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Abstract: This paper addresses a simple robust output feedback controller, which suits a
class of nonlinear dynamical systems. It takes into account the dynamics and limitations of the
actuator. This setting appears in industrial problems such as flow rate control for hydraulic
turbines which is used for speed control, where controller gains tuning is important to avoid
violent input signals that could excite unstable dynamics, in addition to the limitation of the
actuator in use. A systematic approach is proposed to compute the parameters of a simple control
law optimally to minimize the tracking error. This approach is divided into two steps. Firstly,
computing bounds on some of the system’s parameters and variables, then solving a nonlinear
constrained optimization problem (offline). Stability analysis is carried out to guarantee that
obtained parameters stabilize the system while keeping the tracking error below a certain bound.
A numerical example is given to illustrate the relevance of the proposed controller.
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1. INTRODUCTION

This paper addresses the problem of output feedback
control design of a class of nonlinear dynamical systems,
where there is a simple although uncertain relationship
between the input u and the regulated output y which are
linked through a subsystem’s dynamics (e.g. an actuator).

The proposed controller is as simple as a PI controller,
where the design process is easy to follow by practitioners.
The choice of the parameters is made such that the
system’s asymptotic stability is guaranteed, in addition
to minimizing the output tracking error. This choice also
results in getting an actuator-friendly control signal, as a
result of including the actuator dynamics in the analysis.
This limits the excitation of unstable dynamics that lead
to oscillations and/or lack of controllability.

This work extends what has been proposed in (Alamir,
2015) and (Alamir et al., 2017), where the uncertain non-
linear system is of relative degree 1, hence the control
signal directly affects the regulated output dynamics (ac-
tuator dynamics are not considered). In (Alamir et al.,
2017), controller parameters selection makes use of the
system parameters bounds while avoiding the excitation of
the uncertainties which depend on high control-derivative.
This approach has been successfully applied in (Dobrowol-
ski et al., 2017), where grid frequency is regulated by
controlling the total power produced, while taking into
account power transmission dynamics and uncertainties
from power consumption.

? This work is funded by INNOV-Hydro Project

Different techniques for robust output feedback design for
nonlinear systems are available in the literature, there exist
methods that rely on high-gain observers design, for in-
stance, in (Yang et al., 2011), an output feedback controller
is designed for a linearizable uncertain nonlinear system
of relative degree n, where the nominal nonlinear model is
known. A disturbance observer to estimate the disturbance
and a high-gain observer to estimate the internal states are
designed and the resulting controller is implemented as an
output feedback. Moreover, in (Mahmoud and Zribi, 2003)
an output feedback controller is proposed for uncertain
nonlinear systems in addition to possibly nonlinear actu-
ator dynamics, where a high-gain observer is used with
output feedback controller under semiglobal stabilization
conditions to stabilize the origin.

However, our focus is on systems where internal states
reconstruction is not possible via observer design, whether
due to the lack of observability, or the difficulty of the
design (tight mathematical models of complex behaviors
of the system are needed), or the implementation (compu-
tationally expensive).

There exist different controllers that avoid the use of ob-
servers. For instance, in (Mizumoto and Takagi, 2014) an
adaptive PID is designed based on the passivity assump-
tion of the discrete-time nonlinear system, where a neural
network is used to improve the controller performance.
However, in addition to the smoothness assumption of the
nonlinear functions (which is not required in our approach,
as it is based on the bounds of the nonlinear function), the
actuator restrictions are not taken into account. Moreover,
the analysis presented might not be easy to follow by
practitioners due to the use of neural networks, and the



lack of an example that shows how the different parameters
of the controller are computed.

