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Abstract

A common assumption in recommender systems (RS) is the existence of a best
fixed recommendation strategy. Such strategy may be simple and work at the item
level (e.g., in multi-armed bandit it is assumed one best fixed arm/item exists) or
implement more sophisticated RS (e.g., the objective of A/B testing is to find the
best fixed RS and execute it thereafter). We argue that this assumption is rarely
verified in practice, as the recommendation process itself may impact the user’s
preferences. For instance, a user may get bored by a strategy, while she may gain
interest again, if enough time passed since the last time that strategy was used. In
this case, a better approach consists in alternating different solutions at the right
frequency to fully exploit their potential. In this paper, we first cast the problem as
a Markov decision process, where the rewards are a linear function of the recent
history of actions, and we show that a policy considering the long-term influence
of the recommendations may outperform both fixed-action and contextual greedy
policies. We then introduce an extension of the UCRL algorithm (LINUCRL) to
effectively balance exploration and exploitation in an unknown environment, and
we derive a regret bound that is independent of the number of states. Finally,
we empirically validate the model assumptions and the algorithm in a number of
realistic scenarios.

1 Introduction

Consider a movie recommendation problem, where the recommender system (RS) selects the genre
to suggest to a user. A basic strategy is to estimate user’s preferences and then recommend movies of
the preferred genres. While this strategy is sensible in the short term, it overlooks the dynamics of the
user’s preferences caused by the recommendation process. For instance, the user may get bored of
the proposed genres and then reduce her ratings. This effect is due to the recommendation strategy
itself and not by an actual evolution of user’s preferences, as she would still like the same genres, if
only they were not proposed so often.1

The existence of an optimal fixed strategy is often assumed in RS using, e.g., matrix factorization to
estimate users’ ratings and the best (fixed) item/genre [15]. Similarly, multi-armed bandit (MAB)
algorithms [4] effectively trade off exploration and exploitation in unknown environments, but still
assume that rewards are independent from the sequence of arms selected over time and they try
to select the (fixed) optimal arm as often as possible. Even when comparing more sophisticated
recommendation strategies, as in A/B testing, we implicitly assume that once the better option
(either A or B) is found, it should be constantly executed, thus ignoring how its performance may
deteriorate if used too often. An alternative approach is to estimate the state of the user (e.g., her

1In this paper, we do not study non-stationarity preferences, as it is a somehow orthogonal problem to the
issue that we consider.
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level of boredom) as a function of the movies recently watched and estimate how her preferences are
affected by that. We could then learn a contextual strategy that recommends the best genre depending
on the actual state of the user (e.g., using LINUCB [16]). While this could partially address the
previous issue, we argue that in practice it may not be satisfactory. As the preferences depend on
the sequence of recommendations, a successful strategy should “drive” the user’s state in the most
favorable condition to gain as much reward as possible in the long term, instead selecting the best
“instantaneous” action at each step. Consider a user with preferences 1) action, 2) drama, 3) comedy.
After showing a few action and drama movies, the user may get bored. A greedy contextual strategy
would then move to recommending comedy, but as soon as it estimates that action or drama are
better again (i.e., their potential value reverts to its initial value as they are not watched), it would
immediately switch back to them. On the other hand, a more farsighted strategy may prefer to stick
to comedy for a little longer to increase the preference of the user for action to its higher level and
fully exploit its potential.

In this paper, we propose to use a reinforcement learning (RL) [22] model to capture this dynamical
structure, where the reward (e.g., the average rating of a genre) depends on a state that summarizes the
effect of the recent recommendations on user’s preferences. We introduce a novel learning algorithm
that effectively trades off exploration and exploitation and we derive theoretical guarantees for it.
Finally, we validate our model and algorithm in synthetic and real-data based environments.

