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1. Introduction

The dispersive nature of the longitudinal wave propagation in rods has been studied extensively the-
oretically as well as experimentally by many authors (see e.g. [1] or [2]). Split Hopkinson Pressure Bars
(SHPB) is employed to dynamically characterize materials in the intermediate range of strain rate and the
post-processing of the SHPB tests requires the knowledge of the dispersion in the bars [3] [4] |5]. Simplified
models of longitudinal wave propagation have been proposed by Love [6] and later by Mindlin et al. [7].

In his paper published in 2006, Anderson [8] developed a rod theory for the propagation of longitudinal
waves in slender rods of circular cross section and it is an improvement from the previous works in [7]. In
the approximation of the longitudinal and radial displacements he uses only the first two modes of the given
basis for each displacement, this leads to the four-mode equation. The four-mode equation is a polynomial
whose root is the wave longitudinal velocity. This equation is therefore easier to solve than the Pochhammer
equation [1] because the latter is transcendental.

However we noticed an error in one of the coefficients of the four-mode equation [8], and this error is not
a mere typo. This error was also repeated in [9]. The aim of this paper is threefold. First we want to give
the correct four-mode equation and the associated dispersion curve. Secondly, we wanted to examine the
convergence of the approximation at higher orders then given by Anderson. Thirdly, this is the occasion to
give dimensionless equations.

The paper is organised as follows: Section [2] details how to obtain the dimensionless approximation
for longitudinal waves. Section [ recalls the Pochhammer dispersion equation for slender rods —which is
later used to compute the reference dispersion curve— and details the way it is solved. Section Ml then gives
the correct dispersion curve for the four-mode equation and examines the convergence of the approximate
dispersion curves with an increasing number of degrees of freedom (modes). Lastly, Section [l contains a
discussion on the advantages and drawbacks of using either directly the Pochhammer equation or the Jacobi
polynomial approximation, we also discuss the computation cost of both methods.

2. Dimensionless equation

2.1. Assumptions

We study the longitudinal stress wave propagation in a slender bar of radius a. A cylindrical coordinate
system (r,0,x) is chosen: r denotes the radial distance and € is the angular coordinate, z is the axial
coordinate along the bar axis (longitudinal axis).
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The medium is supposed to be homogeneous, isotropic, and elastic. The elasticity is described either
with (E,v) (Young modulus and Poisson coefficient) or with (A, ), the Lamé constants. As a reminder, the

following relationships hold
v E E

ST 7 (R B (R) W

Further, the displacements and the deformations are assumed to be small. The requested displacement
field is axisymmetrical: u(r, 6, x,t) = u(r, x,t). The external surface (r = a) is stress free.

2.2. Governing equations

The constitutive equations of an elastic medium are [10]

Oz = A A + 2 W €ga, (2)
orr =AA + 2 uepp, (3)
opo = A\ A + 2 1 €gp, (4)
Ogr = W €xr, (5)
where A = €,, + €, + €00.
The displacements are assumed to be small, then the deformations are defined as
€xx = Ug, x, 6
Err = Urr, 7

1
€9y = - (ur +ugp),
€xr = Ur g + Ug, 1y

where g, = dq/0a. Further, the circumferential displacement ug is zero due to symmetry.
Finally, the equations of motion of an axisymmetrical 3D medium are

o 0%u
Oxr,r + Oxx,x + % =p atgza (10)
Orr — 080 9%u
UTT,T + Uzr,x + - r =p atgr . (11)
The external surface is stress-free, then the boundary conditions are written
ouzr(a,z,t) =0, Va, Vi, (12)
orr(a,x,t) =0, Va,Vt. (13)

Further, we are interested in harmonic plane wave propagation in the x-direction, then the solution
u(x,r,t) is such that
u(z,r,t) = U(r) exp(yz + wt) (14)

where ~ is the propagation coefficient whose real part is the attenuation coefficient and imaginary part is
the wavenumber (v = a + tk); w is the circular frequency of the propagating wave.

2.3. Dimensional analysis

The set of the dimensionless parameters and variables is not unique; it depends on the set of parameter-
s/variables that are chosen as the reference parameters. The number of the parameter of reference is given
by the number of the fundamental dimensions that occur in the definition of the problem. In dynamics, the
fundamental dimensions are usually the length [L], the mass [M], and the time [T].