Furthermore, (Fliess and Join, 2013) propose another
technique where observer design is not required. Authors
consider nonlinear systems with relative degrees (≥ 1),
where they proposed an intelligent PID controller. The
control signal depends on a local estimation of a nonlinear
term, in addition to the PID gains, which are chosen to
achieve local stability as shown in (Fliess and Join, 2014).
This approach has been implemented successfully to a
number of applications for example: (Join et al., 2017),
(Michel et al., 2010) and (Bara et al., 2017). However, the
effect of the actuator limitations, for example: saturation
limits on control input signal, on the local estimation and
stability is not studied. Even though actuator saturation
limits are included in (Michel et al., 2010), (Tebbani
et al., 2016), (Abouäıssa et al., 2017) and (Join et al.,
2010), but their effects were not clearly addressed. In
addition, PID tuning method proposed in (Fliess and Join,
2014) results in local asymptotic stability, however it’s
effect on minimizing the steady-state tracking error is not
addressed.

This paper is organized as follows: section 2 states the
problem to be tackled in this paper. The working as-
sumptions in section 3. The main results regarding the
feasibility bounds of the control parameters and bounds
on the tracking error is given in section 4. An illustrative
example is given in section 5. Finally, section 6 concludes
the paper and discusses possible further work.

2. PROBLEM FORMULATION

Let us consider the dynamical system given by:

ẏ(t) = α(t) [q1(t)− h(t)] (1)

q̇(t) = G(q(t), u(t)) (2)

where q ∈ Rnz is the internal state vector of a subsystem
(e.g. an actuator) in which q1 without loss of generality is
assumed to be the variable in q which affects the dynamics
of the regulated variable y ∈ R while u ∈ [umin, umax]
is the directly manipulated variable. G(q, u) is possibly
an unknown map that could have non-linearities (e.g.
saturation), however it is necessary to be able to identify
bounds on the behavior of G(q, u) as shown in section 3.
Moreover, h(t) ∈ [hmin, hmax] is an unknown term which
could be nonlinear with known bounds hmin and hmax.
Finally, α(t) ∈ [α, ᾱ] is an unknown positive scalar term
that might be time-varying, with known bounds α and ᾱ.

In this paper, the following simple output feedback control
law is considered:

u = S (λ(yd − y) + z) (3)

ż = λf (u− z) (4)

Where yd is a constant set-point for the regulated output
y, λ, λf > 0 are the controller gains and the function S is
defined as follows:

S(v) :=

{
vmax if v ≥ vmax
vmin if v ≤ vmin
v otherwise

(5)

where v ∈ [vmin, vmax]

The standard form given by (1)-(2) that includes uncertain
and nonlinear terms possibly makes it difficult to design
observers to estimate the internal states of the system
which are needed for more advanced control design, thus
robust output feedback is a good choice in that case. The
simple control law considered in (3)-(4) is preferred for
industrial applications due to its simple requirements and
implementation. The standard form given (1)-(2) is quite
generic, thus it is compatible with existing systems, espe-
cially if (2) is considered to model the actuator dynamics.

A system that we are interested in applying the control
law (3)-(4) to is water flow rate (Q) control for hydraulic
turbines to be used for the turbine’s rotational speed
control, where u is the guide vane opening set-point that
is sent to the actuator that gives the guide vane opening
(q1) that directly affects Q at the turbine. Also note that,
Q depends on nonlinear uncertain relationships describing
the turbine’s dynamics called ’Hill Charts’. Moreover,
the simplicity of the considered control law is highly
encouraged by companies working in that domain which is
compatible with existing platforms. Furthermore, careful
selection of the controller gains (λ, λf ) plays an important
role in this application, since high control gains could
excite sharp oscillations at the turbine as shown in Zuo
et al. (2016) which is not desirable. Finally, the actuator
currently used imposes different saturation bounds on the
rate of change of the guide vane opening, so a careful choice
of the controller gains is required to make sure we do not
ask the actuator much more than what it could provide.

Another application where the controller could be used
is speed control for hybrid electric vehicles (HEV) that
makes use of DC motors. In such systems as explained in
Kumar et al. (2016) the actuator is the electronic throttle
which accepts armature voltage as an input and outputs
angular throttle position which is then used to control
vehicle speed. Uncertainty is an important feature of such
systems while friction terms are usually nonlinear which
show up in the dynamical equation of the speed of the
vehicle.