Related Work. While in the MAB model, regret minimization [2] and best-arm identification
algorithms [10, 21] have been often proposed to learn effective RS, they all rely on the assumption
that one best fixed arm exists. [7] study settings with time-varying rewards, where each time an arm
is pulled, its reward decreases due to loss of interest, but, unlike our scenario, it never increases again,
even if not selected for a long time. [13] also consider rewards that continuously decrease over time
whether the arm is selected or not (e.g., modeling novelty effects, where new products naturally loose
interest over time). This model fits into the more general case of restless bandit [e.g., 6, 24, 19],
where each arm has a partially observable internal state that evolves as a Markov chain independently
from the arms selected over time. Time-varying preferences has also been widely studied in RS.
[24, 14] consider a time-dependent bias to capture seasonality and trends effect, but do not consider
the effects on users’ state. More related to our model is the setting proposed by [20], who consider an
MDP-based RS at the item level, where the next item reward depends on the previously k selected
items. Working at the item level without any underlying model assumption prevents their algorithm
from learning in large state spaces, as every single combination of k items should be considered
(in their approach this is partially mitigated by state aggregation). Finally, they do not consider
the exploration-exploitation trade-off and they directly solve an estimated MDP. This may lead to
an overall linear regret, i.e., failing to learn the optimal policy. Somewhat similar, [11] propose a
semi-markov model to decide what item to recommend to a user based on her latent psychological
state toward this item. They assumed two possible states: sensitization, state during which she is
highly engaged with the item, and boredom, state during which she is not interested in the item.
Thanks to the use of a semi-markov model, the next state of the user depends on how long she has
been in the current state. Our work is also related to the linear bandit model [16, 1], where rewards
are a linear function of a context and an unknown target vector. Despite producing context-dependent
policies, this model does not consider the influence that the actions may have on the state and thus
overlook the potential of long-term reward maximization.

2 Problem Formulation

We consider a finite set of actions a ∈ {1, . . . ,K} = [K]. Depending on the application, actions
may correspond to simple items or complex RS. We define the state st at time t as the history of the
last w actions, i.e., st = (at−1, · · · , at−w), where for w = 0 the state reduces to the empty history.
As described in the introduction, we expect the reward of an action a to depend on how often a has
been recently selected (e.g., a user may get bored the more a RS is used). We introduce the recency
function ρ(st, a) =

∑w
τ=1 1{at−τ = a}/τ , where the effect of an action fades as 1/τ , so that the

recency is large if an action is often selected and it decreases as it is not selected for a while. We
define the (expected) reward function associated to an action a in state s as

r(st, a) =

d∑
j=0

θ∗a,jρ(st, a)j = xTs,aθ
∗
a, (1)
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Figure 1: Average rating as a function of the recency for different genre of movies (w = 10) and predictions of
our model for d=5 in red. From left to right, drama, comedy, action and thriller. The confidence intervals are
constructed based on the amount of samples available at each state s and the red curves are obtained by fitting
the data with the model in Eq. 1.

where xs,a = [1, ρ(s, a), · · · , ρ(s, a)d] ∈ Rd+1 is the context vector associated to action a in
state s and θ∗a ∈ Rd+1 is an unknown vector. In practice, the reward observed when selecting a at
st is rt = r(st, a) + εt, with εt a zero-mean noise. For d = 0 or w = 0, this model reduces to the
standard MAB setting, where θ∗a,0 is the expected reward of action a. Eq. 1 extends the MAB model
by summing the “stationary” component θ∗a,0 to a polynomial function of the recency ρ(st, a). While
alternative and more complicated functions of st may be used to model the reward, in the next section
we show that a small degree polynomial of the recency is rich enough to model real data.

The formulation in Eq. 1 may suggest that this is an instance of a linear bandit problem, where
xst,a is the context for action a at time t and θ∗a is the unknown vector. Nonetheless, in linear
bandit the sequence of contexts {xst,a}t is independent from the actions selected over time and the
optimal action at time t is a∗t = arg maxa∈[K] x

T
st,aθ

∗
a,2 while in our model, xst,a actually depends

on the state st, that summarizes the last w actions. As a result, an optimal policy should take into
account its effect on the state to maximize the long-term average reward. We thus introduce the
deterministic Markov decision process (MDP)M = 〈S, [K], f, r〉 with state space S enumerating the
possible sequences of w actions, action space [K], noisy reward function in Eq. 1, and a deterministic
transition function f : S × [K]→ S that simply drops the action selected w steps ago and appends
the last action to the state. A policy π : S → [K] is evaluated according to its long-term average
reward as ηπ = limn→∞ E

[
1/n

∑n
t=1 rt

]
, where rt is the (random) reward of state st and action

at = π(st). The optimal policy is thus π∗ = arg maxπ η
π, with optimal average reward η∗ = ηπ

∗
.

While an explicit form for π∗ cannot be obtained in general, an optimal policy may select an action
with suboptimal instantaneous reward (i.e., action at = π(st) is s.t. r(st, at) < maxa r(st, a)) so as
to let other (potentially more rewarding) actions “recharge” and select them later on. This results into
a policy that alternates actions with a fixed schedule (see Sec. 5 for more insights).3 If the parameters
θ∗a were known, we could compute the optimal policy by using value iteration where a value function
u0 ∈ RS is iteratively updated as

ui+1(s) = max
a∈[K]

[
r(s, a) + ui

(
f(s, a)

)]
, (2)

and a nearly-optimal policy is obtained after n iterations as π(s) = maxa∈[K][r(s, a) + un(f(s, a))].
Alternatively, algorithms to compute the maximum reward cycle for deterministic MDPs could be
used [see e.g., 12, 5]. The objective of a learning algorithm is to approach the performance of the
optimal policy as quickly as possible. This is measured by the regret, which compares the reward
cumulated over T steps by a learning algorithm and by the optimal policy, i.e.,

∆(T ) = Tη∗ −
T∑
t=1

r(st, at), (3)

where (st, at) is the sequence of states and actions observed and selected by the algorithm.

