
HAL Id: hal-01915529
https://hal.science/hal-01915529

Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data layout and SIMD abstraction layers: decoupling
interfaces from implementations
Sylvain Jubertie, Ian Masliah, Joel Falcou

To cite this version:
Sylvain Jubertie, Ian Masliah, Joel Falcou. Data layout and SIMD abstraction layers: decou-
pling interfaces from implementations. The 2018 International Conference on High Performance
Computing & Simulation (HPCS 2018) - HPCS 2018, Jul 2018, Orléans, France. pp.531-538,
�10.1109/HPCS.2018.00089�. �hal-01915529�

https://hal.science/hal-01915529
https://hal.archives-ouvertes.fr

Data layout and SIMD abstraction layers:
decoupling interfaces from implementations

Sylvain Jubertie
Univ. d’Orléans, INSA Centre Val de Loire

LIFO EA 4022, Orléans, France
sylvain.jubertie@univ-orleans.fr

Ian Masliah
Sorbonne University, CNRS

LIP6, Paris, France
ian.masliah@lip6.fr

Joël Falcou
Université Paris-Sud
LRI, Orsay, France
joel.falcou@lri.fr

Abstract—From a high level point of view, developers define
objects they manipulate in terms of structures or classes. For
example, a pixel may be represented as a structure of three color
components : red, green, blue and an image as an array of pixels.
In such cases, the data layout is said to be organized as an array
of structures (AoS). However, developing efficient applications
on modern processors and accelerators often require to organize
data in different ways. An image may also be stored as a structure
of three arrays, one for each component. This data layout is
called a structure of array (SoA) and is also mandatory to take
advantage of SIMD units embedded in all modern processors.

In this paper, we propose a lightweight C++ template-based
framework to provide the high level representation most pro-
grammers use (AoS) on different data layouts fitted for SIMD
vectorization. Some templated containers are provided for each
proposed layout with a uniform AoS-like interface to access
elements. Containers are transformed into different combinations
of tuples and vectors from the C++ Standard Template Library
(STL) at compile time. This way, we provide more optimization
opportunities for the code, especially automatic vectorization. We
study the performance of our data-layouts and compare them to
their explicit versions, based on structures and vectors, for differ-
ent algorithms and architectures (x86 and ARM). Results show
that compilers do not always perform automatic vectorization on
our data-layouts as with their explicit versions even if underlying
containers and access patterns are similar. Thus, we investigate
the use of SIMD intrinsics and of Boost.SIMD1/bSIMD libraries
to vectorize the codes. We show that combining our approach
with Boost.SIMD/bSIMD libraries ensures a similar performance
as with a manual vectorization using intrinsics, and in almost
all cases better performance than with automatic vectorization
without increasing the code complexity.

Index Terms—data layouts, AoS SoA AoSoA, SIMD, vectoriza-
tion

I. INTRODUCTION

When developing high performance applications, choosing
the best data layout to extract full performance from the
underlying architecture is a very critical and challenging
task. Such a choice requires a deep knowledge of both the
application data access patterns and the machine architecture.
Historically, supercomputers rely on SIMD (Single Instruction
on Multiple Data) units: a set of large registers and pro-
cessing units able to apply a single instruction to multiple
elements of the same register at the same time, to improve

1The Boost.SIMD library is available
at https://github.com/NumScale/boost.simd

their computing power. The performance benefit brought by
such units is important for algorithms containing suitable
patterns (image/signal processing, linear algebra, ...). Today,
almost all modern processors, whether they are in smartphones
or supercomputers, contain SIMD units(SSE/AVX on x86,
NEON on ARM, VMX on Power). Several ways exist to take
advantage of these SIMD units. Compilers contain automatic
vectorizers to detect patterns suitable for vectorization. If the
compiler is not able to vectorize the code, it is possible to use
intrinsics which are architecture specific functions mapping
directly SIMD instructions or to use higher levels library like
Boost.SIMD[1]. However, to take advantage of these units,
data have in general to be organized using a SoA data layout.

When developing applications, the most popular program-
ming paradigm, promoted by languages such as C++, Java,
C#, is the Abstract Data Structures (ADS) one. In this case,
data are organized in structures or classes with their attributes
stored contiguously in memory, i.e. using a AoS data layout.
Such a layout presents several advantages. Data in memory
is accessed by blocks called cache lines (blocks of 64 bytes
in common architectures), thus, attributes of a same structure
are likely to be stored in the same cache line or in con-
tiguous cache lines and accessing them may only require a
single memory transaction. Since the data are likely to be
accessed contiguously, the processor prefetcher can reduce
cache misses by anticipating the load of the next cache line.
Having a structure such as AoS where data can be traversed
contiguously is the most cache friendly method. However,
the cache is not the only aspect to take into account when
optimizing the performance of an algorithm, SIMD units have
also to be considered. Thus, it appears an antagonism between
programming using the high level ADS paradigm and taking
advantage of low level SIMD units i.e. between programming
efficiency and performance.

In this paper, we propose to solve this problem by decou-
pling the high level view of the layout from the underlying
implementation. We provide a single representation of the
data layout to the developer based on the ADS paradigm,
thus a AoS view. The developer only has to choose the
underlying data layout implementation. As an example, an
AoS representation of the data structure may be transformed
in a different layout just by modifying a type definition. The
benefits brought by this approach are threefold: 1) portability,

adaptability: the code remains the same and is independent
of the underlying architecture, 2) productivity, readability:
we offer a single ADS view of the data layout, a unique
code allows to test the different layouts, 3) performance: the
data layout may be optimized for a particular architecture,
SIMD unit, etc. To be easily integrated and transparent to
the developer, we choose to build our approach using a C++
header only library. This is made possible by using C++
template mechanisms and C++11 language features. We test
our approach on several codes using different compilers on
different architectures and we verify if the produced code
is automatically vectorized. In all cases, we also consider
manually vectorized versions of our codes using intrinsics and
the Boost.SIMD library to compare to the versions produced
by the compilers.

