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Orléans, France

rali@univ-orleans.fr

Pablo Escot Bocanegra
GREMI UMR 7344

CNRS/Université d’Orléans
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Abstract—ARM processors are well known for their energy ef-
ficiency and are consequently widely used in embedded platforms.
Like other processor architectures, they are built with different
levels of parallelism, from Instruction Level Parallelism (out-of-
order and superscalar capabilities) to Thread Level Parallelism
(multicore), to increase their performance levels. These processors
are now also targeting the HPC domain and will equip the Fujitsu
Post-K supercomputer. Some ARM processors from the Cortex-A
series, which equip smartphones and tablets, also provide Data
Level Parallelism through SIMD units called NEON. These units
are able to process 128-bit of data at a time, for example four 32-
bit floating point values. Taking advantage of these units requires
code vectorization which may be performed automatically by the
compiler or explicitly by using NEON intrinsics. Exploiting all
these levels of parallelism may lead to better performance as
well as a higher energy consumption. This is not an issue in
the HPC domain where application development is driven by
finding the best performance. However, developing for embedded
applications is driven by finding the best trade-off between energy
consumption and performance.

In this paper, we propose to study the impact of vectorization
and multithreading on both performance and energy consump-
tion on some Nvidia Jetson boards. Results show that depending
on the algorithm and on its implementation, vectorization may
bring a similar speedup as an OpenMP scalar implementation
but with a lower energy consumption. However, combining
vectorization and multithreading may lead close to both the best
performance level and the lowest energy consumption but not
when running cores at their maximum frequencies.

Index Terms—vectorization, SIMD, multithreading, energy con-
sumption

I. INTRODUCTION

The ARM architecture has evolved in the same way as
the x86 architecture by adopting parallel technologies such
as SIMD (Single Instruction on Multiple Data) units and
multicore designs to increase the performance of processors.

Furthermore, multicore architectures are also interesting in
that they decrease the energy consumption of a chip by
disabling some of its cores and reducing their frequencies.
The ARM big.LITTLE architecture also offers a combination
of different clusters of cores, some with faster power-hungry
cores and some with slower energy-efficient cores, within the
same processor. Depending on the workload, processes may
be migrated from one cluster to another.

SIMD units provide another way to increase the core
performance by applying a single instruction to several data
at the same time depending on its width. The ARM SIMD
unit is called NEON and is 128-bit wide. Thus, it is able
to process four 32-bit floating point values or sixteen 8-
bit integral values at the same time so we can theoretically
expect the corresponding performance speedup. Since pro-
cessing data in a SIMD way requires fewer instructions to
decode (one SIMD instruction replaces several scalar ones),
we can expect a slightly lower energy consumption than for
a scalar computation. However, SIMD units are larger than
scalar ones thus requiring more power to perform one SIMD
instruction compared to its scalar version. On x86 processors,
using larger AVX and AVX-512 units automatically reduces
the core frequency to limit the power drained by the cores.
This is not the case for smaller NEON units. Thus, using
SIMD units may reduce the computation time thus the energy
needed for the computation, while at the same time it increases
the power required by the cores. Several approaches are
available for code vectorization. First, compilers may be able
to perform automatic vectorization in some cases. However,
there is no guarantee that the vectorization occurs or that
the resulting vectorized code is optimal. Adding OpenMP
SIMD pragmas in front of vectorizable loops may help the
compiler vectorization process. Another possibility is to use



the compiler SIMD intrinsics which offers specific types and
instructions to explicitly vectorize the code. Since intrinsics are
not portable from one architecture to another, one can also use
libraries such as Boost.SIMD[1]/bSIMD or MIPP[2], written
in C++, which allow higher level abstractions, by providing
vector types and overloaded operators. It is also possible to use
domain-specific SIMD optimized libraries such as MKL (only
for x86 platforms), Eigen, OpenBLAS, FFTW or Arch-R.

In order to determine if exploiting SIMD units and mul-
tithreading is interesting for both performance and energy
consumption, we propose to run different codes on some
Nvidia Jetson boards equipped with ARM processors. We
measure the energy by means of a measurement platform
inserted between the power supply and the board. For each
code, we measure the required amount of energy and the
speedup provided by its explicit vectorized version over its
reference scalar version. Theoretically, a NEON unit in a
single core may offer the same speedup as four cores in scalar
mode when processing 32-bit floating point values. Thus, an
OpenMP version is also provided to compare the effects of
vectorization versus multi-threading and also to study the
combination of both approaches.