3 Model Validation on Real Data

In order to provide a preliminary validation of our model, we use the movielens-100k dataset [8]. We
consider a simple scenario where a RS directly recommends a genre to a user. In practice, one may

2We will refer to this strategy as “greedy” policy thereafter.
3In deterministic MDPs the optimal policy is a recurrent sequence of actions inducing a maximum-reward

cycle over states.
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Genre d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
action 0.55 0.74 0.79 0.81 0.81 0.82

comedy 0.77 0.85 0.88 0.90 0.90 0.91
drama 0.0 0.77 0.80 0.83 0.86 0.87
thriller 0.74 0.81 0.83 0.91 0.91 0.91

Table 1: R2 for the different genres and values of d on movielens-100k and a window w = 10.

prefer to use collaborative filtering algorithms (e.g., matrix factorisation) and apply our proposed
algorithm on top of them to find the optimal cadence to maximize long term performances. However,
when dealing with very sparse information like in retargeting, it may happen that a RS just focuses
on performing recommendations from a very limited set of items.4 Once applied to this scenario, our
model predicts that user’s preferences change with the number of movies of the same genre a user
have recently watched (e.g., she may get bored after seeing too many movies of a genre and then
getting interested again as time goes by without watching that genre). In order to verify this intuition,
we sort ratings for each user using their timestamps to produce an ordered sequence of ratings.5 For
different genres observed more than 10, 000 times, we compute the average rating for each value of
the recency function ρ(st, a) at the states st encountered in the dataset. The charts of Fig. 1 provide
a first qualitative support for our model. The rating for comedy, action, and thriller genres is a
monotonically decreasing function of the recency, hinting to the existence of a boredom-effect, so
that the rating of a genre decreases with how many movies of that kind have been recently watched.
On the other hand, drama shows a more sophisticated behavior where users “discover” the genre and
increase the ratings as they watch more movies, but get bored if they recently watched “too many”
drama movies. This suggests that in this case there is a critical frequency at which users enjoy movies
of this genre. In order to capture the dependency between rating and recency for different genres, in
Eq. 1 we defined the reward as a polynomial of ρ(st, a) with coefficients that are specific for each
action a. In Table 1 we report the coefficient of determination R2 of fitting the model of Eq. 1 to
the dataset for different genres and values of d. The results show how our model becomes more and
more accurate as we increase its complexity. We also notice that even polynomials of small degree
(from d = 4 the R2 tends to plateau) actually produce accurate reward predictions, suggesting that
the recency does really capture the key elements of the state s and that a relatively simple function of
ρ is enough to accurately predict the rating. This result also suggests that standard approaches in RS,
such as matrix factorization, where the rating is contextual (as it depends on features of both users
and movies/genres) but static, potentially ignore a critical dimension of the problem that is related to
the dynamics of the recommendation process itself.

4 Linear Upper-Confidence bound for Reinforcement Learning
The Learning Algorithm. LINUCRL directly builds on the UCRL algorithm [9] and exploits the
linear structure of the reward function and the deterministic and known transition function f . The
core idea of LINUCRL is to construct confidence intervals on the reward function and apply the
optimism-in-face-of-uncertainty principle to compute an optimistic policy. The structure of LINUCRL
is illustrated in Alg. 1. Let us consider an episode k starting at time t, LINUCRL first uses the
current samples collected for each action a separately to compute an estimate θ̂t,a by regularized
least squares, i.e.,

θ̂t,a = min
θ

∑
τ<t:aτ=a

(
xTsτ ,aθ − rτ

)2
+ λ‖θ‖2, (4)

where xsτ ,a is the context vector corresponding to state sτ and rτ is the (noisy) reward observed
at time τ . Let be Ra,t the vector of rewards obtained up to time t when a was executed and Xa,t

the feature matrix corresponding to the contexts observed so far, then Vt,a =
(
XT
t,aXt,a + λI

)
∈

R(d+1)×(d+1) is the design matrix. The closed-form solution of the estimate is θ̂t,a = V −1t,a X
T
t,aRt,a,

which gives an estimated reward function r̂t(s, a) = xTs,aθ̂t,a. Instead of computing the optimal

4See Sect. 5 for further discussion on the difficulty of finding suitable datasets for the validation of time-
varying models.