The paper is organized as follows. First, we discuss the
related work on data layouts in HPC applications and on
similar data layout abstraction approaches. Then, we present
our approach and describe our implementation as well as its
interface. We test several applications to validate our approach.
With each test we explain the different data structure trans-
formations and the vectorization possibilities. Experimental
results on different architectures with several compilers are
also presented and discussed. Finally, we conclude on our
results and the benefits and limits of our approach and present
some future work.

II. RELATED WORK

We identify four different approaches to generate optimized
data layouts:

1) Explicit implementations: The first one is a low level
approach where the data layout is optimized for a given
application on a given architecture and is explicitly exposed to
the developer. This is the common approach traditionally used
in HPC applications written in C, C++ or Fortran codes. For
example, in [2], the authors investigate different data layouts
to improve the performance of Lattice Boltzmann kernels
on multi- and many-core architectures. In [3] the authors
study the scalability provided by different data layouts on
a molecular dynamic simulation written in Java on a multi-
core architecture. In both cases, testing a different layout is
performed by rewritting the computation kernel.

2) High level approaches: High level approaches consists
in using specific languages and compilers to perform auto-
matic data layout transformations. In [4] and [5], the authors
use the Habanero-C framework to design a system that can
automatically generate an efficient data layout and kernel
mapping on heterogeneous architectures. Using an automatic
approach is interesting and yields good results. However, it
relies on specific programming environments i.e. compiler and
languages, which may limit the integration of such a tool.

3) Guided approaches: Another approach is based on adding
pragma extensions in the code. This is an in-between model
that provides a semi automatic composition for data layout
transformation. An example of this type of approach is de-
scribed in [6]. The framework problem is still apparent with

this approach, and the pragma extensions can be quite complex
when mixing data layout and SIMD pragmas.

4) Domain Specific Languages: An approach followed
recently by Intel relies on providing an embedded Domain
Specific Library (eDSL) through a library that comes with their
standard tools and C++ compiler. The Intel SIMD Data Layout
Templates library (SDLT) 2 is a C++ template library which
provides containers in both AoS and SoA versions. Changing
the layout of the container only requires to change the type of
the container. The container interface is very similar to the one
of STL containers. The problem is that this library is tied to
Intel processors and on its compiler, thus limiting portability.

The Kokkos library[7], [8] is also a C++ library which
proposes multidimensional arrays parametrizable through the
use of template parameters. It is possible to specify the data
layout and the locality of the underlying memory to target
different architectures like CPUs or GPUs. The vectorization
process relies also on the underlying compiler.

We use a similar approach for our data layout abstraction
layer as the one used by Kokkos and the SDLT library.
To ensure proper vectorization, we propose to combine this
layer with the Boost.SIMD[1] library as the SIMD abstraction
layer. The VC[9] and the UME::SIMD[10] libraries proposes
a similar approach with different interfaces and support SSE,
AVX and AVX-512 instruction sets but are less generic as they
still expose explicitly the size of the SIMD registers while the
Boost.SIMD library provides a generic pack container. The
Boost.SIMD library only support SSE and AVX instruction
sets but a proprietary version, called bSIMD adds the support
for the AVX-512, NEON and VMX instruction sets.

III. ABSTRACTING DATA LAYOUTS IN C++

Our approach is similar to the one used by the Intel SDLT
library previously described. Indeed, we believe that using
standard compilers is simpler than modifying a compiler or
writing a new one and maintaining it. Using our library only
requires to include some header files. Thus, it is also more
accessible to the developer since it does not involve some
compilation toolchain modifications. We also rely on C++11
features, especially on variadic templates, and on STL contain-
ers. Of course, like the SDLT library, we are also limited by the
lack of an introspection mechanism in C++, but we propose
another way to declare structures and avoid making use of
macros. Instead of defining a type as a structure with attributes,
then passing this type to the container, our approach consists
in defining a container directly from the primitive types of
the attributes it contains. The container concept is handled by
default by the std::vector container. To ensure that data
are correctly aligned for the SIMD units, we pass an aligned
allocator provided by the Boost.Align library3 to the vector.
It is possible to replace it by a user defined container if it
complies with the STL vector interface. The structure concept
is handled by the std::tuple container.

2Data Layout Optimization using SDLT: https://software.intel.com/en-
us/articles/data-layout-optimization-using-simd-data-layout-templates

3Boost.Align: http://www.boost.org/doc/libs/1 62 0/doc/html/align.html

1)

2)

3)

Fig. 1. Layouts: 1) AoS 2) SoA 3) AoSoA

a) Defining and using layouts: We provide three differ-
ent basic layouts to the user: AoS, SoA, AoSoA (Array of
Structures of Arrays, also called hybrid layout). The different
layouts are represented in memory as depicted in figure 1.
An AoSoA can be viewed as the interleaving of subarrays
of a SoA. Thus it contains contiguous blocks of elements
thus providing both a cache friendly layout and vectorization
opportunities. Their implementations are presented below.