The paper is organized as follows. In section 2, we present
the related work. In section 3, we give more details about
boards characteristics and the measurement platform. In sec-
tion 4, we present the algorithms used for our experiments and
their different implementations. Then, in section 5, we discuss
the experimental results. Finally, we conclude on our current
work and propose some future studies.

II. RELATED WORK

The energy-performance trade-off may be studied from the
architecture side, by modifying hardware characteristics, from
the software side, by studying code optimizations.

On the architecture side, many papers investigate the use of
Dynamic Voltage and Frequency Scaling (DVFS) on various
architectures. In [3], the use of DVFS is driven by a predictive
model to guarantee some QoS criteria. This study focuses on
the activation of x86 CPU cores and the modification of their
frequencies depending on the predicted workload to optimize
both the throughput and the latency. In [4] and [5], the authors
study the impact of DVFS on the energy-performance trade-
off for an HPC Lattice Boltzmann application on two different
architectures: respectively an ARM-based Jetson TK1 board
and an x86 platform with dedicated GPUs. Results show that
it is an interesting approach for memory-bound codes.

On the software side, several approaches are investigated.
In [6], the authors propose a compilation framework based on
an energy model to study the influence of SIMD operations on
energy consumption for a Digital Signal Processor (DSP). On
this particular architecture, applying this approach to several
algorithms allows an average reduction of 72% of the energy
needed and of 76% of the execution time over a scalar
implementation. GPUs are also composed of big SIMD units.
In [7], the authors measure the impact of some source code
optimizations on performance and energy consumption. In [8],

the authors propose a measurement technique on GPUs to
estimate the per-component power of each GPU component,
thus providing a model for estimating the energy consumption.
At a higher level, the impact of the parallel programming
paradigm is also considered in [9][10].

In this paper, we propose to combine both architecture
and software sides to optimize the performance and energy
consumption on ARM-based platforms. On the architecture
side, DVFS techniques allow us to enable cores, to change
their frequencies and also to modify the memory frequency. On
the software side, we study the effect of both multithreading
and vectorization.

III. EXPERIMENTAL PLATFORM

A. Jetson boards

We consider the Jetson TK1 and TX1 boards, running their
default Ubuntu operating system. We chose these boards as
they are equipped with similar ARM-based processors as those
widely used in mobile devices such as smartphones and tablets.
Boards characteristics are summarized in table 1. The TK1 is
equipped with five 32-bit ARM cores divided into two clusters.
The first cluster is called Low Power (LP) and contains a
single energy efficient core which is mainly used when the
system is in idle state. The second one contains four Cortex-
A15 cores and is used for more complex tasks. The TX1
is more recent and is equipped with four 64-bit Cortex-A57
ARM cores. These boards are also equipped with embedded
GPUs which share the same memory, but we only consider the
CPU cores in our study. It is possible to manually control the
CPU and memory frequencies and the number of active cores
through a simple interface provided by the Linux kernel. This
is an important feature which justifies the use of these ARM
platforms for our study since x86 platforms do not provide
such a fine control on cores and memory.

Jetson TK1 Jetson TX1
processor 4x Cortex-A15 4x Cortex-A57
cpu freq. 51 - 2,065 102 - 1,734
cache 32KB L1D/128KB L2 32KB L1D/2MB L2
memory 2GB DDR3L 4GB LPDDR4
mem. freq. 12.75 - 924.0 40.8 - 1,600.0
GPU 192 Kepler cores 256 Maxwell cores
GPU freq. 72.0 - 852.0 76.8 - 998.4

Fig. 1: Jetson boards characteristics (freq. in MHz).