5In the movielens dataset a timestamp does not correspond to the moment the user saw the movie but when
the rating is actually submitted. Yet, this does not cancel potential dependencies of future rewards on past
actions.
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Algorithm 1 The LINUCRL algorithm.

Init: Set t = 0, Ta = 0, θ̂a = 0 ∈ Rd+1, Va = λI
for rounds k = 1, 2, · · · do

Set tk = t, νa = 0
Compute θ̂a = V −1

a XT
aRa

Set optimistic reward r̃k(s, a) = xTs,aθ̂a + ct,a‖xs,a‖V−1
a

Compute optimal policy π̃k for MDP (S, [K], f, r̃t)
while ∀a ∈ [K], Ta < νa do

Choose action at = π̃k(st)
Observe reward rt and next state st+1

Update Xat ← [Xat , xst,at ], Rat ← [Rat , rt], Vat ← Vat + xst,atx
T
st,at

Set νat ← νat + 1, t← t+ 1
end while
Set Ta ← Ta + νa,∀a ∈ [K]

end for

policy according to the estimated reward, we compute the upper-confidence bound

r̃t(s, a) = r̂t(s, a) + ct,a‖xs,a‖V −1
t,a
, (5)

where ct,a is a scaling factor whose explicit form is provided in Eq. 6. Since the transition function f
is deterministic and known, we then simply apply the value iteration scheme in Eq. 2 to the MDP
M̃k = 〈S, [K], f, r̃k〉 and compute the corresponding optimal (optimistic) policy π̃k. It is simple
to verify that (M̃k, π̃k) is the pair of MDP and policy that maximizes the average reward over all
“plausible” MDPs that are within the confidence intervals over the reward function. More formally, let
Mk = {M = 〈S, [A], f, r〉, |r(s, a)− r̂t(s, a)| ≤ ct,a‖xs,a‖V −1

t,a
,∀s, a}, then with high probability

we have that
ηπ̃k(M̃k) ≥ max

π,M∈Mk

ηπ(M).

Finally, LINUCRL execute π̃k until the number of samples for an action is doubled w.r.t. the beginning
of the episode. The specific structure of the problem makes LINUCRL more efficient than UCRL, since
each iteration of Eq. 2 has O(dSK) computational complexity compared to O(S2K) of extended
value iteration (used in UCRL) due to the randomness of the transitions and the optimism over f .

Theoretical Analysis. We prove that LINUCRL successfully exploits the structure of the problem to
reduce its cumulative regret w.r.t. basic UCRL. We first make explicit the confidence interval in Eq. 5.
Let assume that there exist (known) constants B and R such that ‖θ∗a‖2 ≤ B for all actions a ∈ [K]
and the noise is sub-Gaussian with parameter R. Let `w = log(w) + 1, where w is the length of the

window in the state definition, and L2
w =

1−`d+1
w

1−`w , where d is the degree of the polynomial describing
the reward function. Then, we run LINUCRL with the scaling factor

ct,a = R

√
(d+ 1) log

(
Ktα

(
1 +

Tt,aL2
w

λ

))
+ λ1/2B (6)

where Tt,a is the number of samples collected from action a up to t. Then we can prove the following.
Theorem 1. If LINUCRL runs with the scaling factor in Eq. 6 over T rounds, then its cumulative
regret is

∆(LINUCRL, T ) ≤ Kw log2

(8T

K

)
+ 2cmax

√
2KT (d+ 1) log

(
1 +

TL2
w

λ(d+ 1)

)
,

where cmax = maxt,a ct,a.

We first notice that the per-step regret ∆/T decreases to zero as 1/
√
T , showing that as time increases,

the reward approaches the optimal average reward. Furthermore, by leveraging the specific structure
of our problem, LINUCRL greatly improves the dependency on other elements characterizing the
MDP. In the general MDP case, UCRL suffers from a regret O(DS

√
KT ), where D is the diameter

of the MDP, which in our case is equal to the history window w. In the regret bound of LINUCRL the
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Figure 2: Optimal policy vs. greedy and fixed-action. The fixed-action policy selects the action with the largest
“constant” reward (i.e., ignoring the effects of the recommendation). The greedy policy selects the action with the
highest immediate reward (depending on the state). The optimal policy is computed with value iteration. (a-b):
parameters c1 = 0.3, c2 = 0.4, α = 1.5 (limited boredom effect). (c-d): parameters c1 = 2, c2 = 0.01, α = 2
(strong boredom effect).

