.18)

where s 7→ C(s) is a positive and locally bounded function. Notice that this is exactly what we did
for the corotational system: see in particular (2.16). If we manage to prove (3.18), we can expect
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to get the following bounds: ∥∥u− u0
∥∥
L2((0,T );H1)

= O
(√

We
)
, (3.19)∥∥A−A0

∥∥
L∞((0,T );L2)

= O (We) , (3.20)∥∥A−A0 −WeA1
∥∥
L2((0,T );L2)

= O
(
We3/2

)
, (3.21)

provided that E(0) = O(We) (well-prepared initial data for u and A). Moreover, improving the
bound on A − A0 −WeA1 yields a better bound on τ − τ0 in L1. This is a consequence of the
formulas

τ − τ0 =
(b+ d)ω

b

1

We
Π(A)− 2ωD(u0)

=
(b+ d)ω

b

1

We

[
A−A0 −WeA1

1− TrA0

b

+A
TrA− TrA0 −WeTrA1

b
(
1− TrA0

b

) (
1− TrA

b

) ] . (3.22a)

and

1

We
A
TrA− TrA0 −WeTrA1

b
(
1− TrA0

b

) (
1− TrA

b

)
=

1

We

(
A

1− TrA
b

− I + I

)
TrA− TrA0 −WeTrA1

b
(
1− TrA0

b

)
=

1

We

(
A

1− TrA
b

− I

)
TrA− TrA0 −WeTrA1

b
(
1− TrA0

b

) +
1

We

TrA− TrA0 −WeTrA1

b
(
1− TrA0

b

) . (3.22b)

In order to establish a Gronwall type estimate on D, we compute each of the terms appearing
in (3.17). The two �rst terms can be handle thanks to an energy estimate on the momentum
equation. We have

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,
∂tu

0 + u · ∇u0 − (1− ω)∆u0 +∇p0 = ∇ · τ0 +
(
u− u0

)
· ∇u0,

∂tu
1 + u · ∇u1 − (1− ω)∆u1 +∇p1 = ∇ · τ1 +

(
u− u0

)
· ∇u1 − u1 · ∇u0,

which yields

(∂t + u · ∇)
(
u− u0 −Weu1

)
− (1− ω)∆

(
u− u0 −Weu1

)
+∇

(
p− p0 −Wep1

)
= ∇ ·

(
τ − τ0 −Weτ1

)
−
(
u− u0 −Weu1

)
· ∇u0 −We

(
u− u0

)
· ∇u1. (3.23)

Testing the equation (3.23) against U (r) := u − u0 −Weu1, yields the estimate of the following
lemma.

Lemma 3.1. We have the energy estimate

1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

= −
ˆ t

0

ˆ
Ω

(
τ − τ0 −Weτ1

)
: ∇U (r) −

ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

−We

ˆ t

0

ˆ
Ω

((
u− u0

)
· ∇u1

)
· U (r). (3.24)

We split the right hand side of (3.24) into terms which are of order O (We)

−We

ˆ t

0

ˆ
Ω

τ0 : ∇u1, We

ˆ t

0

ˆ
Ω

τ1 : ∇U (r), We

ˆ t

0

ˆ
Ω

τ : ∇u1,

−We

ˆ t

0

ˆ
Ω

((
u− u0

)
· ∇u1

)
· U (r),
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a term which allows to close the Gronwall estimate

−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

and other terms

−
ˆ t

0

ˆ
Ω

τ : ∇u, −
ˆ t

0

ˆ
Ω

τ0 : ∇u0,

ˆ t

0

ˆ
Ω

τ : ∇u0,

ˆ t

0

ˆ
Ω

τ0 : ∇u, (3.25)

which need not be small. Luckily enough, we manage to show that the latter terms do not appear
in the �nal estimate of the relative entropy.

We now state and prove three key lemmas showing that the terms of the relative entropy
involving F̃(A) and H̃(A) cancel the terms in (3.25). From the proof of the entropy estimate (3.1),

we already know that this holds for the term −
´ t

0

´
Ω
τ : ∇u.

Lemma 3.2. We have

ω(b+ d)

2b

1

We

[ˆ
Ω

F(A) +
1

We

ˆ t

0

ˆ
Ω

H(A)

]
=
ω(b+ d)

2b

1

We

ˆ
Ω

F(A)

∣∣∣∣
t=0

+

ˆ t

0

ˆ
Ω

τ : ∇u. (3.26)

The next lemma indicates how to get rid of the term −
´ t

0

´
Ω
τ0 : ∇u0:

Lemma 3.3. We have

− ω(b+ d)

2b

1

We

[ˆ
Ω

F
(
A0 +WeA1

)
+

1

We

ˆ t

0

ˆ
Ω

H
(
A0 +WeA1

)]
= −ω(b+ d)

2b

1

We

ˆ
Ω

F
(
A0 +WeA1

)∣∣∣∣
t=0

−
ˆ t

0

ˆ
Ω

τ0 : ∇u0 +O (We) . (3.27)

Let us notice that the sign of −
´ t

0

´
Ω
τ0 : ∇u0 is precisely opposite to the sign we would like

in order to kill −
´ t

0

´
Ω
τ0 : ∇u0 (cf. (3.25)). However, we will see (cf. Lemma 3.4), that the term

− 1

We2

ω(b+ d)

2b

ˆ t

0

ˆ
Ω

DH
(
A0 +WeA1

) (
A−A0 −WeA1

)
.

adds the quantity 2
´ t

0

´
Ω
τ0 : ∇u0, so that we will recover what we wish.