B. Measurement platform

Our measurement platform is composed of 2 stabilized
power supplies, a Jetson board, an Arduino board, a current
sensor and a PC computer to collect data (see figure 2). A
stabilized power supply provides a good quality 19V current
to the Jetson board. A hall effect sensor measures this current
intensity. To stabilize our measurements we choose not to
take into account the fan current. Fans are connected to a
separate power supply. The Arduino converts the analog output
of the sensor into digital information at 500Hz frequency. The
Arduino stores this information and uses a USB connection
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to send an average value, on a regular basis (every 0.1s), to
a PC computer which gathers all the data. The Jetson uses a
serial connection to send a signal to the PC informing it of the
beginning and the end of a run. This allows the PC to know
the duration T (second) of a run and the average intensity Ii
(Ampere) for each time unit ti (second). Note that all time
units are equal to t = 0.1s. The total number of time units N
during a run is given by N = T/t, we have: T =

∑N
i=1 ti. For

each time unit we deduce the average power Pi = Ii ∗ 19volt
(Watt). The total energy consumption of a run is given by
E =

∑N
i=1 ti ∗ Pi (joule).

The core of our measurement platform is composed of
a customized analog converter which measures the current
applied to the board. To guarantee measurement accuracy, we

took special precautions with the design of this instrument.
The converter components are described in figure 3. It works
as follows. A +19V stabilized power goes through a hall
effect current sensor IC (ACS723) to supply the Jetson TX1
(resp. +12V for the TK1). This sensor generates a proportional
voltage with a sensibility of 0.4mV/A. The zero current output
voltage is half the supply voltage, here about Vcc = 5V
depending on the USB powering the Arduino. So we just
need to compute I(A) =

(Voutsensor− 5
2 )

0.4 to obtain the cur-
rent intensity. Note that we need to transform the ASC723
output signal in order to exploit the whole range of the
Arduino analog input (i.e. between 0V and 5V), so we use
an instrumentation differential amplifier (LT1167) between the
sensor and the Arduino. This IC amplifies by a factor G the
voltage difference between the sensor output (Vin+ ) and an
adjustable Vin−= 5

2 V (which corresponds to the zero current
output of the ACS723) and adds this result to a reference
voltage Vref (an adjustable 1V). The Arduino analog input
voltage Vout is then given by : Vout−Vref = G(Vin+ −Vin−)
this gives here: Vout − 1 = G(Voutsensor − 5

2 ) and then:
Voutsensor = (Vout−1)

G + 5
2 . The gain is computed from this

equation: G = 49.4kΩ
RG

+ 1. The two references 5
2 V and 1V

should not be altered, otherwise, measurements may be less
accurate. To ensure this, we isolate them with operational
amplifiers used in the circuit as follows (MC34072). Finally,
we obtain the current consumed by the Jetson with this
equation:

I(A) =
( (Vout−1)

G )

0.4
=

( (Vout−1)
49.4kΩ

RG
+1

)

0.4
=

(
(
DigitalOutputArdui

1023 Vcc−1)
49.4kΩ

RG
+1

)

0.4

To sum up, the use of this custom design offers the
capability to adjust and isolate reference voltage and to exploit
the whole range of the Arduino analog input. This is the main
contribution of this converter.

IV. ALGORITHMS

We consider two different algorithms in this study which are
good candidates for vectorization. Other algorithms were also
studied like an YUV to RGB image conversion and vector
normalization but are not presented here since results are
similar to those obtained with the following grayscale image
conversion.

A. Grayscale image conversion

We have chosen this algorithm since, in the image process-
ing domain, it is often the first step performed before applying
more complex filters, for example edge detection filters like the
Sobel one. It is a simple algorithm which, for each pixel of an
image, consists in taking its three components and computing
the resulting level of gray according to the following formula:

gray =
307 ∗R+ 604 ∗G+ 113 ∗B

1024
(1)

Components are encoded as 8-bit unsigned integers and are
stored in an Array of Structure (AoS) layout. These values
are accumulated, thus it is necessary to use 32-bit unsigned



integers for intermediate results. The scalar implementation
is straightforward. However the NEON implementation is
much more complex and requires more than fifty lines of
code. Listing 1 shows a condensed version of this code to
illustrate the verbosity brought by the use of intrinsics. The
vldq3q_u8 intrinsics loads 48 8-bit values, i.e. 16 pixels,
and deinterleaves them into a structure composed of three
separate NEON registers, one for each color component. Most
additional intrinsics are used to convert 8-bit values to 32-bit,
then back to 8-bit. Note that, vget_low and vget_high
intrinsics do not produce assembly instructions since 128-bit
NEON registers are composed of two 64-bit registers directly
accessible with their own register names.