Thus, in the following sections, a systematic way to obtain
a pair (λ, λf ) that gives a convenient closed-loop behavior
of the system will be discussed, in addition to an assess-
ment criteria based on which these controller gains are
selected will be detailed. This helps applying this control
law to different systems that could be put in the standard
form (1)-(2).

3. WORKING ASSUMPTIONS

In this section, assumptions on the system’s uncertain
parameters and variables as introduced, which limits the
class of unknown dynamics for which a pair (λ, λf ) exists
that results in an appropriate behavior of the control law
(3)-(4).

In order to show the importance of these assumptions
and for the analysis to be carried out in the forthcoming
section, equation (3) needs to be put in a different form as
follows:

ẏ = α [q1 − h] (6)

= α
[
u− h

′
]

with h
′

:= h+ (u− q1) (7)



The first crucial assumption which guarantees controlla-
bility is that u can ultimately dominate the partially un-
known term h ∈ [hmin, hmax] with some margins, denoted
by %− > 0 and %+, in other words the bounds of h are
contained within the bounds of u. This guarantees that
the sign of ẏ can ultimately be changed by changing u,
hence obtaining a bounded tracking error.

Assumption 1. (u dominates h). There exists two scalars
%− > 0 and %+ > 0 such that:

umax ≥ hmax + %+ ; umin ≤ hmin − %− (8)

Next, we assume that the dynamics of the subsystem G
to be referred to by ’actuator’ given by (2) satisfy the
following natural assumption which simply states that the
tracking error on the actuator output q1 decreases with
the bandwidth of the reference signal:

Assumption 2. (Assumption on the actuator).
For any reference signal u on q1 and ρ > 0 such that:

|u̇| ≤ ρ (9)

there exist positive reals σ, π1 > 0 such that the following
properties hold after a finite time.

|u(t)− q1(t)| ≤ σρ (10)

|u̇(t)− q̇1(t)| ≤ π1ρ (11)

This assumption as will be shown in the next section,
simply states that the slower is the reference trajectory
u(·) (the smaller is ρ), the smaller is the tracking errors
|u(t)− q1(t)| and |u̇(t)− q̇1(t)|.
The chosen values of σ and π1 could be sufficiently high
to ensure the satisfaction of this assumption, however
choosing values which are too high would result in a more
conservative choice of the controller’s parameters.

It is important to note that σ and π1 are obtained offline,
thus a clean input signal u could be used and the output
signal q1 could be filtered to avoid sharp oscillations of
u̇ and q̇1. Moreover, making use of the knowledge of the
nature of the actuator in use (e.g. using identified models),
clean q1 signals could be acquired.

4. SUFFICIENT CONDITIONS ON CONTROL
PARAMETERS AND BOUNDS ON THE TRACKING

ERROR

In this section, the properties of the parameters (λ, λf ) of
the control law (3)-(4) which result in the desired closed-
loop behavior are introduced. This is achieved by utilizing
upper and lower bounds of the system’s parameters.

We begin by deriving upper and lower bounds on h
′
,

needed in this section, by combining Assumptions 1 and
2, in addition to the definition of h

′
in (7) to get:

h
′

max := hmax + σρ (12)

h
′

min := hmin − σρ (13)

Lemma 1. Under the control law (3)-(4), for all λ > 0
satisfying:

λ <
1

ᾱσ
(14)

the following inequality holds:

|u̇| ≤ ρ :=
λ

1− λᾱσ

[
ᾱ%̄+

λf
λ

∆u

]
(15)

y − yd

z
z − λ(y − yd) = umax

z − λ(y − yd) = umin

A0A+

A−

≥ α%
′
+

≤ λf∆u

θ

≥ α%
′
−

≤ λf∆u

Fig. 1. Definition of the three regions A0, A+ and A−
used in the analysis of the stability of the closed-loop
system with the proposed feedback law.