An Array of Structures is described as a vector of tuples:

t e m p l a t e < typename . . . TS >
s t r u c t aos : s t d : : v e c t o r< s t d : : t u p l e< TS . . . > >

Listing 1. AoS implementation.

An RGB image may be defined as follows:

aos< u i n t 8 t , u i n t 8 t , u i n t 8 t > img (s i z e) ;

Listing 2. 3 8-bit color components image definition as an AoS.

In this case the image components are stored contiguously,
as described in figure 1. However, this is not a practical way
to use our layouts since it exposes the underlying structure
at each instantiation. A better approach is to separate the
definition from the instantiation by defining an intermediate
type:

u s i n g imageRGB = aos< u i n t 8 t , u i n t 8 t , u i n t 8 t >;

Listing 3. Shortcut to simplify image definition.

This way, changing the data layout only requires to modify
its definition. It is also possible to put this definition in a
separate header to hide it from the user. This separate header
may also be automatically generated from micro-benchmarks
to determine the definition offering the best performance.

A structure of arrays is described as a tuple of vectors:

t e m p l a t e < typename . . . TS >
s t r u c t soa : s t d : : t u p l e< s t d : : v e c t o r< TS > . . . >

Listing 4. SoA implementation.

In this case, the image definition is transformed as:

u s i n g imageRGB = soa< u i n t 8 t , u i n t 8 t , u i n t 8 t >

Listing 5. 3 8-bit color components image definition as a SoA.

Each component is stored in a different array, see figure 1.
An AoSoA is an array containing structures of arrays. Its

definition must be restricted in order to optimize its imple-
mentation. We identify three constraints:

1) the need for a single contiguous container to reduce the
work of the prefetcher by only managing contiguous cache
lines. It is not possible to store an AoSoA as a vector of tuples

of vectors since vectors are allocated dynamically. As a result,
the generated layout would be non contiguous in memory.
Thus, we describe an AoSoA as a single std::vector.

2) the size of the interleaved subarrays. In general, attributes
may have different types thus different sizes, and storing them
in an AoSoA involves adding padding to respect alignment
constraints and to cast attributes when accessing them. Thus,
we only consider AoSoA for structures containing the same
attribute type. This type is given as the first template parameter
of the AoSoA structure. The number of attributes is given as
the second template parameter.

3) the fixed length of SIMD registers which impose the size
of the subarrays to be a multiple of the register size. The size
of the subarrays is given as the third template parameter of
the hybrid structure.

This leads to define an AoSoA as follows:
t e m p l a t e< typename T , s i z e t N, s i z e t S >
s t r u c t hyb : p r i v a t e s t d : : v e c t o r< T >

Listing 6. AoSoA implementation.

An image with this layout, with components grouped by 32,
is defined as:
u s i n g imageRGB = hyb< u i n t 8 t , 3 , 32 >

Listing 7. Image definition as an AoSoA.

The subarray size is chosen to match the size of an AVX reg-
ister (256 bits) which can contain 32 8-bit unsigned integers.
Choosing a size smaller than the register size may prevent the
compiler from vectorizing the code. This size may also be
determined automatically at compile time to fit the size of a
SIMD register.

b) Accessing elements: Accessing elements is performed
with the same interface, independently of the chosen layout. It
is done through an overloaded version of the operator () which
takes two parameters. The first parameter of the operator is the
attribute number, ranging from 0 to the number of attributes
less one. The second parameter is the position of the element
to access. The following example shows how to access to the
red component of an image using our containers:
f o r (s i z e t i = 0 ; i < img . s i z e () ; ++ i) {

img (i n t e g r a l c o n s t a n t <s i z e t ,0>{} , i) = . . .
}

Listing 8. Accessing elements using the operator ().

The integral constant is required since we need compile time
information on the attribute accessed, but it increases the code
verbosity. It is possible to name the attribute for a more explicit
code. For example, if we want to name the RGB components
of an image using the definition in listing 3, we can define the
following integral constants:
s t d : : i n t e g r a l c o n s t a n t < s t d : : s i z e t , 0 > R ;
s t d : : i n t e g r a l c o n s t a n t < s t d : : s i z e t , 1 > G;
s t d : : i n t e g r a l c o n s t a n t < s t d : : s i z e t , 2 > B ;

Listing 9. Integral constants for accessing components.

Note that these are independent of the data layout used. We
can modify the code in listing 8 in a more simple version:

f o r (s i z e t i = 0 ; i < img . s i z e () ; ++ i) {
img (R , i) = . . .

}

Listing 10. Accessing elements using named attributes.

IV. EXPERIMENTAL RESULTS

This section is divided into two parts. In the first one,
we present several codes we have chosen for experimenting
our approach. For each algorithm we choose several data
layout implementations, we provide a version based on ex-
plicit structures and vectors, called explicit, and a version
using our approach, called abstract. We explain for each
one how it may affect vectorization and performance. We
also study assembly codes produced by compilers to verify
if they are able to automatically vectorize the codes. Thus,
for each code with each layout we generate three different
variants: 1) novec with vectorization options disabled, by
adding the -fno-tree-vectorize flag, 2) auto with
automatic vectorization enabled, by default with the -O3 flag
and with -march=native flag to select the proper SIMD
unit, 3) pragma with an OpenMP SIMD pragma in front
of the loops activated by the -fopenmp compilation flag.
Then, we compare them to the ones generated from hand-
written vectorized codes using intrinsics, called intrinsics, and
Boost.SIMD, denoted BS. All data structures are aligned using
the Boost.align library according to the SIMD unit considered
i.e. aligned on 32 bytes boundaries for the AVX versions, 64
bytes for AVX-512 and 16 bytes for ARM NEON (even if
it not a requirement on this architecture). We consider codes
produced by different compilers: GCC(6.4), Clang(5.0). For
the sake of conciseness, we only detail the complete study
on the first code, and we highlight interesting details and
unexpected results for the other codes. In the second part we
study the performance of these different versions and confront
our expectations with experimental results.