Sixteen pixels are loaded at the same time, but computation
is done four by four pixels since 8-bit values need to be con-
verted to 32-bit values. In this case, we can expect computation
to be the preponderant limiting factor over memory transfers
and thus giving a speedup close to the theoretical one when
operating on 32-bit values. We can expect a multithreaded
version to have a similar behavior.

Listing 1: Grayscale NEON version.
f o r ( s t d : : s i z e t i =0 ; i < o u t . s i z e ( ) / 1 6∗1 6 ; i +=16) {

/ / Load 16 p i x e l s ( AoS −> SoA ) .
u i n t 8 x 1 6 x 3 t rgb = vld3q u8 ( &i n [ 3 ∗ i ] ) ;
/ / S p l i t 8−b i t v e c t o r s .
u i n t 8 x 8 t r0 = vge t low u8 ( rgb . v a l [ 0 ] ) ;
u i n t 8 x 8 t r1 = v g e t h i g h u 8 ( rgb . v a l [ 0 ] ) ;
u i n t 8 x 8 t g0 = vge t low u8 ( rgb . v a l [ 1 ] ) ;
u i n t 8 x 8 t g1 = v g e t h i g h u 8 ( rgb . v a l [ 1 ] ) ;
u i n t 8 x 8 t b0 = vge t low u8 ( rgb . v a l [ 2 ] ) ;
u i n t 8 x 8 t b1 = v g e t h i g h u 8 ( rgb . v a l [ 2 ] ) ;
/ / Conve r t u i n t 8 t o u i n t 1 6 .
u i n t 1 6 x 8 t R0 = vmovl u8 ( r0 ) ;
u i n t 1 6 x 8 t R1 = vmovl u8 ( r1 ) ;
u i n t 1 6 x 8 t G0 = vmovl u8 ( g0 ) ;
u i n t 1 6 x 8 t G1 = vmovl u8 ( g1 ) ;
u i n t 1 6 x 8 t B0 = vmovl u8 ( b0 ) ;
u i n t 1 6 x 8 t B1 = vmovl u8 ( b1 ) ;
/ / S p l i t 16− b i t s v e c t o r s .
u i n t 1 6 x 4 t R00 = vget low u16 ( R0 ) ;
u i n t 1 6 x 4 t R01 = v g e t h i g h u 1 6 ( R0 ) ;
u i n t 1 6 x 4 t R10 = vget low u16 ( R1 ) ;
u i n t 1 6 x 4 t R11 = v g e t h i g h u 1 6 ( R1 ) ;
/ / M u l t i p l y u i n t 1 6 v e c t o r s , c o n v e r t t o u i n t 3 2 .
u i n t 3 2 x 4 t O00 = vmul l u16 ( R00 , v307 ) ;
u i n t 3 2 x 4 t O01 = vmul l u16 ( R01 , v307 ) ;
u i n t 3 2 x 4 t O10 = vmul l u16 ( R10 , v307 ) ;
u i n t 3 2 x 4 t O11 = vmul l u16 ( R11 , v307 ) ;

/ / Same as 8 l i n e s above f o r t h e G and B components .

/ / S h i f t by 10 b i t s and c o n v e r t back t o 16− b i t .
u i n t 1 6 x 4 t P00 = vshrn n u32 ( O00 , 10 ) ;
u i n t 1 6 x 4 t P01 = vshrn n u32 ( O01 , 10 ) ;
u i n t 1 6 x 4 t P10 = vshrn n u32 ( O10 , 10 ) ;
u i n t 1 6 x 4 t P11 = vshrn n u32 ( O11 , 10 ) ;
/ / Merge v e c t o r s .
u i n t 1 6 x 8 t T0 = vcombine u16 ( P00 , P01 ) ;
u i n t 1 6 x 8 t T1 = vcombine u16 ( P10 , P11 ) ;
/ / Conve r t back t o u i n t 8 v a l u e s .
u i n t 8 x 8 t U0 = vmovn u16 ( T0 ) ;
u i n t 8 x 8 t U1 = vmovn u16 ( T1 ) ;
/ / Merge i n t o a s i n g l e r e g i s t e r .
u i n t 8 x 1 6 t r e s u l t = vcombine u8 ( U0 , U1 ) ;
/ / S t o r e r e g i s t e r t o memory .
v s t 1 q u 8 ( &o u t [ i ] , r e s u l t ) ;

}

B. Matrix multiplication

Multiplying two matrices A and B basically consists in
performing the dot product of a line of A with a column of
B for each element in the resulting matrix C. The resulting
code consists of three nested loops, the two outer ones to
traverse matrix C and the innermost one to perform the dot
product. However, this approach is not cache efficient nor
SIMD friendly since elements in matrix B are not accessed
contiguously. A classic way to solve this is to swap the two in-
nermost loops. The NEON implementation is straightforward,
it only requires modifying the inner loop to process four 32-bit
floating point values at a time.