It is therefore important to list the parameters and variables and to identify their fundamental dimensions.
The parameters and variables are listed in Table[I] and a, F and p are the three reference parameters. All
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parameter/variable dimension dimensionless parameter /variable

E [M][L]~H[T]~ 1

a [L] 1

p [M][[L]]_?’ 1

A [M)[L]~HT]~2 A=\E

p [M][L]7H[T]~2 fi=p/E

a [M][L%]l[T]Q d=g/E

x [L] Z=z/a

r [L] F=r/a

u [L] i=u/a

¢ )7 &= cy/lE = c/ay
t [T t=t\/E/p/a=tcy/a
gl (M)~ 7 =na

w [T]~! O=way/p/E=wa/cy

Table 1: Dimensionless parameters and variables

the other quantities are made dimensionless by combining the quantity with these three reference parameters
(see Table[)): the corresponding dimensionless variable to variable ¢ is denoted ¢. To simplify the notations
quantity cg is introduced, which has the dimension of a velocity: it corresponds to the velocity of longitudinal
waves.

The definition of ¢ is a consequence of the choice of reference parameters. If, instead of dividing the
stresses by the Young Modulus, they were divided by u (for example), ¢y would have another definition and
would be the shear wave velocity, co = \/p/p -

2.4. Dimensionless equations

From Table [ it is possible to derive the dimensionless equations. The derivative with respect to the
dimensionless coordinates are

0 0 0 0

— =a— and — =a—. 15
0% Ox or or (15)
Therefore, deformations, as dimensionless quantities, are not affected by the transformations:
€xx = Ug,x = ﬁx,i; (16)
Err = Urpr = ’CLT,;, (17)
Uy Uy
€ = — = —, 18
o=2=2 (18)
€xr = Ur,z + Uy, r = ﬂr,i + ﬂxi- (19)

The dimensionless constitutive equations are easily derived

Foz = AN + 2 [i €3z, (20)
Frr =AA 4+ 2 €, (21)
Goog = A A + 2 [i ego, (22)

(23)

Oxr = M €xr.



Substituting the dimensionless parameters, variables, and coordinates in equations of motion Eqs. (IOHIT)
gives the dimensionless equations of motion

Gor 0%y

~z7‘ T ~zz T — = =~ s 24
Fare + G + 7 = O (24)
~ ~ &Tr - &99 82’&7«

rr,7 zr,T = = = * 25
Orr7+ Ogrz + 7 2 (25)
The dimensionless boundary conditions related to Eqs. (I2HI3)) are
Gor(1,2,1) = 0, VI, VL, (26)
G0 (1,%,1) = 0, Vi, VL. (27)

2.5. Polynomial approximation
Following Mindlin et al. |7] and Anderson [g], the displacement field is expanded in function of Jacobi
orthogonal polynomials

+oo
Ug(r,x, t) = Z Un(r/a) u, exp(yx + wt), (28)

n=0
+oo
up(r,x,t) = Z Va(r/a) v, exp(yx + wt), (29)

n=0

where the polynomials are defined as

Un(7) = Zn: <"> UnIlyer) (30)

= j n! j!
N —~(n\ (n+j+1) 2j+1
V”“)‘;(j)ml)! G ey

They are orthogonal with respect to the weight 7 on the interval [0, 1] |8]. Therefore the dimensionless
displacements are also expanded in function of the same polynomials family

“+o0

Uy (7, %,8) = Y Un(F) i exp(¥ +100), (32)
n=0
—+o0

i (7, 2,8) = Y Vo) T exp(§3 + 1), (33)
n=0

Fig. M illustrates the first axial and radial polynomial displacements.
The orthogonality properties are applied by multiplying Eq. @4) (resp. Eq. @8)) by 7 U,(7) (resp.
7 Vo (7)) and by integrating over the interval [0, 1]

1 ~ 1 2 ~
zr ~ ~ 0 T g~
/O U (7) (&IT,;JF&M@JFUF )dr:/o rUn(r)a—tf; dF, (34)
1 ~ ~ 1 2 ~
- ~ ~ ~ Orr — 000 ~ ~ ~ 0 Upr
Vn rr,T xr,& o dr = Vn —d7. 35
70 (80 a4 2T 0 = [ v e (35)

In addition, the boundary conditions must be included in the equations. This is done by integrating by
parts some terms of the left hand side of Eqs. (34135