dependency on the number of states (which is exponential in the history window S = Kw) disappears
and it is replaced by the number of parameters d+ 1 in the reward model. Furthermore, since the
dynamics is deterministic and known, the only dependency on the diameter w is in a lower-order
logarithmic term. This result suggests that we can take a large window w and a complex polynomial
expression for the reward (i.e., large d) without compromising the overall regret. Let note that in
MDPs, the worst-case regret lower bound also exhibits a

√
(T ) dependency ([9]), so there is not much

hope to improve it. The interesting part of these bounds is actually in the problem-specific terms.
Furthermore, LINUCRL compares favorably with a linear bandit approach. First, η∗ is in general
much larger than the optimal average reward of a greedy policy selecting the best instantanous action
at each step. Second, apart from the log(T ) term, the regret is the same of a linear bandit algorithm
(e.g., LINUCB). This means that LINUCRL approaches a better target performance η∗ almost at the
same speed as linear bandit algorithms reach a worse greedy policy. Finally, [18] developed a specific
instance of UCRL for deterministic MDPs, whose final regret is of order O(λA log(T )/∆), where λ
is the length of the largest simple cycle that can be generated in the MDP and ∆ is the gap between
the reward of the optimal and second-optimal policy. While the regret in this bound only scales
as O(log T ), in our setting λ can be as large as S = Kw, which is exponentially worse than the
diameter w, and ∆ can be arbitrarily small, thus making a O(

√
T ) bound often preferable. We leave

the integration of our linear reward assumption into the algorithm proposed by [18] as future work.

5 Experiments

In order to validate our model on real datasets, we need persistent information about a user iden-
tification number to follow the user through time and evaluate how preferences evolve over time
in response to the recommendations. This also requires datasets where several RSs are used for
the same user with different cadence and for which it is possible to associate a user-item feedback
with the system that actually performed that recommendation. Unfortunately, these requirements
make most of publicly available datasets not suitable for this validation. As a result, we propose to
use both synthetic and dataset-based experiments to empirically validate our model and compare
LINUCRL to existing baselines. We consider three different scenarios. Toy experiment: A simulated
environment with two actions and different parameters, with the objective of illustrating when the
optimal policy could outperform fixed-action and greedy strategies. Movielens: We derive model
parameters from the movielens dataset and we compare the learning performance (i.e., cumulative
reward) of LINUCRL to baseline algorithms. Real-world data from A/B testing: this dataset provides
enough information to test our algorithm and although our model assumptions are no longer satisfied,
we can still investigate how a long-term policy alternating A and B on the basis of past choices can
outperform each solution individually.

Optimal vs. fixed-action and greedy policy. We first illustrate the potential improvement coming
from a non-static policy that takes into consideration the recent sequence of actions and maximizes
the long-term reward, compared to a greedy policy that selects the action with the higher immediate
reward at each step. Intuitively, the gap may be large whenever an action has a large instantaneous
reward that decreases very fast as it is selected (e.g., boredom effect). A long-term strategy may
prefer to stick to selecting a sub-optimal action for a while, until the better action goes back to its

6



0 5 10 15 20 25 30 35 40
Action

Comedy
Adventure

Thriller
Drama

Children
Crime
Horror

SciFi
Animation oracle greedy

0 5 10 15 20 25 30 35 40
Action

Comedy
Adventure

Thriller
Drama

Children
Crime
Horror

SciFi
Animation linUCRL

0 5 10 15 20 25 30 35 40
Action

Comedy
Adventure

Thriller
Drama

Children
Crime
Horror

SciFi
Animation linUCB

0 5 10 15 20 25 30 35 40
Action

Comedy
Adventure

Thriller
Drama

Children
Crime
Horror

SciFi
Animation oracle optimal

linUCB UCRL linUCRL oracle 
greedy

oracle 
optimal

3.1

3.2

3.3

3.4

3.5

3.6

3.284 3.33 3.486 3.538 3.551

UCRL linUCB oracle 
greedy

linUCRL oracle 
optimal

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

3.60

3.327 3.43 3.536 3.54 3.555

(a) Last 40 actions (b) Avg. rwd. at T = 200 (c) Avg. rwd. at the end
Figure 3: Results of learning experiment based on movielens dataset.