where

∆u := umax − umin (16)

%̄ := max{umax − hmin, hmax − umin} (17)

Proof. Note first of all that by the very definition of u,
namely:

u = S(λ(yd − y) + z)

one can write:

|u̇| ≤ λ|ẏ|+ |ż| ≤ λ|ẏ|+ λf∆u (18)

and since
ẏ = α(u− (h+ (u− q1)))

one can write for any ρ such that |u̇| ≤ ρ [thanks to (9) of
Assumption 2]:

|ẏ| ≤ ᾱ(%̄+ σρ)

and injecting this in (18) leads to the following inequality
that holds for any upper bound ρ on the evolution of |u̇|:

|u̇| ≤ λ [ᾱ(%̄+ σρ)] + λf∆u ≤ ρ
Therefore, the bound ρ we are looking for must satisfy the
inequality:

ρ ≥ λ [ᾱ(%̄+ σρ)] + λf∆u

Which gives (15), thanks to (14), this obviously ends the
proof. 2

Going further in the analysis of the closed-loop behavior,
the following sets are defined as shown in Figure 1:

A+ := {(y, z) |z − λ (y − yd) ≥ umax} (19)

A− := {(y, z) |z − λ (y − yd) ≤ umin} (20)

A0 := {(y, z) |z − λ (y − yd) ∈ (umin, umax)} (21)

Note that by definition, if (y, z) ∈ A+ then u = umax
and if (y, z) ∈ A− then u = umin. While if (y, z) ∈ A0

then the control input is not saturated, in other words
u = λ(yd − y) + z.

Before proceeding, %
′

+ and %
′

− needed for the upcoming
results, are defined as follows:

%
′

+ := umax − hmax − σρ > 0 (22)

%
′

− := hmin − σρ− umin > 0 (23)



Based on these definitions, the following result can be
obtained:

Lemma 2. (A0 is attractive and invariant)

If 0 < λ <
1

ᾱσ
and λf are such that:

λf < ϕ(λ, λf ) (24)

where

ϕ(λ, λf ) :=

[
min

{
min{%′+(λ, λf ), %

′

−(λ, λf )}
∆u

,
1

4

}]
× αλ

Then the set A0 is attractive and invariant for the closed-
loop dynamics resulting from the control law (3)-(4) and
for any constant desired value yd.

Proof of Attractivity of A0. If for any 0 < λ <
1

ᾱσ
used in (3)-(4), λf satisfies the following inequality:

λf <
α%
′

+

∆u
λ (25)

Then, the set A0 is attractive for all initial state such
that (y − yd, z) ∈ A+. This can be proved if one can
prove that the angle θ depicted in Figure 1 is lower than
arctan(λ) which leads to ż < λẏ (see Figure 1). Using (7)
in addition to the condition (22) together with the fact
that z necessarily belongs to [umin, umax] enable to write:

tan θ ≤ λf∆u

α%
′
+

(26)

which obviously gives the result. 2

Using the same arguments for any 0 < λ <
1

ᾱσ
used in

(3)-(4) in addition to condition (23), if λf satisfies the
following inequality:

λf <
α%
′

−
∆u

λ (27)

then the set A0 is attractive for all initial state such that
(y − yd, z) ∈ A−. ∆

Proof of Invariance of A0. The invariance results
from the simple fact that when the state approaches the
boundaries of A0 with any of A+ or A−, it is repulsed back
before reaching the boundary whenever the requirements
of Lemmas 1 and 2 hold. This is precisely implied by the

following condition for any 0 < λ <
1

ᾱσ
:

λf <
αmin{%′+, %

′

−}
∆u

λ (28)

This proves that A0 is globally attractive and invariant. ∆

The only thing that remains to be analyzed regarding
the stability of the closed-loop behavior, is related to the
behavior of the closed-loop system inside the region A0

described by: [
ẏ
ż

]
=

[
−αλ α
−λfλ 0

] [
y − yd
z − h′

]
(29)

The behavior when inside A0, can be proved to be stable
by showing that poles of the dynamical system (29) have

negative real parts. This enables the following result to be
established.