Proof. [Proof of Lemma 3.3] The proof consists merely in a computation of the total time
derivative ∂t + u · ∇ of the left hand side of (3.27). Note that we often use the fact that
Tr
(
(∂t + u · ∇)A1

)
= 0. Expanding in powers of We, we get

− (∂t + u · ∇)F
(
A0 +WeA1

)
− 1

We
H
(
A0 +WeA1

)
= WeTr

((
A0 +WeA1

)−1
(∂t + u · ∇)A1

)
− 1

We

[
TrA0(

1− TrA0

b

)2 − 2d

1− TrA0

b

+ Tr
((
A0 +WeA1

)−1
)]

= −WeTr

((
A1
)2

(A0)
3

)
+We2

[ ∞∑
k=1

(−1)kWek−1Tr

( (
A1
)k

(A0)
k+1

(∂t + u · ∇)A1

)

−
∞∑
k=3

Wek−3(−1)kTr

( (
A1
)k

(A0)
k+1

)]
.

We focus on the term of order We. It follows from the expression (3.14) of A1 that

−ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A1
)2

(A0)
3

)
= −τ0 : D

(
u0
)
.
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Therefore (3.27) holds with a remainder term equal to

ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

[ ∞∑
k=1

(−1)kWek−1Tr

( (
A1
)k

(A0)
k+1

(∂t + u · ∇)A1

)

−
∞∑
k=3

Wek−3(−1)kTr

( (
A1
)k

(A0)
k+1

)]
= O (We) ,

(3.28)

which concludes the proof of the lemma.

Remark 6 (On the remainder term). The notation O (We) in (3.27) hides the structure of
the remainder term. The term

ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

∞∑
k=1

(−1)kWek−1Tr

( (
A1
)k

(A0)
k+1

(∂t + u · ∇)A1

)

in (3.28) involves u. One can rely on the standard splitting of the total time derivative

∂t + u · ∇ = ∂t + u0 · ∇+
(
u− u0 −Weu1

)
· ∇+Weu1 · ∇, (3.29)

and estimate the term∣∣∣∣∣ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

∞∑
k=1

(−1)kWek−1Tr

( (
A1
)k

(A0)
k+1

(
u− u0 −Weu1

)
· ∇A1

)∣∣∣∣∣
≤ ω(b+ d)

4b
We

 ∞∑
k=1

Wek−1

ˆ t

0

ˆ
Ω

∣∣∣∣∣
(
A1
)k

(A0)
k+1

∣∣∣∣∣
2

+

∞∑
k=1

Wek−1

ˆ t

0

ˆ
Ω

∣∣(u− u0 −Weu1
)
· ∇A1

∣∣2 .
Then the �rst term in the right hand side above is O (We), and the second term can be absorbed

in
´ t

0
C(s)D(s)ds (see the Gronwall inequality (3.18)).

Remark 7 (On the convergence of the in�nite series). Using the regularity statements (3.16)
and the identity (3.29), we notice that

(∂t + u · ∇)A1 ∈ L2 ((0, T )× Ω) ,

so that for all k ≥ 1,

ˆ t

0

ˆ
Ω

∣∣∣∣∣(−1)kWek−1Tr

( (
A1
)k

(A0)
k+1

(∂t + u · ∇)A1

)∣∣∣∣∣
≤Wek−1

(
b+ d

b

)k+1(ˆ t

0

ˆ
Ω

∣∣A1
∣∣2k) 1

2 ∥∥(∂t + u · ∇)A1
∥∥
L2((0,T )×Ω)

≤Wek−1

(
b+ d

b

)k+1 ∥∥A1
∥∥k
L∞((0,T );H3)

∥∥(∂t + u · ∇)A1
∥∥
L2((0,T )×Ω)

.

Thus, the series converges for We su�ciently small, i.e.

0 < We <
b

b+ d

1

‖A1‖L∞((0,T );H3)

.

We �nally show that the crossed terms
´ t

0

´
Ω
τ : ∇u0 and

´ t
0

´
Ω
τ0 : ∇u can be recovered thanks

to the �rst-order terms in the Taylor expansion of F and H around A0 +WeA1. This emphasizes
the importance of pushing the Taylor expansion of F and H up to the order 1.
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Lemma 3.4. We have

− ω(b+ d)

2b

1

We

[ˆ
Ω

DF
(
A0 +WeA1

) (
A−A0 −WeA1

)
+

1

We

ˆ t

0

ˆ
Ω

DH
(
A0 +WeA1

) (
A−A0 −WeA1

)]
= −ω(b+ d)

2b

1

We

ˆ
Ω

DF
(
A0 +WeA1

) (
A−A0 −WeA1

)∣∣∣∣
t=0

−
ˆ t

0

ˆ
Ω

[
τ : ∇u0 + τ0 : ∇u

]
+ 2

ˆ t

0

ˆ
Ω

τ0 : ∇u0

− ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u · ∇)A1

(A0)
2

(
A−A0 −WeA1

))

+
2(b+ d)

b2

ˆ t

0

ˆ
Ω

Tr
(
A−A0 −WeA1

)
τ : ∇u0

+
3ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A−A0 −WeA1

) (A1
)2

(A0)
4

)
+O (We) .