initial value. We consider the simple case K = 2 and d = 1. Let θ∗1 = (1, c1), θ∗2 = (1/α, c2).
We study the optimal policy maximizing the average reward η, a greedy policy that always selects
at = arg maxa r(st, a), and a fixed-action policy at = arg max{1, 1/α}. We first set c1 = 0.3 ≈
c2 = 0.4 and α = 1.5, for which the “boredom” effect (i.e., the decrease in reward) is very mild. In
this case (see Fig. 2-(left)), the fixed-action policy performs very poorly, while greedy and optimal
policy smartly alternates between actions so as to avoid decreasing the reward of the “best” action
too much. In this case, the difference between greedy and optimal policy is very narrow. However in
Fig. 2-(right), with c1 = 2� c2 = 0.01 and α = 2, we see that the greedy policy switches to action
1 too soon to gain immediate reward (plays action 1 for 66% of the time) whereas the optimal policy
stick to action 2 longer (plays action 1 for 57% of the time) so as to allow action 1 to regain reward
and then go back to select it again. As a result, the optimal policy exploits the full potential of action
1 better and eventually gains higher average reward. While here we only illustrate the “boredom”
effect (i.e., the reward linearly decreases with the recency), we can imagine a large range of scenarios
where the greedy policy is highly suboptimal compared to the optimal policy.

Learning on movielens dataset. In order to overcome the difficulty of creating full complex RS
and evaluate them on offline datasets, we focus on a relatively simple scenario where a RS directly
recommends movies from one chosen genre, for which we have already validated our model in
Sec. 3. One strategy could be to apply a bandit algorithm to find the optimal genre and then always
recommend movies of this genre. On the other hand, our algorithm tries to identify an optimal
sequence of those genres to keep the user interested. The standard offline evaluation of a learning
algorithm on historical data is to use a replay or counterfactual strategy [17, 23], which consists in
updating the model whenever the learning algorithm takes the same action as in the logged data,
and only update the state (but not the model) otherwise. In our case this replay strategy cannot be
applied because the reward depends on the history of selected actions and we could not evaluate
the reward of an action if the algorithm generated a sequence that is not available in the dataset
(which is quite likely). Thus in order to compare the learning performance of LINUCRL to existing
baselines, we use the movielens100k dataset to estimate the parameters of our model and construct
the corresponding “simulator”. Unlike a fully synthetic experiment, this gives a configuration which
is “likely” to appear in practice, as the parameters are directly estimated from real data. We choose
K = 10 actions corresponding to different genres of movies, and we set d = 5 and w = 5, which
results into Kw = 105 states. We recall that w has a mild impact on the learning performance of
LINUCRL as it does not need to repeatedly try the same action in each state (as UCRL) to be able
to estimate its reward. This is also confirmed by the regret analysis that shows that the regret only
depends on w in the lower-order logarithmic term of the regret. Given this number of states, UCRL
would need at least one million iteration to observe each state 10 times which is dramatically too large
for the application we consider. The parameters that describe the dependency of the reward function
on the recency (i.e., θ∗j,a) are computed by using the ratings averaged over all users for each state
encountered and for ten different genres in the dataset. The first component of the vectors θ∗a is chosen
to simulate different user’s preferences and to create complex dynamics in the reward functions. The
resulting parameters and reward functions are reported in App. B. Finally, the observed reward is
obtained by adding a small random Gaussian noise to the linear function. In this setting, a constant
strategy would always pull the comedy genre since it is the one with the highest “static” reward,
while other genres are also highly rewarding and a suitable alternation between them may provide a
much higher reward.

We compare LINUCRL to the following algorithms: oracle optimal (π∗), oracle greedy (greedy
contextual policy), LINUCB [1] (learn the parameters using LINUCB for each action and select the
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Algorithm on the T steps on the last steps
only B 46.0% 46.0%
UCRL 46.5% 46.0%

LINUCRL 66.7% 75.8%
oracle greedy 61.3% 61.3%
oracle optimal 95.2% 95.2%

Table 2: Relative improvement over only A of learning experiment based on large scale A/B testing
dataset.

one with largest instantaneous reward), UCRL [3] (considering each action and state independently).
The results are obtained by averaging 4 independent runs. Fig. 3(b-c) shows the average reward at
T = 200 and after T = 2000 steps. We first notice that as in the previous experiment the oracle
greedy policy is suboptimal compared to the optimal policy that maximizes the long-term reward.
Despite the fact that UCRL targets this better performance, the learning process is very slow as the
number of states is too large. Indeed this number of steps is lower than the number of states so UCRL
did not have the chance to update its policy since in average no states has been visited twice. On the
other hand, at early learning stages LINUCRL is already better than LINUCB, and its performance
keeps improving until, at 2000 steps, it actually performs better than the oracle greedy strategy and it
is close to the optimal policy.