The performance behavior of this algorithm may be different
from the previous one since only a Fused Multiply-Add in-
struction is performed by iteration while requiring two register
loads and one store. For large matrices, which do not fit into
cache, performance may be limited by the memory bandwidth.
Thus, we can study the behavior of the combination of
both cache and NEON mechanisms and compare it with the
multithreaded version.

In the experimental results section, we also compare the
behavior of our implementation to those obtained with the
highly optimized OpenBLAS library. This library contains
specific ARM AArch32 and AArch64 NEON implementations
written in assembly and performs matrix transformation prior
to the computation to optimize memory accesses. Thus, we
are also able to discuss the impact of memory optimization
on performance and energy consumption.

Listing 2: Matrix multiplication, NEON version.
f o r ( s t d : : s i z e t j = 0 ; j < dim ; ++ j ) {

s t d : : s i z e t j s = j ∗ dim ;
f o r ( s t d : : s i z e t k = 0 ; k < dim ; ++k ) {

i n t ks = k ∗ dim ;
f l o a t 3 2 x 4 t rA = v ld1q dup f32 ( &A[ j s + k ] ) ;
f o r ( s t d : : s i z e t i = 0 ; i < dim ; i +=4 ) {

f l o a t 3 2 x 4 t rC = v l d 1 q f 3 2 ( &C[ j s + i ] ) ;
f l o a t 3 2 x 4 t rB = v l d 1 q f 3 2 ( &B[ ks + i ] ) ;
rC += rA ∗ rB ;
v s t 1 q f 3 2 ( &C[ j s + i ] , rC ) ;

}
}

}

V. EXPERIMENTAL RESULTS

A. Setup and protocol

The GCC 7 and Clang 5 compilers were both used in
our experiments. Since Clang offers similar or slightly better
results on both platforms we only present results obtained
with this compiler. We enable compiler optimizations by
adding the -O3 flag and setting the -march flag to the
corresponding ARM architecture. For the TK1 board, we also
add the flag -mfpu=neon-vfpv4 to enable the generation
of FMA instructions. To prevent automatic vectorization (by
default, the -O3 flag enables the -ftree-vectorize,
-vectorize-loops and -vectorize-slp flags), we
add the -fno-tree-vectorize, -fno-vectorize and
-fno-slp-vectorize compilation flags. Note that, we
have also studied the impact of automatic vectorization on



the grayscale and on the matrix multiplication codes. In [11],
we show that both GCC and Clang compilers are able to
automatically vectorize the grayscale code only on the TX1
board. However, we noticed some very erratic behavior of
the compilers on both boards and showed that automatic
vectorization is not reliable to obtain a systematic and co-
herent speedup. Furthermore, for both grayscale and matrix
multiplication codes, we always obtain better results by using
intrinsics. Thus in this study we only discuss results obtained
with scalar and explicitly vectorized versions of the codes.

For each code, we measure its performance and energy
consumption for four different versions: 1) scalar 2) NEON
3) scalar+OpenMP with four threads 4) NEON+OpenMP
version with four threads. For the grayscale code, we present
additional results obtained with two cores to discuss the
scalability depending on the number of cores. The scalability
of the matrix multiplication code is not presented since we
observe a similar behavior. Tests are performed using the
userspace governor which allows manual control of both core
and memory frequencies as well as enabling or disabling
the cores individually. We have purposely ignored the lowest
frequencies in our experiments since we have experienced
instabilities in the system behavior or in our results.

For the sake of clarity, we only present and discuss the
results obtained on the TX1 board since codes scale the same
way and similar behavior are observed on the TK1.

B. Results for the grayscale code

Figures 4 and 5 show the execution time and energy
consumption for the different implementations of the grayscale
code depending on the CPU frequency. Each test consists
in performing 30 iterations on an input RGB image of size
14400x7200 (311.04 MB). The memory frequency is fixed to
1.6 GHz which is the highest possible value. We first discuss
the execution time of the different implementations.