(3.30)

Again, the proof relies on a computation of the total time derivative of the left hand side of
(3.30) and on expansions in We. The computations, however, are much more heavy than in the
preceding lemma. We shall see that the terms of order O

(
We0

)
in

− (∂t + u · ∇)DF
(
A0 +WeA1

) (
A−A0 −WeA1

)
− 1

We

ˆ
Ω

DH
(
A0 +WeA1

) (
A−A0 −WeA1

)
compensate each other, which is not a surprise as DF

(
A0
)

= DH
(
A0
)

= 0. The crucial terms
appear at order O (We). The fundamental trick we use in order to highlight the crossed terms´ t

0

´
Ω
τ : ∇u0 and

´ t
0

´
Ω
τ0 : ∇u is to express A in terms of τ and TrA:

A =

(
1− TrA

b

)[
We

b

(b+ d)ω
τ + I

]
. (3.31)

This is somewhat reminiscent of the change of variable A = We
ω τ + I for the corotational and

Oldroyd-B systems (see [17]). Thanks to (3.31), we get

(∂t + u · ∇)A = ∇uA+A (∇u)
T − b

(b+ d)ω
τ

= 2

(
1− TrA

b

)
D(u)− b

(b+ d)ω
τ +We

b

(b+ d)ω

(
1− TrA

b

)[
∇uτ + τ (∇u)

T
]
.

(3.32)

Moreover, we split the term

2

(
1− TrA

b

)
D(u) = 2

(
1− TrA0

b

)
D(u)− 2

Tr
(
A−A0 −WeA1

)
b

D(u),

so that

(∂t + u · ∇)A =
b

(b+ d)ω
(2ωD(u)− τ)

− 2
Tr
(
A−A0 −WeA1

)
b

D(u) +We
b

(b+ d)ω

(
1− TrA

b

)[
∇uτ + τ (∇u)

T
]
. (3.33)

24



Proof. [Proof of Lemma 3.4] The proof consists in the calculation of

− (∂t + u · ∇)DF
(
A0 +WeA1

) (
A−A0 −WeA1

)
(3.34)

− 1

We

ˆ
Ω

DH
(
A0 +WeA1

) (
A−A0 −WeA1

)
(3.35)

We expand this quantity in terms of We. As expounded above, we are especially interested in the
terms of order 1. For these terms, we use the change of variable (3.31) in a decisive way. All the
terms of order We2 or more are put in the remainder. In the sequel, we �rst compute (3.34), then
(3.35).
• We begin with the computation of (3.34):

− (∂t + u · ∇)DF
(
A0 +WeA1

) (
A−A0 −WeA1

)
= −WeTr

(
(∂t + u · ∇)A1

(A0 +WeA1)
2

(
A−A0 −WeA1

))
(3.36a)

+ Tr
((
A0 +WeA1

)−1
(∂t + u · ∇)

(
A−A0 −WeA1

))
(3.36b)

−
Tr
(
(∂t + u · ∇)

(
A−A0 −WeA1

))
1− TrA0

b

(3.36c)

We now look closely at the two �rst terms appearing in the right hand side above.
B Term (3.36a):

−WeTr

(
(∂t + u · ∇)A1

(A0 +WeA1)
2

(
A−A0 −WeA1

))

= −WeTr

(
(∂t + u · ∇)A1

(A0)
2

(
A−A0 −WeA1

))

−We2
∞∑
k=1

(−1)k(k + 1)Wek−1Tr

(
(∂t + u · ∇)A1

(A0)
2

(
A1

A0

)k (
A−A0 −WeA1

))
. (3.37)

B Term (3.36b):

Tr
((
A0 +WeA1

)−1
(∂t + u · ∇)

(
A−A0 −WeA1

))
= Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

)
A0

)

−WeTr

(
(∂t + u · ∇)A

(A0)
2 A1

)

+We2

[ ∞∑
k=2

(−1)kWek−2Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

) (A1
)k

(A0)
k+1

)
(3.38)

+Tr

(
(∂t + u · ∇)A1

(A0)
2 A1

)]
.

Adding the terms of order We0 in (3.36), we already see that

Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

)
A0

)
−
Tr
(
(∂t + u · ∇)

(
A−A0 −WeA1

))
1− TrA0

b

= 0,

which means that the zeroth-order term vanishes.
At the order O (We) in (3.36), we have the terms

− Tr

(
(∂t + u · ∇)A1

(A0)
2

(
A−A0 −WeA1

))
− Tr

(
(∂t + u · ∇)A

(A0)
2 A1

)
. (3.39)
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We concentrate on the second term in (3.39). We rely on the identity (3.33):

−Tr

(
(∂t + u · ∇)A

(A0)
2 A1

)
= − b

(b+ d)ω
Tr

(
2ωD(u)− τ

(A0)
2 A1

)

+ 2
Tr
(
A−A0 −WeA1

)
b

Tr

(
D(u)

(A0)
2A

1

)

−We
b

(b+ d)ω

(
1− TrA

b

)
Tr

(
∇uτ + τ (∇u)

T

(A0)
2 A1

)

Notice that

− b

(b+ d)ω
Tr

(
2ωD(u)− τ

(A0)
2 A1

)
=

2b

(b+ d)ω
(τ − 2ωD(u)) : D

(
u0
)

=
2b

(b+ d)ω

[
τ : ∇u0 − τ0 : ∇u

]
,

which contains some of the crossed terms appearing in (3.30), though not with the right sign for
τ : ∇u0. The analysis of (3.35) makes it possible to recover all the crossed terms of (3.30).
• Let us now expand (3.35) in powers of We:

− 1

We
DH

(
A0 +WeA1

) (
A−A0 −WeA1

)
= − 1

We

Tr
(
A−A0 −WeA1

)(
1− TrA0

b

)2 +
1

We
Tr

(
A−A0 −WeA1

(A0 +WeA1)
2

)

= −2Tr

((
A−A0 −WeA1

) A1

(A0)
3

)

+ 3WeTr

((
A−A0 −WeA1

) (A1
)2

(A0)
4

)

+We2
∞∑
k=3

(−1)k(k + 1)Wek−3Tr

((
A−A0 −WeA1

) (A1
)k

(A0)
k+2

)
. (3.40)

Yet, thanks to (3.31)

−2Tr

((
A−A0 −WeA1

) A1

(A0)
3

)
= −2Tr

(
AA1

(A0)
3

)
+ 2WeTr

((
A1
)2

(A0)
3

)
.