If for a given 0 < λ <
1

ᾱσ
, we get the following:

λf = r × αλ

4
; r ∈ (0, 1) (30)

then the matrix:

A0 :=

[
−αλ α
−λfλ 0

]
possesses two real and strictly negative eigenvalues p1,2.
More precisely:

p1,2 = −αλ
2

[
1±
√

1− r
]

(31)

Combining (28) and (30) proves Lemma 2 ∆

The previous results lead to the following Proposition:

Proposition 3. (Main Result of the Paper). Under the
assumptions of Lemmas 1 and 2, if the pair (λ, λf ) is
chosen such that the following inequalities are satisfied for
some β ∈ (0, 1):

λ ≤ β

σᾱ
; λf ≤ βϕ(λ, λf ) (32)

Then, the following property holds regarding the tracking
error for a constant yd:

lim
t→∞

|yd − y(t)| = δ + π1ρ(λ, λf )

λλf
(33)

where |ḣ| ≤ δ

Proof of Feasibility of (32). The existence of (λ, λf )
pairs satisfying the constraints (32) is guaranteed, due to
the fact that ρ(0, 0) = 0 meaning that for sufficiently small

(λ, λf ), %
′

+(λ, λf ) > 0 and %
′

−(λ, λf ) > 0 and hence, the
right hand side of (24) is strictly positive. ∆

Proof of (33). Since, the set A0 is proven to be globally
attractive by Lemma 2, the dynamics defined by (29)
prevails after a finite time t0. Therefore, one has for all
t ≥ t0:[

ey(t)
ez(t)

]
= eA0(t−t0)

[
ey(t0)
ez(t0)

]
−
∫ t

t0

eA0(t−τ)
[

0

ḣ
′
(τ)

]
dτ

where

[
ey(t)
ez(t)

]
=

[
y − yd
z − h′

]
and since Lemma 2 makes

A0 hurwitz invertible, the last expression asymptotically
behaves like:

A−10

[
0

max
τ∈[t0,t]

|ḣ′(τ)|

]
=

[
− 1
λλf

− 1
λf

]
max
τ∈[t0,t]

|ḣ
′
(τ)|

By using:

max
τ∈[t0,t]

|ḣ
′
(τ)| = δ + π1ρ

we obviously end up with the result in (33). ∆

Hence, for a given actuator dynamical system and bounds
on the system’s variables, the controller gains (λ, λf ) can
be selected by solving the following optimization problem:



(λ, λf )← arg min
(λ,λf )

[δ + π1ρ(λ, λf )

λλf

]
(34)

under the constraints

∣∣∣∣∣∣∣
0 ≤ λ ≤ β

σᾱ
0 ≤ λf ≤ βϕ(λ, λf )
0 ≤ ρ(λ, λf ) ≤ ρ`

(35)

It can be viewed as a way of determining the combined
gains, that is compatible with the stability requirement
(represented by the first two constraints in (35)), and
minimizes the upper bound on the asymptotic tracking
error given by (34). This is achieved while keeping ρ below
a certain value ρ` (represented by the last constraint in
(35)), where ρ` to be chosen or imposed by the actuator’s
limitation.

5. ILLUSTRATIVE EXAMPLE

Let us consider the following system:

ẏ = α [q1 − h(t)] (36)

The unknown signal h(t) is given by:

h(t) = 5− 1.1 cos(1.2t)− 0.4 sin(2t+ π/6) (37)

Therefore, the bounds hmin = 3.5, hmax = 6.5 and δ = 2.2.
Moreover, α = 0.8 and ᾱ = 1.2 are chosen where α = 1.