A. Data layouts and automatic vectorization

We consider four algorithms in this study which exhibit
opportunities for data layout transformations and vectorization.
The two first ones are image conversion algorithms: RGB to
grayscale and YUV to RGB. These algorithms are used in
a lot of image and video processing filters. The third one
is vector normalization, which requires few instructions but
a square root and a division which are expensive. The last
one is a N-Body simulation, which is more complex and
known to be compute bound since its algorithmic complexity
is O(n2), with n the number of bodies. In this section, we
discuss the assembly codes generated by all compilers for a
Broadwell processor, which supports the AVX2 instruction set,
with vectorization and optimization flags activated.

a) Grayscale image conversion: It is a simple algorithm
which consists for each pixel of an image to take its three
components and compute the resulting level of gray compo-
nent according to the following formula:

gray =
307 ∗R+ 604 ∗G+ 113 ∗B

1024
(1)

Components are encoded as 8-bit unsigned integers. These
values are accumulated, thus it is necessary to use 32-bit
unsigned integers for intermediate results.

We define an image using our approach as one of the
previous definitions in listings 3, 5 and 7. For the AoSoA
version, the parameter S is set at compile time to the number
of 8-bit values fitting into a SIMD register. We translate the
above formula into the following code:
f o r (s t d : : s i z e t i = 0 ; i < rows ∗ c o l s ; ++ i) {

u i n t 3 2 t c = 307 ∗ img (R , i) + 604 ∗ img (G, i) + 113 ∗
img (B , i) ;

g r ay [i] = c >> 1 0 ;
}

Listing 11. Grayscale conversion using our approach.

AoS versions: Results show that GCC and Clang produce
the exact same assembly code (same instructions in the same
order, modulo register renaming) for the AoS code when using
the explicit and abstract versions: the explicit novec version
is the same as the abstract novec one, and the explicit auto,
explicit pragma, abstract auto and abstract pragma are all
the same. Thus, our approach does not introduce extra opera-
tions and must provide the exact same level of performance.
We observe that GCC and Clang are able to vectorize the code
for the auto and pragma variants, even if the data layout is not
SIMD friendly, but the assembly codes are complex and most
of the SIMD instructions are used to reorder data before and
after performing packed arithmetic operations, thus limiting
the possible speedup. It is also interesting to note that in this
case our code appears in two different versions in the assembly
code: one is inlined and vectorized, the other one is in a
grayscale function and is not vectorized. As a consequence,
it appears that if the code is compiled into a library, we can
expect that the code will not be vectorized.

SoA versions: Both compilers transform the explicit and
abstract versions into the same assembly code for each novec,
auto and pragma variants, except for the explicit version
using the OpemMP SIMD pragma which is only vectorized
by Clang. In this case, we conclude that our approach may
sometimes prevent vectorization.

AoSoA versions: For the explicit AoSoA version, we define
an image as a vector of structures of static subarrays of size
S, where S is set to the number of unsigned bytes fitting the
SIMD register:
s t r u c t sub {

u i n t 8 t r [S] ;
u i n t 8 t g [S] ;
u i n t 8 t b [S] ;

} ;
u s i n g image = s t d : : v e c t o r< sub , a l i g n e d a l l o c< u n s i g n e d

char , 32 > >;

Listing 12. AoSoA definition.

This way, components are stored contiguously in contiguous
subarrays. This representation requires to add an internal for
loop to iterate on subarrays:
s i z e t i = 0 ;
f o r (s i z e t s = 0 ; s < img . s i z e () ; ++ s) {

f o r (s i z e t j = 0 ; j < S ; ++ j) {
u i n t 3 2 t c = 307 ∗ img [s] . r [j]

+ 604 ∗ img [s] . g [j]
+ 113 ∗ img [s] . b [j] ;

g r ay [i ++] = c >> 1 0 ;
}

}

Listing 13. AoSoA code version.

Note that, since the size of subarrays is known at compile
time we can expect the compiler to unroll the internal loop.
Moreover, if we set this size to the SIMD register width,
we can expect the compiler to vectorize the internal loop.
Assembly codes show that our code differs from the one using
structures since accessing an element in our hybrid data layout
in a scalar way requires to compute the subarray in which
an element is stored and its offset. It would require to use
integer division and modulo instructions, however compilers
are able to replace them with less expensive shift and logical
instructions when S is a power of two, which is the case here.

As expected, the GCC compiler produces two different
assembly codes for the abstract and explicit versions. How-
ever,it is not capable of vectorizing the code. The Clang
compiler is the only one able to vectorize the code for both the
auto and pragma variants, but only for the explicit layout.We
note that Clang produces a different scalar code when using
our approach with the pragma activated.

b) YUV to RGB image conversion: The YUV color space
is used in lots of digital video equipments to compress and
transmit images. The Y component represents the brightness,
U and V are color differences. An YUV image needs to be
converted into an RGB one to be used by image manipulation
tools. Several encodings are possible, in our example we
choose the YUV422 one which encodes components as 8-bit
unsigned integers interleaved in the following order: Y0UY1V .
From these four elements we obtain two RGB pixels i.e. from
32 bits we generate 48 bits of information.