On the one hand,

− 2Tr

(
AA1

(A0)
3

)

= −4We

(
1− TrA

b

)
1

ω
τ : D

(
u0
)

= −4We
b

(b+ d)ω
τ : ∇u0 + 4We

Tr
(
A−A0 −WeA1

)
ωb

τ : ∇u0,

and on the other hand

2WeTr

((
A1
)2

(A0)
3

)
=

4b

ω(b+ d)
Weτ0 : ∇u0.
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We conclude that (3.30) holds. Notice that one uses ideas similar to those of the remark 6 in order
to see that the remainder terms (3.37), (3.38) and (3.40) are indeed of order O (We). To ascertain
the convergence of the in�nite series, one argues as in the remark 7.

Gathering the estimates of the lemmas 3.2, 3.3 and 3.4, we end up at the following estimate
of the relative entropy: there exists C > 0 such that for all 0 < We < 1,

CE(t) ≤ E(0)−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

− ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u · ∇)A1

(A0)
2

(
A−A0 −WeA1

))
(3.41a)

+
2(b+ d)

b2

ˆ t

0

ˆ
Ω

Tr
(
A−A0 −WeA1

)
τ : ∇u0 (3.41b)

+
3ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A−A0 −WeA1

) (A1
)2

(A0)
4

)
(3.41c)

+O (We) .

We proceed for the term

−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

exactly as we did for A in (2.15), while proving the strong convergence of the corotational system.
In dimension d = 3, for instance, we bound for all ν > 0∣∣∣∣ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

∣∣∣∣ ≤ 1

4ν3

ˆ t

0

∥∥∇u0
∥∥4

L2(Ω)

∥∥U (r)
∥∥2

L2(Ω)
+

3ν

4

ˆ t

0

∥∥∇U (r)
∥∥2

L2(Ω)
,

so that for ν su�ciently small independent of We, we can absorb the second term in the left hand
side of (3.41).

Remark 8 (On the dimension). Notice that this is the only step of our proof which is dependent
on the dimension. In particular the computations of lemmas 3.2, 3.3 and 3.4 can be carried out
for every d ≥ 2.

For (3.41a), we �rst split the total time derivative according to (3.29). We then estimate∣∣∣∣∣ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u0 · ∇)A1

(A0)
2

(
A−A0 −WeA1

))∣∣∣∣∣
≤ ω(b+ d)

4b

We2

ν

ˆ t

0

ˆ
Ω

∣∣∣∣∣ (∂t + u0 · ∇)A1

(A0)
2

∣∣∣∣∣
2

+
ω(b+ d)

4b

ν

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)
(3.42)

and absorb the second term in (3.42) in the left hand side for ν small enough independently of We
(see the Gronwall inequality (3.18)). Moreover,∣∣∣∣∣ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
u− u0 −Weu1

)
· ∇A1

(A0)
2

(
A−A0 −WeA1

))∣∣∣∣∣
≤ ω(b+ d)

4b

We2

ν

ˆ t

0

ˆ
Ω

∣∣∣∣∣
(
u− u0 −Weu1

)
· ∇A1

(A0)
2

∣∣∣∣∣
2

+
ω(b+ d)

4b

ν

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)
,

(3.43)

so that we absorb the second term in (3.43) in the left hand side of the Gronwall inequality, and

absorb the �rst one in the integral term
´ t

0
C(s)D(s)ds. The term

We
ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
u1 · ∇A1

(A0)
2

(
A−A0 −WeA1

))
= O (We)

27



is put in the remainder. We handle the terms (3.41b) and (3.41c) similarly.

Finally, we conclude that the Gronwall inequality (3.18) on D is true:

D ≤ E(0) +

ˆ t

0

C(s)D(s)ds+O(We), (3.44)

We do not make the function s 7→ C(s) explicit. Note that it may depend on b, ω, u0, u1, but not
on We. Moreover, as stated above, it is positive, and locally bounded. Let T ∗ be the supremum,
which may be in�nite, of the times T such that

sup
0≤t<T

ˆ t

0

C(s)ds <∞.

We infer from (3.44) that for all T > 0, for all 0 ≤ t < T ,

0 ≤ D(t) ≤ [E(0) +O (We)] exp

(
t+

ˆ t

0

C(s)ds
)
.

This, along with (3.22a) and (3.22b), implies the estimates (1.15) and �nishes the proof of Theorem
1.4.

3.3. Final remarks.

On the Giesekus and PTT models. In the paper [26], N. Masmoudi addresses the existence of
weak solutions for two other systems, namely the Giesekus model and the Phan-Thien and Tannes
(PTT) model. These models are quite similar, so we just give some indications for Giesekus's. The
non-dimensional equation on the stress tensor reads

∂tτ + u · ∇τ −∇uτ − τ (∇u)
T

+ ατ2 +
1

We
τ =

2ω

We
D(u) (3.45)

with α > 0. As usually, we can rewrite the equation (3.45) in terms of the positive de�nite matrix
A := I + We

ω τ :

∂tA+ u · ∇A−∇uA−A (∇u)
T

+
αω2

We2
(A− I)2 +

ω

We2
(A− I) = 0. (3.46)

Computing,

(∂t + u · ∇) (detA)
1
d = − αω

2

We2

1

d
(detA)

1
d Tr

(
A−1(A− I)2

)
− ω

We2

1

d
(detA)

1
d Tr

(
A−1(A− I)

)
≥ ω

We2
(detA)

1
d

(
Tr
(
A−1

)
d

− 1

)
≥ ω

We2

(
1− (detA)

1
d

)
,

we infer that the property detA ≥ 1 is propagated in time, so that TrA ≥ d i.e. Trτ ≥ 0. Assume
now that detA0 ≥ 1. Then, we have the following free energy decay in time

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

2We

ˆ
Ω

Trτ(t, ·) +
ω

2We

ˆ t

0

ˆ
Ω

(
α|τ |2 +

1

We
Trτ

)
≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

2We

ˆ
Ω

Trτ0.