Fig. 4: Grayscale: execution times depending on the CPU
frequency.

The scalar code scales very well with the CPU frequency
and the number of cores, in this case the code is compute-
bound. The NEON and OpenMP implementations scale very
well at low frequencies and offer respective speedups of
2.9 and 3.5 with four threads over the scalar version, close
to the ideal speedup of 4. At all frequencies, the OpenMP

Fig. 5: Grayscale: energy consumption depending on the CPU
frequency.

version with four threads is around 15% faster than the NEON
version. At 400MHz, the NEON+OpenMP version is around 3
times faster than the OpenMP and NEON versions. However,
increasing the CPU frequency does not provide any significant
speedup above 1GHz. In this case, the code is likely to become
memory-bound.

The energy consumption does not scale in the same way as
the execution time. For the scalar version, the energy consump-
tion decreases until the CPU frequency reaches 1.428GHz.
Then, it remains the same and rises slightly at 1.734GHz.
The curves for the other versions exhibit the same pattern,
but not at the same frequencies and with the same range.
We observe that OpenMP versions without NEON require
much more energy, at least two times more that their cor-
responding OpenMP+NEON versions. The OpenMP version
with four threads reaches its minimum energy consump-
tion at 1.224GHz, the NEON version at 1.428GHz, and the
NEON+OpenMP version at 1.036GHz. However, the NEON
version consumes less energy than the OpenMP version and
the gap between these two versions grows with the CPU
frequency.

From figures 4 and 5 we can make the following statements
for the grayscale versions with a memory frequency set to
1.6GHz. The NEON version consumes less energy (up to
45% at the highest CPU frequency) than the OpenMP version
but is slightly slower (around 15% at all CPU frequencies).
The energy consumption does not scale as the performance.
This is due to the energy cost of the computation which
represents only a fraction of the base energy consumption
of the CPU. When the code is compute-bound, increasing
the CPU frequency brings more performance while reducing
the energy consumption up to some point. Then, performance
continues to increase but energy consumption stagnates then
starts growing. We explain this by the increase of the CPU
voltage required to sustain higher CPU frequencies. Figure 6
shows the voltage applied to the CPU depending on its
frequency. Indeed, the average power consumption of a CPU
can be modeled as in [5]:

Pavg = fCV 2 + Pstatic (2)

where f is the CPU frequency, C the capacitance of transistor
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Fig. 6: CPU voltage depending on the frequency.

gates, V the supply voltage and Pstatic the static power
when the CPU is idle, also accounting for leakage currents.
Thus, if increasing the CPU frequency does not provide
enough additional performance, then energy consumption
may increase. For the grayscale algorithm, it is possible to
achieve best performance while consuming less energy with
the NEON+OpenMP version and a CPU set at 1.036GHz.

We perform the same test for each memory frequency
available. Figure 7 shows the results in 3D when both memory
and CPU frequencies are modified. The color represents the
energy consumption for the corresponding core and memory
frequencies. We observe that above 800MHz, the memory
frequency has very few impact on performance for all the
versions. This is not expected since we have stated above that
the code is likely to become memory-bound at higher CPU
frequencies and core numbers. To explain this behavior, we
propose to study how the memory bandwidth evolves with its
frequency and the number of cores.

C. Study of the memory bandwidth

To determine the memory bandwidth depending on the
External Memory Controller (EMC) frequency we run the
STREAM benchmark on both platforms. Figure 8 shows
results obtained with the STREAM Copy benchmark on the
TX1 platform for different EMC frequencies and for 1, 2 and
4 threads. Results on the TK1 are lower since the memory is
one generation older and clocked lower as detailed in table 1.

We observe that the memory bandwidth does not scale
linearly with the EMC frequency. Thus, we can not expect
a linear speedup when increasing the EMC frequency for
memory-bound codes. Another interesting result is that using
4 threads allows us to reach a higher memory bandwidth.
However, it does not scale linearly with the number of cores
since cores share the same memory controller.

D. Results for the matrix multiplication code

We perform the matrix multiplication as explained in sec-
tion IV-B. The matrix size is set to 2048× 2048. Results are
shown in figure 9.