Large scale A/B testing dataset. We also validate our approach on a real-world A/B testing dataset.
We collected 15 days of click on ads history of a CRITEO’s test, where users have been proposed two
variations on the display denoted as A and B. Each display is actually the output of two real-world
collaborative-filtering recommender strategies; precise information on how these algorithms are
constructed is not relevant for our analysis. Unlike a classical A/B testing each unique user has
been exposed to both A and B but with different frequencies. This dataset is formed of 350M
tuples (user id, timestamp, version, click) and will be released publicly as soon as possible. Remark
that the system is already heavily optimized and that even a small improvement in the click-rate is
very desirable. As in the movielens experiment, we do not have enough data to evaluate a learning
algorithm on the historical events (not enough samples per state would be available), so we first
compute a simulator based on the data and then run LINUCRL- that does not know the parameters of
the simulator and must try to estimate them - and compare it to simple baselines. Unlike the previous
experiment, we do not impose any linear assumption on the simulator (as in Eq. 1) and we compute
the click probability for actions A and B independently in each state (we set w = 10, for a total
of 210 = 1024 states) and whenever that state-action pair is executed we draw a Bernoulli with the
corresponding probability. Using this simulator we compute oracle greedy and optimal policies and
we compare LINUCB, LINUCRL, which is no longer able to learn the “true” model, since it does
not satisfy the linear assumption, and UCRL, which may suffer from the large number of state but
targets a model with potentially better performance (as it can correctly estimate the actual reward
function and not just a linear approximation of it). We report the results (averaged over 5 runs) as
a relative improvement over the worst fixed option (i.e., in this case A). Tab. 2 shows the average
reward over T = 2, 000 steps and of the learned policy at the end of the experiment. Despite the fact
that the simulator does not satisfy our modeling assumptions, LINUCRL is still the most competitive
algorithm as it achieves the best performance among the learning algorithms and it outperforms the
oracle greedy policy.

6 Conclusion

We showed that estimating the influence of the recommendation strategy on the reward and computing
a policy maximizing the long-term reward may significantly outperform fixed-action or greedy
contextual policies. We introduced a novel learning algorithm, LINUCRL, to effectively learn such
policy and we prove that its regret is much smaller than for standard reinforcement learning algorithms
(UCRL). We validated our model and its usefulness on the movielens dataset and on a novel A/B testing
dataset. Our results illustrate how the optimal policy effectively alternates between different options,
in order to keep the interest of the users as high as possible. Furthermore, we compared LINUCRL
to a series of learning baselines on simulators satisfying our linearity assumptions (movielens) or
not (A/B testing). A venue for future work is to extend the current model to take into consideration
correlations between actions. Furthermore, given its speed of convergence, it could be interesting
to run a different instance of LINUCRL per user - or group of users - in order to offer personalized
“boredom” curves. Finally, using different models of the reward as a function of the recency (e.g.,
logistic regression) could be used in case of binary rewards.
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A Proof of Theorem 1

Proof. In order to prove Thm. 1, we first need the following proposition about the confidence intervals
used in computing the optimistic reward r̃(s, a).

Proposition 2. Let assume ‖θ∗a‖2 ≤ B. If θ̂t,a is computed as in Eq. 4 and ct,a is defined as in Eq. 6,
then

P
(
r(s, a) ≤ r̂(s, a) + ct,a‖xs,a‖V −1

t,a

)
≤ t−α

K
.

Proof. By definition of ρ(s, a) we have 0 ≤ ρ(s, a) ≤
∑w
τ=1

1
τ
< log(w) + 1

.
= `w. Thus 1 ≤ ‖xs,a‖22 ≤∑d

j=0 `
j
w =

1−`d+1
w

1−`w = L2
w. Using Thm. 2 of [1], we have with probability 1− δ,

‖θ̂t,a − θ∗a‖Vt,a ≤ R

√
(d+ 1) log

(
1 + Tt,aL2

w/λ

δ

)
+ λ1/2B.

Thus for all s ∈ S we have,

|r(s, a)− r̂(s, a)| = |xTs,aθ̂t,a − xTs,aθ∗a| ≤ ‖xs,a‖V−1
t,a
‖θ̂a − θ∗a‖Vt,a .

Using δ = t−α

K
concludes the proof.

An immediate result of Prop. 2 is that the estimated average reward of π̃k in the optimistic MDP M̃k

is an upper-confidence bound on the optimal average reward, i.e., for any t (the probability follows
by a union bound over actions)

P
(
η∗ > ηπ̃k(M̃k)

)
≤ t−α. (7)

We are now ready to prove the main result.