AoS versions: Results show that GCC and Clang compilers
generate different assembly codes for the explicit versions
and for the abstract versions. Thus, our approach may have
an impact on performance. The Clang compiler is able to
vectorize the code for the explicit auto and pragma variants.

SoA versions: GCC generates the same exact assembly
codes for the explicit novec, auto, omp variants and their
respective abstract versions. The auto and omp variants are
the same but are different from the novec variant. Thus, for
this layout with the GCC compiler, our approach does not
induced any overhead. With Clang, the explicit novec and
auto variants are the same. The abstract novec, auto and
pragma variants are also the same but are different from their
explicit versions. We observe that the explicit pragma variant
is different from the others but is not vectorized.

c) Vector normalization: Normalizing a vector consists
in dividing each ot its components by the square root of its
length. We consider three dimensional vectors.

The generated assembly files show that none of the compil-
ers is able to vectorize these codes, even in the SoA format.

AoS versions: GCC produces the same exact code for
the explicit novec, auto and pragma variants. However, the

abstract versions are different from their explicit versions.
This is not the case with the Clang compiler which produces
the same exact assembly code for all the novec, auto and
pragma variants independently of the considered approach.

SoA versions: For SoA versions, the assembly codes pro-
duced by GCC for the explicit and abstract versions are all
the same for all tha variants. This is also true for all versions
produced by Clang but the codes are different from those
produced by GCC. In this case using our approach does not
affect the compilation process, but GCC and Clang generate
very different assembly codes.

AoSoA versions: All the explicit variants generated by GCC
lead to the same assembly code. This is also the case for Clang.
Thus no compiler is able to vectorize this code.

d) N-Body simulation: An N-Body simulation consists
in computing forces bodies of a system applied to each other.
Several steps are performed to determine the evolution of
the system. Each body is defined by its position, speed, and
mass. In this study we do not consider AoSoA versions of
this code since vectorization of such a layout requires a
complex algorithm to access contiguous values without mixing
components in the same SIMD register.

AoS versions: The generated assembly codes show that
GCC produces the exact same code for all explicit and
abstract variants. This is also the case for Clang.

SoA versions: The conclusion is the same, the abstract
approach does not impact the generation of assembly codes.
Only the compiler has an impact on the code generation.

Once again, compilers are not able to vectorize this code.
Regarding the previous results, it appears that transforming
the data layout does not always help compilers to vectorize
the code except in a few cases. It also appears that using
our approach may impact the performance on some cases,
depending on the algorithm, the chosen layout and on the
chosen compiler. However, this is also true for explicit versions
of the codes, but our approach does not require to rewrite the
code to test different layouts and compilers.

We now also study the use of explicit vectorization for the
previous codes to determine if the automatic vectorization may
lead to comparable speedups.

B. Vectorisation with intrinsics and
Boost.SIMD library

Explicit vectorization can be achieved by using intrinsics or
specific libraries. In this section, we present both approaches.

a) Intrinsics: The following code is the AVX version of
the vector normalization:

f o r (s t d : : s i z e t i = 0 ; i < v . s i z e () ; i += 8) {
a u t o x = mm256 load ps (&v (VX, i)) ;
a u t o y = mm256 load ps (&v (VY, i)) ;
a u t o z = mm256 load ps (&v (VZ, i)) ;
a u t o norm = mm256 sqrt ps (x ∗ x + y ∗ y + z ∗ z) ;

mm256 store ps (&v (VX, i) , x / norm) ;
mm256 store ps (&v (VY, i) , y / norm) ;
mm256 store ps (&v (VZ, i) , z / norm) ;

}

Listing 14. Vector normalization vectorized version with AVX intrinsics.

We do not detail the vectorization of other algorithms but we
note that, moving from scalar operations to intrinsics increases
the code complexity especially when converting types for
our image algorithms or when permutations within registers
are required. It also affects its portability since some AVX
intrinsics are not always directly translatable into NEON ones.
We consider using Boost.SIMD to alleviate these problems.

b) Boost.SIMD: This library offer a single generic type
called pack, to represent a single or a set of SIMD registers,
and provides arithmetic operators and functions. With this
library, the code is transformed as follows:

f o r (s t d : : s i z e t i = 0 ; i < v . s i z e () ; i +=S) {
pack< f l o a t > x (&v (VX, i)) ;
pack< f l o a t > y (&v (VY, i)) ;
pack< f l o a t > z (&v (VZ, i)) ;
a u t o norm = s q r t (x ∗ x + y ∗ y + z ∗ z) ;
a l i g n e d s t o r e (x / norm , &v (VX, i)) ;
a l i g n e d s t o r e (y / norm , &v (VY, i)) ;
a l i g n e d s t o r e (z / norm , &v (VZ, i)) ;

}

Listing 15. Vector normalization, Boost.SIMD version.

