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Abstract— In the last decade, the use of electronic olfaction
systems for the early diagnosis of several pathologies by breath
analysis has been investigated. In this study, an electronic
nose including seven polyaniline sensors has been developed.
An impedance measurement circuit and a micro-computer
to process the sensor responses were studied to give a pre-
diagnosis conclusion. The measurement accuracy is 97% when
it is exposed to a simulated human breath and different
concentration of ammonia, from 500 ppb to 2.8 ppm. The
described prototype weights about 300 g and can be used for
14 hours with a smartphone battery.

I. INTRODUCTION

With 10% of the global population affected by chronic
kidney disease [1], the development of a non-invasive, easy
to use and cost-effective solution to diagnose kidney patholo-
gies is of utmost importance. In order to check patients for
kidney diseases two tests are currently in use: a blood and
urine tests. The first one assesses the glomerular filtration
rate while the second one the abnormal presence of proteins.
Both of these procedures are simple and cost-effective but
require specific operator and laboratory. Moreover, blood
tests are invasive. Studies have shown that patients with
renal diseases have higher amount of ammonia in breath
than healthy ones [2]. Analysing breath composition could
lead to simple diagnosis tools to diagnose kidney diseases.
As human breath is a complex mixture of gases and volatile
compounds. It has been shown that combining cross sensitive
sensors with classification algorithms is a very effective
method to associate a pattern response of sensor to a disease
[3]. Such systems are referred to as electronic noses (E-nose).
They are composed of:

1) an array of sensors chosen for their cross-sensitivity to
chemical compounds of interest,

2) a signal processing stage to extract relevant features
from the sensors signals,

3) a classification algorithm to associate the sensor array
responses to an healthy or ill breath.

Different electronic noses already exist. However, they are
usually not fully handheld systems as they require a personal
computer type system to exploit the measurements [4]. An-
other drawback is their cost, about few thousands of dollars.
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See for instance the Cyranose 320 R© [5]. This paper presents
a low cost efficient handheld E-nose for early diagnosis of
renal diseases. The simulated human breath which is used
to test the system is described in section II. Section III
explains the choices made to design the proposed E-nose.
Section IV and V describe the experimentation and its results
respectively. Section VI concludes the paper.

II. HUMAN BREATH

Human breath contains hundreds of compounds. Concen-
tration of compounds ranges from few ppt up to thousands
of ppb [6]. The variability of the composition between
individuals is important, and depend on many factors as
age, gender or health condition. A standard composition of
a simulated human breath has been made, based on mean
concentration given in [6][7]. Its composition is : 800 ppb
of ammonia (±10%), 500 ppb of acetone (±0.5%), 500 ppb
of methanol (±1%), 200 ppb of ethanol (±0.5%), 100 ppb of
isoprene (±5%) and 20 ppb of acetaldehyde (±5%). Relative
humidity during injection increases to 70 %. Carbon dioxide
is not added because it does not react with the formulated
sensors.

III. PROPOSED ELECTRONIC NOSE SYSTEM

The proposed electronic nose is based on a single-board
computer, a Raspberry Pi. Its low cost, size, computational
power and various of available interfaces (I2C, GPIO, SPI)
made it a versatile and powerful control unit for the elec-
tronic nose. Both the measurement Front End and Raspberry
Pi have the size of a credit card as shown in Figure 2. The
developped sensor array is 2.5 × 0.5 × 0.1cm3. Packaging
the complete system costs about 50$, and weights 300 g.
Therefore, a handheld E-nose is then possible.

A. Custom Ammonia Sensors

A good candidate to detect the target compound, ammo-
nia, in the ppb range, is the polyaniline (PANI). It is an
intrinsically conductive polymer. Moreover, PANI is a low
cost material. When in presence of ammonia, the equivalent
electrical impedance varies in time. The electrical model of
a polyaniline sensor is a resistance and a capacitive element
in parallel, Figure 1a [8]. By changing the structure of
the polymer matrix, and surface/volume ratio between for-
mulations, different impedance variations, i.e. differentiated
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Fig. 1. (a) Equivalent electrical model of the sensor and its Nyquist diagram
are shown. (b) Polyaniline sensor and interdigitated electrode dimensions.

responses, are observed. The sensors were manufactured by
drop coating a polyaniline solution on gold interdigitated
electrodes deposited on an ceramic substrate, Figure 1b. The
worst case sensors sensitivity is in the order of 5% impedance
variation per ppm when equilibrium is reached. Seven PANI
sensors with different formulation are used [9][10], which is
enough for correct olfactive pattern recognition [3].