(3.47)

One immmediately deduces a L2 ((0, T )× Ω) bound on τ .
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We formally see that τ (resp. A) tends to 2ωD
(
u0
)
(resp. I), when We→ 0. To address the

asymptotics, one works with the entropy expressed in terms of A

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

2We

ˆ
Ω

[TrA(t, ·)− d] +
ω2

2We3

ˆ t

0

ˆ
Ω

[
αω|A− I|2 + TrA− d

]
≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

2We

ˆ
Ω

(TrA0 − d) .

(3.48)

As in the FENE-P case, one builds corrector terms of u, A and τ . Evidently, u0 is the solution
of the Navier-Stokes system with no-slip boundary condition and initial data equal to u0, A

0 := I
and τ0 := 2ωD

(
u0
)
. One derives a formula for the relative entropy by expanding the free energy

(3.48) around A0 +WeA1. The fundamental remark is that A 7→ |A− I|2 is globally convex. The
computations are far more simple than for the FENE-P system and lead to the convergence in the
relative entropy norm

sup
t∈[0,T ]

(
1

2

∥∥u− u0 −Weu1
∥∥2

L2(Ω)
+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇ (u− u0 −Weu1
)∥∥2

L2(Ω)

+
αω3

2We3

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)

) 1
2

.

Further details are left to the reader.

On the Oldroyd-B system. For the Oldroyd-B system, the constitutive equation is (3.45) with
α = 0. As for the Giesekus model, the property detA0 ≥ 1 propagates in time and implies Trτ = 0.
Instead of (3.47), we have

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

We

ˆ
Ω

Trτ(t, ·) +
ω

We2

ˆ t

0

ˆ
Ω

Trτ

≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

We

ˆ
Ω

Trτ0,

so that we lack an a priori bound on τ in L2 ((0, T )× Ω). The Cauchy theory for weak solutions of
this system is lacunary. So is the analysis of the Newtonian limit (for an Oldroyd-B system with a
regularizing term, see the analysis of J. Barrett and S. Boyaval [1]). We are not able to say anything
on the limit, even on a formal level assuming the existence of solutions. As the Oldroyd-B system
is widely used in applications, despite its inadequate prediction of some physical phenomena, these
questions are challenging.

Appendix A. A remark on the Newtonian limit for oscillating initial data.

This appendix is devoted to the proof of Proposition 1.1 bis. We assume that the initial data
τ0,n is strongly oscillating in n (not in We). In our setting (see below), these oscillations introduce
defect measures at the limit n → ∞. In order to handle these defect measures, we need re�ned a
priori bounds on the solutions of (1.1). Our analysis is close to the paper [24] by P.-L. Lions and
N. Masmoudi, where the existence of weak solutions is proved.

A.1. Further a priori bounds for the corotational system. We complement the bound
(1.3) by carrying out Lp ((0, T ), Lq) estimates on the system (1.1). In particular, these bounds are
crucial for the Cauchy theory of weak solutions as developed in [24].

The proof of such estimates is divided into two parts. First, assuming an Lp ((0, T ), Lq)
estimate on τ , we prove a control on the velocity using the momentum equation. Then, using the
equation on τ , we use a Gronwall lemma to show an Lp ((0, T ), Lq) estimate on τ taking advantage
of the estimate of the velocity in terms of τ .
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A.1.1. An Lp ((0, T );Lq) control of the velocity �eld u through an Lp ((0, T );Lq) esti-
mate on τ . In order to estimate ∇u in Lp ((0, T );Lq), we decompose u in a sum u = u1 +u2 +u3,
where u1 and u2 are the unique solutions to the Stokes system ∂tu

i − ν∆ui +∇pi = f i

∇ · ui = 0
ui(0, ·) = 0

, (A.1)

with f1 := −u · ∇u, f2 := ∇ · τ , and where u3 is the unique solution to ∂tu
3 − ν∆u3 +∇p3 = 0

∇ · u3 = 0
u3(0, ·) = u0

. (A.2)

As u0 belongs to Ip,q for 4 ≤ q <∞ and 1 < p ≤ q
q−1 ,∥∥∇u3

∥∥
Lp((0,T );Lq)

≤ C ‖u0‖Ip,q . (A.3)

The second term u2 can be estimated by applying the nonstationary version of Cattabriga's esti-
mate given in [13] (see corollary 4.2 and estimate (1.6)):∥∥∇u2

∥∥
Lp((0,T );Lq)

≤ C ‖τ‖Lp((0,T );Lq) . (A.4)

From (1.3), we conclude that u · ∇u is bounded in Lr ((0, T );Ls) for all 1 ≤ r ≤ 2 and s = 2r
3r−2 .

Hence, applying Theorem 2.8 from [14] and Sobolev's injection theorem, we get∥∥∇u1
∥∥
Lr((0,T );Ls?) ≤ C

∥∥∇2u1
∥∥
Lr((0,T );Ls)

≤ C ‖u · ∇u‖Lr((0,T );Ls) ≤ C [r, s, ‖u0‖L2 , ‖τ0‖L2 ]

with 1 < r ≤ 2 and s? = 2s
2−s = r

r−1 , so that∥∥∇u1
∥∥
L

q
q−1 ((0,T );Lq)

≤ C [‖u0‖L2 , ‖τ0‖L2 ] . (A.5)

From (A.3), (A.4) and (A.5) we conclude that

‖∇u‖
L

q
q−1 ((0,T );Lq)

≤ C ‖τ‖
L

q
q−1 ((0,T );Lq)

+ C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
, (A.6)

with constants uniform in T and We.