Proof of Thm. 1. We follow similar steps as in [9]. We split the regret over episodes as

∆(A, T ) =

m∑
k=1

tk+1−1∑
t=tk

(
η∗ − r(st, at)

)
=

m∑
k=1

∆k.

Let Tk,a = {tk ≤ t < tk+1 : at = a} be the steps when action a is selected during episode k. We
upper bound the per-episode regret as

∆k =
∑
a∈[K]

∑
t∈Tk,a

(
η∗ − r(st, a)

)
≤
tk+1−1∑
t=tk

(
η̃k − r̃k(st, a)

)
+
∑
a∈[K]

∑
t∈Tk,a

(
r̃k(st, a)− r(st, a)

)
,

where the inequality directly follows from the event that η̃k ≥ η∗ (Eq. 7) with probability 1− T−α.
Notice that the low-probability event of failing confidence intervals can be treated as in [9].

We proceed by bounding the first term of Eq. 8. Unlike in the general online learning scenario, in
our setting the transition function f is known and thus the regret incurred from bad estimates of the
dynamics is reduced to zero. Furthermore, since we are dealing with deterministic MDPs, the optimal
policy converges to a loop over states. When starting a new policy, we may start from a state outside
its loop. Nonetheless, it is easy to verify that starting from any state s, it is always possible to reach
any desired state s′ in at most w steps (i.e., the size of the history window). As a result, within each
episode k the difference between the cumulative reward (

∑
t r̃k(st, a)) and the (optimistic) average

reward ((tk+1 − tk)η̃k) in the loop never exceeds w. Furthermore, since episodes terminate when
one action doubles its number of samples, using a similar proof as [9], we have that the number of
episodes is bounded as m ≤ K log2( 8T

K ). As a result, the contribution of the first term of Eq. 8 to the
overall regret is bounded as

m∑
k=1

tk+1−1∑
t=tk

(
η̃k − r̃k(st, a)

)
≤ Kw log2

(8T

K

)
. (8)
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The second term in Eq. 8 refers to the (cumulative) reward estimation error and it can be decomposed
as

|r̃k(st, a)− r(st, a)| ≤ |r̃k(st, a)− r̂k(st, a)|+ |r̂k(st, a)− r(st, a)|.

We can bound the cumulative sum of the second term as (similar for the first, since r̃k belongs to the
confidence interval of r̂k by construction)

m∑
k=1

∑
a∈[K]

∑
t∈Tk,a

|r̂k(st, a)− r(st, a)| ≤
m∑
k=1

∑
a∈[K]

∑
t∈Tk,a

ct,a‖xst,a‖V−1
a,t

≤ cmax

∑
a∈[K]

√√√√ m∑
k=1

∑
t∈Tk,a

‖xst,a‖2V−1
a,t

√
Ta,

where the first inequality follows from Prop. 2 with probability 1− T−α, and Ta is the total number
of times a has been selected at step T . Let Ta = ∪kTk,a, then using Lemma 11 of [1], we have∑

t∈Ta

‖xst,a||2V −1
t,a
≤ 2 log

det(VT,a)

det(λI)
,

and by Lem. 10 of [1], we have

det(Vt,a) ≤ (λ+ tL2
w/(d+ 1))d+1,

which leads to
m∑
k=1

∑
a∈[K]

∑
t∈Tk,a

|r̂k(st, a)− r(st, a)| ≤ cmax

∑
a∈[K]

√
Ta

√
2(d+ 1) log

( λ+ tL2
w

λ(d+ 1)

)

≤ cmax

√
2KT (d+ 1) log

( λ+ tL2
w

λ(d+ 1)

)
.

Bringing all the terms together gives the regret bound.

B Experiments Details

Genre θ∗a,0 θ∗a,1 θ∗a,2 θ∗a,3 θ∗a,4 θ∗a,5
Action 3.1 0.54 -1.08 0.78 -0.22 0.02

Comedy 3.34 0.54 -1.08 0.78 -0.22 0.02
Adventure 3.51 0.86 -2.7 3.06 -1.46 0.24
Thriller 3.4 1.26 -2.9 2.76 -1.14 0.16
Drama 2.75 1.0 0.94 -1.86 0.94 -0.16

Children 3.52 0.1 0.0 -0.3 0.2 -0.04
Crime 3.37 0.32 1.12 -3.0 2.26 -0.54
Horror 3.54 -0.68 1.84 -2.04 0.82 -0.12
SciFi 3.3 0.64 -1.32 1.1 -0.38 0.02

Animation 3.4 1.38 -3.44 3.62 -1.62 0.24
Table 3: Reward parameters of each genre for the movielens experiment.

The parameters used in the MovieLens experiment are reported in Table 3.
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