B. Front End: Impedance measurement

Since the impedance of the sensors is complex, it is chosen
to use the AD5933 impedance measurement integrated cir-
cuit from Analog Device. The circuit has built-in calibrations
for impedance measurements and temperature. Moreover, the
AD5933 has an I2C port for communication with Raspberry
Pi. The impedance to measure is excited with a sinusoidal
voltage signal at 1 kHz and 30 kHz. The sensor response
signal is then sampled at a rate of 2 Hz (controlled by
the Raspberry) for computing the real and imaginary parts
of the impedance. These values are then communicated to
the Raspeberry via the I2C port. The measurement accuracy
of the AD5933 is 0.5%. It yields an error of concentration
measurement of 100 ppb, in line with the sensors sensitivity.
To measure the impedance of the seven sensors, a 8:1 analog
multiplexer (ADG708) is inserted between the AD5933 and
the sensor array. The 8th multiplexer input is used for
impedance calibration purposes.

C. Feature extraction

Sensors responses processing is done on the Raspberry Pi.
The first step consists in filtering the curves with a moving
average operation to reduce the noise and remove any
incoherent measures. The resistance is then calculated from
the real and imaginary values provided by the measurement
front-end circuit:

R =
Re2(Z)+ Im2(Z)

Re(Z)
(1)

where Re(Z) and Im(Z) are the real and the imaginary
parts of the impedance Z, respectively. Computed R
values are stored in memory before features are extracted
from the memorized points. Typically, only the maximum
variation is extracted from the curve, Figure 3. However,
it has been shown that transient features such as integrals
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Fig. 2. (a) Architecture of the electronic nose system and (b) the picture
of different parts of the electronic nose. The sensor array card is composed
of 100 sensors even if only the seven outlined ones are used.

and/or derivative could also help increase the classification
performance [11]. The set of features extrated is thus:

• the maximum derivative of the signal: δR,
• the integral value:

∫
R,

• the maximum variation: ∆R.
For each sensor, features are extracted during both the
adsorption and desorption phases, Figure 3, yielding a total
of 42 features (six extracted features for the seven sensors).

D. Classification stage

Typically, the classification is performed in two steps.
First, the set of extracted features is transformed into a
reduced set of dimensions by means of a specific algorithm.
Second, the actual classification algorithm works on the re-
duced set of dimensions. The classification process required



Fig. 3. Typical gas sensor response with the different features extracted.

Fig. 4. Illustration of the E-nose laboratory test bench.

training of both algorithms to discriminate different classes.
Several algorithms exist for dimension reduction, Principal
Component Analysis (PCA), Linear Discriminant Analysis
(LDA) as well as classification algorithms, LDA, support
Vector Machine (SVM), Artificial Neural Networks (ANN)
and Random Forest (RF) algorithm, to name the most used.
Several combinations are possible. Since predicting which
one yields the best results is impossible, testing is necessary
[12]. Validating a classifier requires to randomly separate the
data into training and testing databases. Typically, the train-
ing database represents 60% of the data randomly chosen.
This selection process is eased on the Rasberry Pi card thanks
to the Python Scikit-Learn librairie having many algorithms
implemented.