A.1.2. Extra Lp ((0, T );Lq) estimates on τ through a Gronwall estimate. Let us now
estimate ‖τ‖Lp((0,T );Lq), for any 0 ≤ T ,

1 ≤ p ≤ q

q − 1
and 3 < q <∞. (A.7)

Testing the equation on τ against τ |τ |q−2 gives

1

q
∂t ‖τ‖qLq +

ˆ
R2

(u · ∇τ) : τ |τ |q−2 +

ˆ
R2

τW (u) · τ |τ |q−2 −
ˆ
R2

W (u)τ : τ |τ |q−2 +
1

We
‖τ‖q

=
2ω

We

ˆ
R2

D(u) : τ |τ |q−2.

Yet, it follows from the incompressibility of the velocity �eld

ˆ
R2

(u · ∇τ) : τ |τ |q−2 =

ˆ
R2

uα (∂ατβγ) τβγ |τ |q−2

=

ˆ
R2

uα
1

q
∂α (|τ |q) =

ˆ
R2

∂α

(
uα
|τ |q

q

)
= 0,

30



and ˆ
R2

τW (u) : τ |τ |q−2 =

ˆ
R2

ταγW (u)γβταβ |τ |q−2

=
1

2

[ˆ
R2

ταγ∂γuβταβ |τ |q−2 −
ˆ
R2

ταγ∂γuβταβ |τ |q−2

]
= 0.

Therefore,

1

q
∂t ‖τ‖qLq +

1

We
‖τ‖qLq =

2ω

We

ˆ
R2

D(u) : τ |τ |q−2 ≤ 2ω

We
‖∇u‖Lq ‖τ‖q−1

Lq . (A.8)

A.1.3. Gronwall Lemma related to τ . Letting Z := ‖τ‖qLq , it follows from (A.8),

1

q

∂tZ

Z
q−1
q

+
1

We
Z

1
q ≤ 2ω

We
‖∇u‖Lq ,

which rewrites

∂t

(
Z

1
q

)
+

1

We
Z

1
q ≤ 2ω

We
‖∇u‖Lq .

A Gronwall-type argument yields for all t > 0,

‖τ‖Lq (t) = Z
1
q (t) ≤ ‖τ‖Lq (0) exp

(
− t

We

)
+

2ω

We

ˆ t

0

‖∇u‖Lq (s) exp

(
s− t
We

)
ds. (A.9)

On the one hand, for all 0 < t ≤ T ,∥∥∥∥ˆ t

0

‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L∞(0,T )

≤ CWe
1
q ‖∇u‖

L
q

q−1 ((0,T );Lq)

≤ CWe
1
q ‖τ‖

L
q

q−1 ((0,T );Lq)
+We

1
qC
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
≤ CWe

1
q T

q−1
q ‖τ‖L∞((0,T );Lq) +We

1
qC
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
which implies for T1 su�ciently small

‖τ‖L∞((0,T1);Lq) ≤
1

1− 2ω
(
T1

We

) q
q−1

‖τ‖Lq (0) +
C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
We

q−1
q

(
1− 2ω

(
T1

We

) q
q−1

) . (A.10)

The latter yields a local in time a priori estimate on τ and then on ∇u using the �rst part: for all
T > 0,

‖τ‖L∞((0,T );Lq(R2)) ≤ C
[
T,We, ‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
(A.11)

and

‖∇u‖
L

q
q−1 ((0,T );Lq(R2))

≤ C
[
T,We, ‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
. (A.12)

The explicit computation of the constants appearing in (A.11) and (A.12) is tedious. Note that
they blow up exponentially fast when T →∞ or We→ 0.

On the other hand,∥∥∥∥ˆ t

0

‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L1(0,T )

≤
ˆ T

0

‖∇u‖Lq (s)

ˆ T

s

exp

(
s− T
We

)
dtds

≤We ‖∇u‖L1((0,T );Lq)
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and ∥∥∥∥ˆ t

0

‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L∞(0,T )

≤We ‖∇u‖L∞((0,T );Lq) ,

from which we get by interpolation∥∥∥∥ˆ t

0

‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L

q
q−1 (0,T )

≤We ‖∇u‖
L

q
q−1 ((0,T );Lq)

.

Combining this last inequality with (A.9) yields

‖τ‖
L

q
q−1 ((0,T );Lq)

≤We
q−1
q ‖τ‖Lq (0) + 2ω ‖∇u‖

L
q

q−1 ((0,T );Lq)
,

and for ω su�ciently small, thanks to (A.6), a bound

‖τ‖
L

q
q−1 ((0,∞);Lq)

≤ C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
(A.13)

uniform in time and in We.
Remark 9. The singularity in 1/We

q−1
q in the estimate (A.10) prevents us from obtaining

a bound uniform in We in L∞loc ((0,∞);Lq). However, for �xed We, we can use this bound. This
explains why this bound is usefull for the proof of weak solutions, and not for the low Weissenberg
asymptotic analysis.

A.2. Newtonian limit with defect measures in the initial data. Let (un, τn) be a
sequence of weak solutions to (1.1) associated to the initial conditions

un(0, ·) := u0,n(·), τn(0, ·) := τ0,n(·).

We assume that:
• The sequence (un, τn) satis�es (1.3) and the a priori bounds (A.11) and (A.12). Note
that the energy bound (1.3) bounds un (resp. τn) uniformly in n and We in the spaces
L2
(
(0,∞); Ḣ1

)
, L∞

(
(0,∞);L2

)
(resp. L2

(
(0,∞);L2

)
).