1 ~ 1 2 ~
/ (f Un(F) Gonz — dUéi(T) f&m> di = / fUn(f)% dr, (36)
0 0

7 ot2
1 = 1 2~
0 dr 0 ot
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Figure 1: First six radial (V5,) and axial (Uy,) deformation modes

Expansions Eqgs. (82H33) are truncated up to rank N, substituted first in Eqs. (I6{23]) and then in Eqs. (36
B7). A homogeneous system of equations with unknowns {@,,, 0, },n = 0...N is obtained. A truncation up
to rank N leads to p = 2(N + 1) degrees of freedom, also called p-modes approximation in the following. A
propagating wave exists only if the determinant of the system is zero, which gives the characteristic equation,
that is the relationship between 4 and @.

For example, for N = 1 (and therefore p = 4), the matrix A of the four-mode approximation is

0%+ (N + 201)7? 29\ 0 —AA
y 29X A+ N) — 232 +@?) 291 —2(fi + X)
0 29 5 (A+20)7° + %) -8 A
—X —2(fi+ X) FA AN+ T — 35(772 + &?)
(38)
and the characteristic equation is
det(A) =0 (39)
where det(A) = P(5) = C17% + C27° + C37* 4+ C45? + C5 and
Cl = ﬂQ(S‘ + 2ﬂ)23 (40)
Co = ju(2fi + N) (20% (X + 31) — 247(10f1 + 11X)) , (41)
Oy = (A2 + 13% + 8N )" — 2402 [1(4203% + 55X + 1402) + 19232971 + 4N) (272 + 3N), (42)

Cy = 2(\ + 3)@° — 240% (28732 + 26X + 3X\2) + 19202 (4742 + 62X + 16A%) — 921672 (442 + 81X + 322),
(43)
(44)

Cs = &% (@% — 24f1) (@*(@% — 120/ — T2X) + 384(7i + \)(\ + 271)) - 44

Matrix A and the coefficients of the characteristic polynomial given for N = 1 illustrate that the disper-
sion relation only depends on A and fi, that is on the Poisson’s ratio only.

3. Pochhammer equation for longitudinal wave dispersion in cylindrical rods

3.1. Dimensionless Pochhammer equation

The Pochhammer equation for longitudinal wave dispersion in infinite rods of circular cross section can
be found in many references (see [5], Eq. (9); same as [1], Eq. (1); or [2], Eq. (6)). Similarly, a dimensionless
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Pochhammer equation can be given. First define the following two dimensionless parameters

~2
) w

= = — 5% and B% =
S+2a ! b

-5 (45)

tr|8$

The dimensionless Pochhammer equation is then
F3) =2a(5 +3°)J1(a)J1(B) — (52 = 3%)*Jo(@)J1(B) — 47°@BJ1(@)Jo(B) = 0 (46)
where Jg and J; are the Bessel functions of the first kind of order 0 and 1.

3.2. Numerical solution

The determination of the dispersion curve for given bar properties requires to find the roots of the
frequency Eq. {@G) for the circular frequencies w of interest. The numerical solving of Eq. (@8] involves
Newton’s method [11] and therefore requires the analytical derivative f’(7), which is just a matter of
deriving Bessel’s functions (the full analytical expression are given in [12]).

We used a prediction-correction algorithm, starting at w = 0 and then increasing w step by step; let w;
denote the value of w at step i. The prediction step is an extrapolation of the solution from the solutions
computed for the previous values of w. Three extrapolation methods were tested to predict the value of ;:
same value as the previous point (v; = v;—1); linear extrapolation from the last two previous points ;1 and
vi—2; and, quadratic extrapolation from the last three previous points y;—1, y;—2 and 7;—3. The correction
step uses Newton’s method where the starting point is given by the prediction step. The main stopping
criterion for the correction step is a cessation of monotonic convergence of | f ()| towards zero, which in fact
indicates oscillations around the solution v with a sign change of the imaginary part of f (real part is null
for purely elastic material). The full algorithm starts at w = 0, in that case the solution ¢/co = 1 is trivial.
See [12] for the validation of the results given by this algorithm for solving Pochhammer’s equation.

4. Results

The numerical solution to the Pochhammer equation (see Section[)) is considered as the reference solution
for the dispersion curve. We examined in a previous paper the quality of this numerical solution [12].