IV. EXPERIMENTAL SET-UP

Moisted air, simulated human breath and ammonia are
mixed and injected for five minutes into the exposure cham-
ber in which the sensor array is. The amount of ammonia
added in the mixture varies from 500 ppb to 2 ppm. Three
classes are defined: Healthy, Uncertain, and Unhealthy. They
correspond to three concentration ranges of ammonia : 500
ppb - 1.1 ppm, 1.1 ppm - 1.7 ppm, 1.7 ppm - 2.8 ppm,
respectively. The exposure chamber is in a climatic room,
with a controled temperature of 27◦C, Figure 4. The flow

rate is at 8 L.min−1. After an exposition, a purified and dry
air is injected during five minutes. A total of 100 cycles are
then realised with non specific order in the concentration of
ammonia added in the mixture. An ammonia analyser and
a humidity sensor is used to control the real concentration
of ammonia and the relative humidity inside the exposure
chamber.

V. RESULTS

A. Sensor responses

Figure 5 shows typical responses of 2 different sensors.
Exposed to a mixture of simulated human breath and 1.5 ppm
of ammonia, sensors have similar responses but different ∆R
, δR and

∫
R (table I). For a same concentration of ammonia,

sensor responses vary. For exemple, the resistance variation
for sensor 2 varies from 6.1% to 9% for 2 ppm of ammonia.
Thus, a predicted concentration error of 600 ppb is possible.
This is enough to mistake a healthy sample as a unhealthy
one.

Fig. 5. Resistance variation of sensors 1 and 2 to 1.5 ppm of ammonia
and human breath composition.

TABLE I
RESPONSE FEATURES OF SENSORS 1 AND 2 TO 1.5 PPM OF AMMONIA.

Absorption Desorption
∆R (%) δR

∫
R ∆R (%) δR

∫
R(×103)

Sensor 1 8.4 99 372 -5.5 -79 358
Sensor 2 7.3 12 86 -6.7 -9 83

B. Classication results

After testing various combinations of dimension reduction
and classification algorithms, the best combination is LDA
and SVM, respectively. LDA reduces the number of dimen-
sions from 42 down to two by linearly combining the original
features. Figure 6 shows the projection of the database with
LDA algorithm and is already efficient to discriminate the
different classes with a classification accuracy of 93%. Then
SVM algorithm is applied to the 2-D dataset. SVM principle
is to calculate an hyperplan that segregate at best the different
classes. The SVM algorithm classifies the samples with an
accuracy of prediction of 97%. These results are detailed



Fig. 6. Application of the linear discriminant algorithm.

Fig. 7. Normalized confusion matrix of the SVM algorithm. Healthy and
Uncertain samples are always well predicted. Unhealthy ones are correctly
classified at 92%.

on the confusion matrix in Figure 7: row gives the class
of a tested sample, and column the class predicted by the
classifier. Accuracy is calculated by dividing the sum of
correctly classified samples by the total sample tested. In
the present case, a healthy or uncertain sample is always
correctly classified. The confusion matrix points out that the
predicted errors are only with unhealthy samples: 92% are
accurately classified but 8% are predicted as uncertain. This
is in line with the LDA results in Figure 6, where unhealthy
and uncertain groups are close from each other. Errors
between healthy/unhealthy would be more problematic in
a diagnosis help system. Crossing responses from several
sensors based on PANI with a classification stage is thus
appropriate to reduce the error.

When used without dimensional reduction with the 42-D
vectors, the SVM accuracy drops to 94%. The use of LDA
for dimensionnal reduction is therefore necessary. Moreover
it allows an easier hardware implantation of the classification
stage. Further works will focus on confronting the proposed
system with a more diverse set of simulated breath samples
and real human breath.

C. System power requirements
The power consumption of the system is 1.35 W when

idle, 1.5 W during measurement and 2.1 W during classifi-
cation stage. The measurement front-end power consumption
is only 0.1 W so the next step is to optimize the controller
and classification parts with a more dedicated circuit.

For instance, this electronic nose prototype could be
powered for 14 hours with a 5000 mAh battery.

VI. CONCLUSIONS
The electronic nose system presented in this paper allows

detecting different levels of ammonia concentration in a
simulated human breath with an accuracy of 97%.

Moreover, it is a low cost, portable and easy to use
diagnosis system for a general practitioner. Such a system
could allow a broader access to point of care testing for
populations living in areas lacking of medical care services.
Further work will heavily focus on further reducing the
size and power consumption of the system by proposing a
hardware implantation of all its components.
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