• u0,n converges strongly in L2 toward u0.
• τ0,n is uniformly equiintegrable in L2, i.e. that

sup
n

ˆ
|τ0,n|≥M

|τ0,n|2
M→∞−→ 0. (A.14)

In particular, we do not assume that τ0,n converges strongly in L2, which allows the presence of
defect measures initially.

A.2.1. Defect measures. We begin our analysis by making a change of unknown, underlin-
ing some special features of (1.1) when d = 2. Following [6, equation (251)], let us introduce the
new unknowns

an := τn,11 − τn,22, bn := τn,12, cn := τn,11 + τn,22.

We compute (dropping for the moment the subscripts n)

τW (u)−W (u)τ =

(
τ12 (∂2u1 − ∂1u2) 1

2 (τ11 − τ22) (∂1u2 − ∂2u1)
1
2 (τ11 − τ22) (∂1u2 − ∂2u1) τ12 (∂1u2 − ∂2u1)

)
.

Hence, the transport equation on τn becomes
∂tan + un · ∇an − 2bncurlun + an

We = 2ω
We (∂1un,1 − ∂2un,2)

∂tbn + un · ∇bn + 1
2ancurlun + bn

We = ω
We (∂1un,2 + ∂2un,1)

∂tcn + un · ∇cn + cn
We = 0

(A.15)
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where curlun := ∂1un,2 − ∂2un,1. In particular cn is decoupled from an and bn. Of course, the
sequences (an), (bn) and (cn) inherit from the properties of (τn), and (an) (resp. (bn), (cn)) satisfy
the a priori bounds (1.3) and (A.11).

The presence of defect measures in the initial data means that

|a0,n|2
∗
⇀ |a0|2 + α0L

∞((0, T );L
q
2

)
, (A.16a)

|b0,n|2
∗
⇀ |b0|2 + β0L

∞((0, T );L
q
2

)
. (A.16b)

A way to quantify the possible loss of convergence in products of weakly converging sequences is
to introduce defect measures. As

|an|2is uniformly bounded in n in (u.b.)L∞
(
(0, T );L

q
2

)
,

|bn|2 u.b. in L∞
(
(0, T );L

q
2

)
,

ancurlun u.b. in L
q

q−1
(
(0, T );L

q
2

)
,

bncurlun u.b. in L
q

q−1
(
(0, T );L

q
2

)
,

(∂1u1,n − ∂2u2,n) an u.b. in L
q

q−1
(
(0, T );L

q
2

)
,

(∂1u2,n + ∂2u1,n) bn u.b. in L2
(
(0, T );L

q
2

)
,

|∇un|2 u.b. in L1
(
(0,∞);L1

)
,

there exists α ∈ L∞loc
(
(0,∞);L

q
2

)
(resp. β ∈ L∞loc

(
(0,∞);L

q
2

)
, δ, ε, η, λ ∈ L

q
q−1

loc

(
(0,∞);L

q
2

)
,

µ ∈ [L∞ ((0,∞);L∞)]
′
) such that for all T > 0,

|an|2
∗
⇀ |a|2 + α L∞

(
(0, T );L

q
2

)
,

|bn|2
∗
⇀ |b|2 + β L∞

(
(0, T );L

q
2

)
,

ancurlun ⇀ acurlu+ δ L
q

q−1
(
(0, T );L

q
2

)
,

bncurlun ⇀ bcurlu+ ε L
q

q−1
(
(0, T );L

q
2

)
,

(∂1u1,n − ∂2u2,n) an ⇀
(
∂1u

1 − ∂2u
2
)
a+ ηL

q
q−1
(
(0, T );L

q
2

)
,

(∂1u2,n + ∂2u1,n) bn ⇀
(
∂1u

2 + ∂2u
1
)
b+ λL

q
q−1
(
(0, T );L

q
2

)
,

|∇un|2
∗
⇀ |∇u|2 + µ [L∞ ((0,∞);L∞)]

′
.

Let us state a couple of straightforward properties on the defect measures:
• The measures α, β, µ are positive.
• For every bounded measurable set E ⊂ (0,∞)× R2,

|η(E)| ≤
√
µ(E)

√
α(E), |λ(E)| ≤

√
µ(E)

√
β(E),

|δ(E)| ≤
√
µ(E)

√
α(E), |ε(E)| ≤

√
µ(E)

√
β(E).

(A.17)

Moreover, testing the momentum equation against un then passing to the limit, and passing
to the limit in the momentum equation then testing against u yields an equality between the terms
appearing in the averaging process:

2(1− ω)µ+ η + 2λ = 0. (A.18)

Such an inequality implies in particular µ ∈ L2
loc

(
(0,∞);L

2q
q+2
)
.

A.2.2. Weak convergence analysis. Our purpose is to pass to the limit on n, then on We.
There are three steps:

1. We show the convergence of un (resp. τn) toward u (resp. τ), and pass to the weak limit
n→∞ in the system (1.1).

2. We pass to the limit n→∞ in (1.3), in order to get a priori bounds on u and τ uniform
in We.

3. We study the limit We→ 0, as in the Section 2.1.
We will have recourse to the uniform equiintegrability of τn in L∞loc

(
(0,∞);L2

)
showed by P.-L.