Arithmetic operators and the sqrt function are overloaded,
thus producing a code similar to the scalar one. Only the
explicit call to the aligned_store function remains. The
other algorithms are also easily converted to Boost.SIMD.
Note that, for our image processing algorithms, conversion
between 8-bit to 32-bit values is automatically performed by
using a cast function. Thus, the resulting code length is
similar to the scalar one. The grayscale conversion is a bit
more complex to write:

f o r (s i z e t i =0 ; i <(rows∗ c o l s / S)∗S ; i +=S) {
pack< u i n t 8 t > r (&v in (R , i)) ;
pack< u i n t 8 t > g (&v in (G, i)) ;
pack< u i n t 8 t > b (&v in (B , i)) ;
a u t o r0 = p a c k c a s t<u i n t 3 2 t >(r) ;
a u t o g0 = p a c k c a s t<u i n t 3 2 t >(g) ;
a u t o b0 = p a c k c a s t<u i n t 3 2 t >(b) ;
a u t o g ray = (r0 ∗307 + g0∗604 + b0∗113)>>10;
a l i g n e d s t o r e (p a c k c a s t<u i n t 8 t >(g r ay) , &v ou t [i]) ;

}

Listing 16. Grayscale conversion, Boost.SIMD version.

Depending on the targeted architecture, this code can be
transformed at compile time into SSE/AVX optimized codes
or in AVX-512, NEON or VMX codes if the bSIMD library
is used. We now verify that Boost.SIMD codes provide the
same level of performance as their intrinsics versions.

C. Performance results

We have verified that in many cases, compilers generate
similar assembly codes for our approach compared to standard
implementations. We now verify if our approach gives the
same performance results. Tests are performed on four dif-
ferent architectures. Two x86 platforms: one with a Broadwell
Core i5-5300U processor with AVX2 and one with a Skylake
XEON 6148 processor with AVX-512. Two ARM platforms: a
Jetson TK1 board with a quad-core ARM Cortex A15 proces-
sor (32-bit) and a Jetson TX1 board with a quad-core ARM
Cortex A57 processor (64-bit). We also study performance
brought by the use of intrinsics and the Boost.SIMD library but

in this case only for the Broadwell platform since Boost.SIMD
only generates SSE/AVX instructions. We also test the ICC 17
compiler on the Skylake platform with the vectorization flags
enabled and by replacing the pragma omp simd directive
by the pragma simd directive.

a) Automatic vectorization: Figure 2 contains the exe-
cution times, given in milliseconds, for the four algorithms
using different combinations. The novec variants are given as
a baseline to study the impact of the layout independently of
the vectorization. Tests are performed with the AoS, SoA and
AoSoA data layouts using explicit and abstract approaches
denoted respectively exp and abs in the figure.

As shown in the study of the generated assembly codes,
compilers generate very different codes for an algorithm de-
pending on the architecture, the chosen layout and the way to
implement it, and the compilation flags. Thus, we may expect
very different levels of performance. Results discussed below
are highlighted in figure 2. For example, if we consider the
results for the grayscale algorithm, on the Broadwell platform
the best performance is obtained with the AoSoA explicit
layout using the Clang compiler. On the Skylake platform,
we obtain a different conclusion, the best performance is still
obtained with the Clang compiler but with the AoS explicit
or abstract layouts, if we only consider the GCC and Clang
compilers, or with the SoA explicit or abstract layouts if
we also consider the Intel compiler. On the ARM platforms,
results are also different, since the best combination is explicit
SoA layout with Clang on the TK1 and the explicit AoSoA
layout also with Clang on the TX1 platforms.

For the other algorithms, best results are written in bold
numbers. Several results may be identified as the best results
when the execution times are similar. For the YUV2RGB
algorithm on the Skylake platforms, the best result is obtained
with ICC with an explicit AoSoA layout. It is two times faster
than the Clang compiler which is the second fastest result but
with an AoS layout. On both ARM platforms, the best result
is obtained with GCC using an explicit AoSoA layout.

If we consider the normalize algorithm on the x86 plat-
forms, we note that for each compiler, execution times are
nearly the same independently of the layout. We observe a
similar result on the ARM platforms. In this case we may
assume that the code is compute bound i.e. the computation
masks the memory accesses. However, if we compare the
results on the x86 platforms from the Clang and the GCC
compiler, we note that the former produces a nearly two times
faster code. On ARM platforms, results obtained with both
compilers are nearly identical, except for AoSoA layout.

For the nbody algorithm, results are really close on x86
platforms independently of the compiler or layout. Interest-
ingly, best results on the TX1 platform are obtained with the
abstract approach using the GCC compiler. We also note that
ICC is able to vectorize the code which is indeed running 16
times faster, which corresponds to the theoretical speedup we
can expect with AVX-512. This confirm that the code is also
memory bound on these platforms.

From these results we conclude that, even on simple codes,

variant Broadwell Skylake TK1 TX1
gcc clang gcc clang icc gcc clang gcc clang

grayscale exp/abs exp/abs exp/abs exp/abs exp/abs exp/abs exp/abs exp/abs exp/abs
aos novec 165/165 146/145 149/153 132/131 255/253 252/252 500/522 367/512
aos auto 125/125 107/108 77/78 54/53 506/522 470/495 132/132 131/131

aos pragma 125/125 107/107 77/78 53/53 190/239 506/522 470/496 132/132 131/131
soa novec 212/212 174/173 180/184 154/154 440/440 394/386 448/449 386/386
soa auto 212/212 175/175 180/184 154/153 443/438 389/392 443/447 385/386
soa pragma 212/212 61/175 180/180 154/153 40/40 447/439 135 /386 441/442 112/385
aosoa novec 217/270 146/266 223/239 132/239 527/597 393/804 408/511 323/581
aosoa auto 217/270 61/263 223/239 132/239 527/599 148/803 410/511 122/581
aosoa pragma 217/270 57 /350 220/239 132/286 41/277 523/597 408/1147 405/513 109 /815