4.1. Dispersion curve with the four mode approrimation

For ease of comparison, we use the same example as Anderson [8]: a rod with Poisson’s ratio v = 0.3.
Note that as we are using the dimensionless equations, only v is necessary for the solving of Eq. (39).

Fig. 2l gives the dispersion curve with the four mode approximation with both the erroneous polynomial
by Anderson and the correct polynomial given in Eqs. @) to (@). Fig. 2H is a reproduction of Fig. 4(b)
from [8]. The correct set of equations for the four-mode theory —in non-dimensionless form as initially given
by Anderson— is provided in

The correction of the error does not seem to change the beginning of the dispersion curve, which remains
a very good approximation of the true dispersion curve (see Fig.2al). The second part of the dispersion curve
—after the inflection point of the curve— is however significantly affected by the correction of the erroneous
term and the curve does not converge towards the same horizontal asymptote at high frequency (see Fig.[2L).

4.2. Higher order approximations

As is often the case, we plot here the dispersion curves as ¢ = ¢/co with respect to the inverse of the
dimensionless wavelength 1/A = a/A, where A is the wavelength.

Fig. Blillustrates the evolution of the dispersion curve for v = 0.3 while increasing the number of modes
from 2 to 14. Fig. M gives the relative error on the dispersion curve c¢/cp, where the numerical solution to
Pochhammer equation Eq. (G is taken as the reference.

Order 2 is displayed here only for completeness, it has no practical interest as it is only tangent to the
true dispersion curve at a/A = 0 but rapidly moves away. All the orders of polynomial approximation seem
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Figure 2: Dispersion curve with the four mode approximation: full curve;
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Figure 3: Dispersion curves with varying order of approximation: @ full curve; @ low frequency part
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Figure 4: Relative error on the value of ¢/cg for different orders of approximation: @ linear scale; @ logarithmic scale

order 1% error 1 %o error

4 0.648 0.50
6 1.46 0.88
8 2.69 1.64
10 4.25 2.63
12 6.14 3.84
14 8.37 5.26

Table 2: Values of a/A above which the error on c¢/cq is greater than 1% and 1 %o

to converge to the same asymptotic value of ¢/co. Interestingly the dispersion curve for order 2 converges
to the same horizontal asymptote as the higher order approximationd].

For a given order greater or equal to 4, the relative error on the dispersion curve monotonically increases
with the increase of a/A. More precisely, the beginning of the dispersion curve from the polynomial ap-
proximation is very close to the Pochhammer dispersion curve, however the error suddenly increases beyond
a specific value of a/A. Increasing the order of the polynomial approximation increases the value of a/A
below which the dispersion curve can be considered as satisfactory. Table[2]lists the limit values of a/A for
a maximum relative error on the velocity ¢/cy of 1% and 1%o and for an approximation of order ranging
from 4 to 14.

5. Comparison between directly solving Pochhammer equation and polynomial solving

5.1. Advantages and drawbacks of solving Pochhammer directly

The clear advantage of directly solving Pochhammer equation is that one gets the exact solution as
no approximation is made. Solving the equation however requires to write a dedicated solving algorithm.
We wrote one based on Newton’s method but there are other options such as the bisection method. The
prediction step may however be critical to get a good convergence of Newton’s method towards the required
root fo Eq. (8); this point is further discussed in Section

1We were not able to derive an analytical expression for this asymptotic value.
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5.2. Advantages and drawbacks of N mode theory

Using the polynomial approximation makes it very easy to solve the equation as it amounts to find the
roots of a polynomial. An approximation is made which leads to an error on the velocity but depending on
the maximum frequency of interest, this velocity can be a very good approximation.

Most scientific programming languages have their own function for funding the roots of a polynomial
of given degree. For example, Matlab has the roots function and the NumPy Python module contains a
Polynomial class which has a roots() method. Most of the root finding algorithms build the companion
matrix of the polynomial and then search for its eigenvalues [13].

The only difficulty here is that we are looking for only one of the roots of the polynomial. Depending on
the eigenvalue solver behind the function, the roots may not come in the same order when parameter w is
varying.

Fortunately, the interesting root always has the same index with the Python/ Numpyg Polynomial class,
whatever the value of w. On the contrary, the old polyld class from Numpy or the roots function of
Matlahd do not give the interesting root at the same index.