The NEON version is not as fast as expected and provides
only a speedup of 1.2 over the scalar version. The OpenMP

version on the other hand offers an ideal speedup of 4 at
the lowest core frequencies and of 2.7 at the highest ones.
In this particular case, the NEON version is not efficient since
the OpenMP version offers a better performance and a lower
energy consumption. This is due both to a bad cache usage
and to not enough interleaving of NEON instructions to hide
their latencies. The matrix B does not fit into the L2 cache and
the NEON version needs to traverse this matrix for computing
each line of matrix C, thus matrix B is loaded 2048 times. The
OpenMP version splits the external loop across four threads.
Each thread performs the multiplication of a sub-matrix of A
by the matrix B. Thus, when one of the threads accesses some
data in matrix B for the first time, these data are placed in
the L2 cache. As a result, the same data only needs to be sent
from L2 to L1 cache when the other threads need to access
them. In the best scenario where all threads are synchronous,
matrix B is only traversed 512 times.

However, combining OpenMP and NEON for this code
is particularly interesting since it provides no performance
improvement but reduces the energy consumption by around
20% at all frequencies. Our hypothesis is that the combination
of the two following mechanisms may explain this behavior:
1) Adding NEON intrinsics to the OpenMP code does not
improve the performance at all, meaning that the code is
likely to be memory-bound. In this case, the NEON unit
waits four times more than a scalar unit, thus the core may
require less energy. 2) Decoding a NEON instruction takes
the same amount of time and energy than a scalar unit. Thus,
if the NEON instructions are less frequent and cost the same
as scalar instructions, the energy consumption automatically
decreases. Other mechanisms like power gating may also
automatically disable some processor parts in such cases.
However processor implementation details at this level are not
available.

The OpenBLAS library provides a more optimized imple-
mentation by reorganizing matrices, performing computation
by tiles, and completely unrolling the computation of each tile
to hide NEON instruction latencies. Results obtained with this
library show that for one thread it is around 5 times faster than
the previous NEON implementation. However, it is difficult
to determine which part of the speedup is brought about by
the use of NEON or by the cache improvement since no
comparable scalar implementation is available. The OpenMP
version provides an additional speedup of 3. Note that, in
this case we observe the same behavior as with the grayscale
algorithm: at some point, performance does not improve by
increasing the CPU or memory frequency, but the energy
consumption increases.

E. Remarks on the OpenMP vs NEON energy consumption

For the grayscale code, the gap in energy consumption
between the NEON version on one core and the OpenMP
version on four cores is at most 42% (CPU frequency set
at 1.734GHz in figure 5). We would have expected a much
greater difference between the NEON version and the OpenMP
version, since only one core is running instead of four. To find
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Fig. 8: STREAM Copy results for the TX1 board

an explanation, we have compared the energy consumption
obtained for the NEON version (one thread only) with the
two following configurations: 1) when using the ondemand
governor with a CPU frequency capped at 1.6GHz, 2) when
using the userspace governor with all the cores enabled at
1.6GHz. The ondemand governor may disable some cores
since the process resides only in one core, thus reducing
the energy consumption. However, we obtain the exact same
energy consumption in both cases. This suggests that cores
are not idle at the hardware level i.e. that Pstatic is the
preponderant term in formula 2. Thus, it prevents a significant
lower energy consumption for the NEON version over the
OpenMP version.

VI. CONCLUSION AND FUTURE WORK

We show in this paper that better performance as well as
lower energy consumption, in comparison with scalar imple-
mentations, are possible when codes are SIMD friendly. In the
best case, vectorization brings speedup close to the theoretical
one, and similar speedup as multithreading with OpenMP,
while requiring less energy. On codes with cache issues,
like the matrix multiplication implementation we propose, the
vectorization only brings a fraction of the theoretical speedup
but still requires less energy than the scalar implementation. In
all the cases, the combination of NEON with OpenMP allows
to achieve both the best performance and the lowest energy
consumption.

Several directions are possible following this work. We plan
to extend our study to new ARM architectures, especially
big.LITTLE ones, since it adds another dimension with the
possibility to map threads on different clusters. Another direc-
tion is the study of the future ARM SIMD unit called SVE,
with up to 2048-bit wide SIMD registers, but which is not
yet available. A last direction is to propose a framework to
help the developer find the best configuration depending on
the performance or energy expectations.
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