yuv2rgb
aos novec 450/543 614/637 443/533 486/495 591/1223 965/1378 1055/1194 989/1184
aos auto 465/543 270/637 415/476 145/496 591/1223 663/1377 1059/1194 560/1183
aos pragma 543/515 635/413 476/463 472/520 459/181 1221/1016 1378/1168 1191/1144 1183/640
soa novec 595/595 613/572 531/531 520/517 1012/1015 1345/1388 1148/1145 1131/1185
soa auto 515/515 613/570 463/457 518/518 1015/1015 1351/1389 1148/1145 1157/1128
soa pragma 515/515 413/571 463/457 520/524 181/195 1016/1010 1168/1388 1144/1142 640/1135
aosoa novec 476/657 671/754 448/622 541/596 724/1662 1629/1547 1096/1281 1283/1193
aosoa auto 476/713 670/753 424/584 543/593 532/1660 1627/1545 394/1281 1283/1194
aosoa pragma 476/713 669/748 424/584 543/631 61/526 511/1667 1569/1547 396/1281 1285/1193

normalize
aos novec 970/940 543/542 881/881 515/521 3797/3791 3778/3206 1892/1895 1892/1892
aos auto 970/940 541/544 881/881 516/520 3797/3793 3765/3205 1896/1892 1894/1893
aos pragma 970/956 544/545 881/881 518/519 166/398 3769/3765 3767/3765 1892/1895 1892/1892
soa novec 954/954 574/573 884/884 523/521 3092/3092 3081/3079 1895/1896 1901/1902
soa auto 954/954 571/572 884/884 522/521 3096/3097 3087/3079 1895/1894 1903/1896
soa pragma 954/954 568/575 884/884 522/522 123/123 3091/3091 3089/3081 1897/1890 1891/1895
aosoa novec 970/940 554/568 882/882 521/533 3108/3820 3760/3840 1892/1991 1894/2714
aosoa auto 970/940 554/568 882/882 521/533 3101/3821 3760/3841 1896/2062 1892/2707
aosoa pragma 970/940 553/568 882/882 519/533 129/382 3893/3820 3762/3840 1893/2501 1894/2737

nbody
aos novec 1185/1185 1144/1158 1106/1105 1057/1066 3612/3682 3619/3730 2681/2686 2966/3216
aos auto 1185/1199 1144/1134 1104/1123 1059/1049 3610/3594 3623/3604 2681/2380 2969/4087
aos pragma 1197/1199 1220/1228 1111/1111 1153/1168 396/690 3612/3681 3645/3732 2691/2687 2763/3418
soa novec 1200/1199 1134/1134 1123/1123 1061/1055 3761/3598 3775/3608 2504/2381 4121/4088
soa auto 1200/1199 1136/1134 1121/1123 1049/1049 3767/3594 3699/3604 2476/2380 4119/4087
soa pragma 1200/1202 1213/1245 1119/1119 1172/1122 67/74 3765/3590 4313/4204 2440/2373 4207/4087

Fig. 2. Performance with different layout/variant/architecture/compiler combinations (ms).

we can not always rely on compilers to perform automatic
vectorization. Furthermore, even if automatic vectorization
occurs, we need to verify if it achieves the performance of
an explicit vectorization. Thus, we propose to study explicitly
vectorized versions of our codes.

b) Explicit vectorization: We now present results ob-
tained with explicit vectorization approaches. Our goals are:
1) to evaluate the speedup provided by the code vectorization
2) to evaluate if, in the cases when compilers are able to
automatically vectorize the code, it is as efficient as explicit
vectorization, 3) to show that combining our data layout
approach and the Boost.SIMD library can provide the same
level of performance as an explicitly vectorized code with an
explicit data layout.

Results are presented in figure 3 and show that our abstract
layout approach offers the same performance as an explicit
implementation. If we compare with results in figure 2, we
also observe that GCC and Clang are not able to reach the
same level of performance obtained with explicit vectorization.
Only ICC is able to reach a similar performance, but not
for the YUV2RGB code with the SoA layout. Note that,
the Intel compiler is only available for the x86 platforms.
Thus, considering explicit vectorization on ARM platforms
seems mandatory to take advantage of the NEON unit. For
the grayscale algorithm, Clang does not generate a correct

code on both ARM platforms when using an explicit layout.
This behavior is not observed on x86 platforms or when using
our abstract approach. For both normalize and nbody codes,
which are compute bound, we observe a speedup close to the
theoretical speedup we can expect from the underlying SIMD
unit i.e. a speedup of 4 with NEON on the TX1 and TK1
platforms, of 8 with AVX, and of 16 with AVX-512. If we
consider using the Boost.SIMD library, we observe on the
Broadwell platform that the generated assembly code for all
compilers is identical to the one generated from the intrinsics.
We do not report the results in the figure since we obtain the
exact same level of performance.

D. Concluding remarks on assembly codes and performance

a) GCC vs Clang vs ICC: On all platforms, GCC and
Clang produce different assembly codes. The most notable
differences are the way elements are accessed (index com-
putation) and the order of instructions. For example, for the
grayscale code on the Broadwell and Skylake platforms, the
assembly code generated by Clang to access elements is more
concise than GCC which uses additional registers to store
offsets. This is also true for the nbody code but not for the
YUV2RGB one. We also note that automatic vectorization is
not always performed when expected. For example, GCC and
Clang are able to vectorize the grayscale aos auto version but

Broadwell Skylake TK1 TX1
gcc clang gcc clang icc gcc clang gcc clang

grayscale 47/48 48/48 34/34 34/34 34/34 143/141 -/134 154/153 -/101
yuv2rgb 87/87 83/82 51/51 43/48 42/43 386/387 282/283 290/291 206/222
normalize 284/284 266/267 124/124 128/124 123/122 1995/2038 651/658 541/517 519/534
nbody 174/174 197/199 74/74 90/91 65/73 2647/2649 892/910 1095/1083 1193/1196

Fig. 3. Performance (ms) of the vectorized version with the SoA layout.

not the soa one. This is not what we have expected since the
soa access pattern is more simple to vectorize since it does not
require transposition of color components before performing
the computation.