Lions and N. Masmoudi in [24].
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First step. Classical arguments yield the existence of

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ ∈ L∞

(
(0,∞);L2

)
∩ L∞loc ((0,∞);Lq) ,

satisfying the energy inequality (1.3) with a right hand side slightly modi�ed to account for the
fact that τ0,n does not converge to τ0 in L2. Passing to the limit n → ∞ in the system (1.1) for
(un, τn), we get that (u, τ) solves

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ
∇ · u = 0

∂tτ + u · ∇τ + τW (u)−W (u) τ +

(
−ε 1

2δ
− 1

2δ ε

)
+ 1

Weτ = 2ω
WeD (u)

(A.19)

in the sense of distributions. We focus now on the low Weissenberg limit in (A.19).
Second step. We intend to let n→∞ in the energy estimate

ω ‖un‖2L2 + 2ω(1− ω)

ˆ T

0

‖∇un‖2L2 +
We

2
‖τn‖2L2 +

ˆ T

0

‖τn‖2L2

= ω ‖u0,n‖2L2 +
We

2
‖τ0,n‖2L2 (A.20)

so as to retrieve bounds on the defect measures δ and ε uniform in We. Assuming no defect mea-
sures initially (i.e. α0 = β0 = 0), we already know that (1.3) is satis�ed at the limit. Nevertheless,
in the presence of defect measures, using the inequalities

‖u‖L∞((0,∞);L2) ≤ lim inf
n
‖un‖L∞((0,∞);L2) ,

‖∇u‖L2((0,∞);L2) ≤ lim inf
n
‖∇un‖L2((0,∞);L2) ,

‖τ‖L∞((0,∞);L2) ≤ lim inf
n
‖τn‖L∞((0,∞);L2) ,

‖τ‖L2((0,∞);L2) ≤ lim inf
n
‖τn‖L2((0,∞);L2) ,

is responsible for the loss of a lot of information. In particular, we lose all information on the
defect measures propagation.

The heart of the matter is to justify the following formal limit n→∞ in (A.20)

ω ‖u‖2L2 + 2ω(1− ω)

ˆ T

0

‖∇u‖2L2 + 2ω(1− ω)

ˆ T

0

ˆ
R2

µ

+
We

2
‖τ‖2L2 +

We

4

ˆ
R2

(α+ 4β) +

ˆ T

0

‖τ‖2L2 +
1

2

ˆ T

0

ˆ
R2

(α+ 4β)

= ω ‖u0‖2L2 +
We

2
‖τ0‖2L2 +

We

4

ˆ
R2

(α0 + 4β0) . (A.21)

If the latter holds uniformly with respect to We, then we get uniform bounds on µ, α and β in
L1
(
(0,∞);L1

)
, and by (A.17)

|η| ≤ 1

2
(µ+ α) , |δ| ≤ 1

2
(µ+ α) ,

we bound η and δ uniformly inWe in L1
(
(0,∞);L1

)
. The same holds of course for λ and ε as well.

In order to show (A.21), we need to prove that µ, α and β belong to L1
loc

(
(0,∞);L1

)
. According

to the results above,

α, β ∈ L∞
(

(0,∞), L
q
2

)
and µ ∈ L2

loc

(
(0,∞), L

q
2

)
(see (A.18)).

However, these bounds are not uniform in We, and do not imply a L1
loc

(
(0,∞);L1

)
bound. Here

a stronger result is needed on the sequence τn:
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Result C (P.-L. Lions and N. Masmoudi). We assume (A.14), i.e. the uniform equiintegra-
bility of τ0,n in L2. Then, τn is uniformly equiintegrable in L∞loc

(
(0,∞);L2

)
, i.e. for all T > 0,

sup
t∈(0,T )

sup
n

ˆ
|τn|≥M

|τn|2
M→∞−→ 0. (A.22)

We refer to [24] Section III.3 for details concerning the proof. Let us point out the main idea.
It is to consider τn as a solution of the linear system{

∂tτn + u · ∇τn + τnW (u)−W (u)τn + 1
Weτn = 2ωD(u)

We
τn (0, ·) = τ0,n

with u �xed, which yields an a�ne mapping Ku : τ0,n 7−→ τn depending on u. Yet, Ku satis�es
estimates independent of u. For R an auxilliary parameter, one then decomposes the initial data
into

τ0,n = τ0,n1|τ0,n|<R + τ0,n1|τ0,n|≥R

and bounds ˆ
|τn|≥M

|τn|2 ≤
ˆ
|τn|≥M

∣∣Ku

(
τ0,n1|τ0,n|<R

)∣∣2 +

ˆ
R2

∣∣Ku

(
τ0,n1|τ0,n|≥R

)∣∣2 .
The second integral is made small for R large thanks to (A.14). The �rst is small in the limit
M →∞. Note that up to this point, we do not take care on the dependence on We.

We deduce from (A.22), that

ancurlun − acurlu, bncurlun − bcurlu,
(∂1u1,n − ∂2u2,n) an − (∂1u1 − ∂2u2) a, (∂1u2,n + ∂2u1,n) bn − (∂1u2 + ∂2u1) b

are uniformly equiintegrable in L1
loc

(
(0,∞);L1

)
. Therefore, they converge weakly in L1

loc

(
(0,∞);L1

)
,

and their weak limits δ, ε, η and λ belong to L1
loc

(
(0,∞);L1

)
. The defect measure µ is in

L1
loc

(
(0,∞);L1

)
because of the equality (A.18).

Final step. We proceed exactly as in the Section 2.1: from (A.20) we get the existence of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

such that convergences analogous to (2.1) hold. Passing to the limit We → 0 in (A.19) leads to
the fact that u0 satis�es the Navier-Stokes system (1.6) in the weak sense.

Remark 10. In order to pass to the limit in the energy equality (A.21), we assume moreover
that

√
Weτ0 tends to zero in L2 and that We(α0 + 4β0) tends to zero in L1. Thus passing to the

limit, using the sign of the defect measures and the obtained weak convergences, we recover the
usual energy estimate for the Navier-Stokes system.
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