In that case, it is necessary to follow the interesting root —while w increases— by also computing the
eigenvectors of matrix A (Equation BY). The counterpart of this eigenvector monitoring is the increase in
computational cost. In that case, the polynomial approximation provides a very robust way of computing
the dispersion in the bar; indeed we are sure to find the roots of the polynomial approximation. On the
contrary, the unconditional convergence of the algorithm for numerically solving the Pochhammer equation
is not guaranteed.

5.8. Computation time

We compare here the time taken to compute the dispersion curve, either from the Pochhammer equation
(see Section B2) or from the dimensionless polynomial approximations (see the derivation of the equations
in Section [ZH). The computation time are roughly evaluated on an Intel® Core™ i5-3210M 2.5 GHz CPU.

Both methods are implemented in Python and make use of the NumPy module. We tried to optimize
the code when possible. For the polynomial approximation, the power of @, A and i is therefore computed
only once and than reused (see e.g. Eqgs. @0 to [44]). The bottleneck however comes from the root finding
step. Getting the dispersion curve from the polynomial approximation takes from around 0.15s (4 modes)
to 0.4s (14 modes), for 1000 values of the circular frequency.

Solving the Pochhammer equation takes 0.4s for 1000 values of w, in case of a quadratic extrapolation
for the prediction step. The extrapolation method used for the prediction step has a clear effect on the speed
of convergence of Newton’s method. In case there is not extrapolation (last point), the algorithm fails to
follow the dispersion curve and switches from a solution to another (Pochhammer equation has an infinite
number of solutions and generally we are interested in the first mode). In case of the linear extrapolation
for the prediction step, it takes around 0.50s and 3275 Newton iterations to compute 1000 values of ¢/cg
(which means an average of 3.3 iterations per point). The quadratic extrapolation improves the rapidity of
convergence of Newton’s method by providing a better estimate for the solution: in that case it takes 0.41s
and 2773 Newton iterations (average 2.8 iterations per point).

6. Conclusion

This article gives the right equations for the four-mode theory introduced by Anderson [8]. We also give
the associated dispersion curve. The theory was also extended to an arbitrary number of moded] and we
show the results for a number of modes up to 14.

The polynomial approximation for the dispersion of longitudinal waves in rod gives very good results
in low frequency and increasing the number of modes increases the frequency until which the polynomial

2This was tested with NumPy version 1.9.2
3This was tested with Matlab version R2018a
4The coefficients of the polynomial approximations can be found at fhttps://github.com/dbrizard/polydisp_ rod

9


https://github.com/dbrizard/polydisp_rod

approximation does not exceed a given level of error. Computing the dispersion curve with the polynomial
approximation is more robust than numerically solving the Pochhammer equation. In case there is a need to
monitor the solutions given by the polynomial root finding algorithm, the computational cost of monitoring
the eigenvectors of matrix A (see Eq. B8] can be a serious drawback.

If computation time matters, we think that using a number of modes greater than 12 is not interesting
because solving directly the Pochhammer equation is faster and does not give an approximate solution.
However, this also depends on the upper limit for the frequency of interest: if the highest value of 1/ A is
1, then the six-mode theory is a very good approximation and remains fast to compute. Table 2l may be
helpful to make the best compromise between accuracy and computational cost.

This paper is also the occasion to give the equations in dimensionless form: solving the approximate
dispersion equation then only relies on Poisson’s ratio v.

Appendix A. Correct coefficients for the four-mode theory
We give here the right coefficients of the four-mode equation [g]
Cy = a®p?(2u + N)?, (A1)
Cy = au(2p + N (2pa2w2(3u +A) = 24p(10p + 11X)) , (A.2)
Cs = a* (p?a*w (13p% + 8pA + A?) — 24pa’w? u(42p® + 55X + 1402) + 1924% (9 + 40)(2p + 3))), (A.3)

Cy = a® (20°a°w’(Bu+ \) — 24p%a*wt (2812 + 26p\ 4 3)\?)
+192pa’w? n(47p° + 62X + 16A%) —92164 (4p® + 8ud +302)),  (A.4)

Cs = pa*w? (pa*w® — 24p) (pa*w?(pa*w® — 24(5p + 3X)) + 384(u+ N) (21 + A)) - (A.5)

There is an error in the first line of coefficient C5 given by Anderson [8] (7uA instead of 8ul), leading to a
wrong dispersion curve.
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