The ICC compiler also generates different assembly codes
and tend to unroll loops more frequently. It is the only one able
to vectorize all codes but does not always better vectorization
than GCC and Clang.

b) Automatic vectorization and pragmas: We observe
that, in most cases, when the compiler vectorizes the code,
adding a pragmas does not bring any further optimization.
In few cases, it provides an additional speedup but only for
the explicit versions. We also note that sometimes adding
pragmas seems to break vectorization. This is the case for the
YUV2RGB code with the aos layout using the Clang compiler
on all the platforms. Sometimes, the generated code is even
slower than the novec versions.

c) Processing of templates: Regarding our approach, we
had expected the generated assembly code to be the same
as the one obtained with the corresponding explicit versions.
Indeed, since our containers are transformed at compile time
into some combinations of tuples and vectors, then the access
pattern is the same as the explicit one. However, we note that
in lots of cases assembly codes differ. In a future study we
propose to verify if the generated intermediate code is different
to determine if this is due to the way templates are processed
by the compiler or if further architectural optimizations are
not performed the same way. Since automatic vectorization is
often performed only for explicit versions, it suggests that the
template mechanisms are more likely to alter optimization.

V. CONCLUSION

The main objective of our approach is to separate the
data layout interface from its underlying representation to
improve the portability and the performance of codes on
current and future architectures. This work is also motivated
by the presence of SIMD units in all modern processors from
smartphones to supercomputers. Thus, we present a single
interface to the user while the data layout is transformed to
take advantage of optimizations like automatic vectorization
by the compiler. The results of our experiments show that
automatic vectorization occurs only in few cases and is not
performed by all compilers, even on simple codes. Thus, we
have investigated the combination of our approach with the
Boost.SIMD library which abstracts the use of SIMD intrinsics
for code vectorization. Using these two abstractions, we are
able to reach the same level of performance as hand written
code with intrinsics and SoA data layout, while keeping a
scalar vision of the code, and ensuring portability on different

architectures. Results show that we are able to reach speedups
of 8 on several codes. In the future, we consider extending
this work to accelerators like GPUs or Intel Xeon Phi, which
are very specific architectures. We also plan to study more
complex layouts for specific applications. Since current stan-
dard compilers are not able to automatically vectorize codes
and to transform data layouts, we believe that extending our
approach is the right way to go.

ACKNOWLEDGMENT

The authors thank Philippe Thierry, principal engineer at
Intel for providing us access to Skylake Xeon platforms and
to Intel tools and compilers.

We also thank Nvidia for providing us the Jetson TK1 board
in the context of an Academic Partnership program.

We also thank Numscale SAS for giving us access to the
bSIMD library.

REFERENCES

[1] P. Estérie, J. Falcou, M. Gaunard, and J.-T. Lapresté, “Boost.SIMD:
generic programming for portable simdization,” in Proceedings of the
2014 Workshop on Programming models for SIMD/Vector processing.
ACM, 2014, pp. 1–8.

[2] E. Calore, N. Demo, S. F. Schifano, and R. Tripiccione, Experience
on Vectorizing Lattice Boltzmann Kernels for Multi- and Many-Core
Architectures. Cham: Springer International Publishing, 2016, pp. 53–
62.

[3] N. Faria, R. Silva, and J. L. Sobral, “Impact of data structure layout on
performance,” in Proceedings of the 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, ser.
PDP ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
116–120.

[4] D. Majeti, K. S. Meel, R. Barik, and V. Sarkar, “Automatic data
layout generation and kernel mapping for cpu+gpu architectures,”
in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: ACM, 2016, pp.
240–250.

[5] D. Majeti, R. Barik, J. Zhao, M. Grossman, and V. Sarkar, “Compiler-
driven data layout transformation for heterogeneous platforms,” in
Euro-Par 2013: Parallel Processing Workshops. Springer, 2013, pp.
188–197.

[6] S. Xu and D. Gregg, “Semi-automatic composition of data layout
transformations for loop vectorization,” in Proceedings of the 11th
International Conference on Network and Parallel Computing, NPC
2014. Springer, 2014, pp. 485–496.

[7] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore performance-portability: Kokkos multidimensional array li-
brary,” Sci. Program., vol. 20, no. 2, pp. 89–114, Apr. 2012.

[8] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portabil-
ity across manycore architectures,” in Proceedings of the 2013 Extreme
Scaling Workshop (Xsw 2013), ser. XSW ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 18–24.

[9] M. Kretz and V. Lindenstruth, “Vc: A c++ library for explicit vectoriza-
tion,” Softw. Pract. Exper., vol. 42, no. 11, pp. 1409–1430, Nov. 2012.

[10] P. Karpiński and J. McDonald, “A high-performance portable abstract
interface for explicit simd vectorization,” in Proceedings of the 8th
International Workshop on Programming Models and Applications for
Multicores and Manycores, ser. PMAM’17. New York, NY, USA:
ACM, 2017, pp. 21–28.