The actuator in use is given by:

ẋa = AS(xa) +Bu ; q1 = Cxa (38)

where A, B, C and xa are given by:

A =

[
0 1
−50 −10

]
;B =

[
0
50

]
;C = [1 0] ;xa =

[
q1
q̇1

]
It can be noticed that actuator’s internal states have
saturation limits S(xa) defined in (5) for each element
of xa, which introduces a nonlinearity in the actuator’s
dynamics. To be more specific, we have S(q1), where q1 ∈
[0, 10], in addition we have S(q̇1), where q̇1 ∈ [−60, 60].
The saturation bounds of u are umin = 0 and umax = 10.

The control objective is for y to track a set-point yd = 50

5.1 Identification of σ and π1

The identification of σ and π1 is done by using an input
signal u = ui given by (39), where (38) is used to compute
q1. The differences |ui − q1| and |u̇i − q̇1| are computed,
afterwards (10)-(11) are used to compute σ and π1, where
an upper bound on the allowable rate of change of the
control input ρ is chosen to be equal to maximum possible
|q̇1|, namely ρ` = 60.

The selection of the identification signal is based on the
need to have y = yd at steady state, to achieve this, ui is
set to umax for ts seconds, then oscillates in a way that
mimics h

′
making use of the available knowledge of h.

Thus, the identification input signal used is a piece-wise
function given by:

ui :=

{
umax if t ≤ ts
c0 + c1 cos(c2t) otherwise

(39)

where ts = 10 and c0, c1 and c2 are computed recursively
as shown in Algorithm 1.

Algorithm 1 Actuator Bounds Identification

1: π1 ← 0 ; σ ← 0
2: while k < 200 do
3: s+ ← hmax + σρ` ; s− ← hmin − σρ`
4: c0 ← (s+ + s−)/2
5: c1 ← (s+ − s−)/2
6: c2 ← (δ + π1ρ`)/c1
7: ui ← identsignal(umax, c0, c1, c2)
8: q1 ← actuator(ui)
9: Compute u̇i and q̇1

10: σ ← |ui − q1|/ρ` ; π1 ← |u̇i − q̇1|/ρ`
11: k ← k + 1
12: end while
13: return σ, π1

Thus we get:

σ = 0.0107 ; π1 = 0.0152

5.2 Optimal Pair (λ, λf ) Computation

We can solve the nonlinear constrained optimization prob-
lem given by (34)-(35) (shown in Figure 2) for β = 0.99,
to obtain (λ, λf ) that minimizes the upper bound on the
tracking error, while satisfying the stability constraints,
thus we get:

λ = 5.6 ; λf = 1.1 ; lim
t→∞

|yd − y(t)| = 0.5

Figure 3 shows the closed-loop simulation when using the
optimal values of (λ, λf ), and as shown a good tracking
performance is achieved after finite time where the track-
ing error is less than 0.3. As expected after finite time
the difference between u and q1 respects it’s upper bound,
resulting in h

′
to respect it’s bounds.

On the other hand, when using λ = 10 and λf = 1.1,
we get the closed-loop simulation results shown in Figure
4, higher tracking error can be observed, furthermore a
more vigorous control input signal when compared to
that from Figure 3. This shows the proposed approach of
computing an optimal pair (λ, λf ) by defining the bounds
of the system’s parameters and for a given actuator, the
nonlinear constrained optimization problem (34)-(35) can
be solved which results in a satisfying behavior.
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6. CONCLUSION AND FUTURE WORK

In this paper, the problem of output feedback control of
a class of uncertain nonlinear systems, in addition to a
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subsystem’s dynamics, namely in our case is the actuator’s
dynamical equation is analyzed. An approach to obtain
the the gains of the simple control law is proposed. This
approach involves two steps procedure:

(1) Obtain the required bounds on some of the system’s
parameters and variables using simulations or system
identification

(2) Solve a nonlinear constrained optimization problem
(offline) to obtain the controller gains which are
guaranteed to give a converging tracking error that
respects an upper bound after finite time.

The next step would be to apply this controller on speed
control of hydraulic turbines where actuator dynamics play
an important role as briefly explained in this paper.
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