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Abstract. Height fluctuations are studied in the one-dimensional totally asymmetric

simple exclusion process with periodic boundaries, with a focus on how late time relax-

ation towards the non-equilibrium steady state depends on the initial condition. Using

a reformulation of the matrix product representation for the dominant eigenstate, the

statistics of the height at large scales is expressed, for arbitrary initial conditions, in

terms of extremal values of independent standard Brownian bridges. Comparison with

earlier exact Bethe ansatz asymptotics leads to explicit conjectures for some conditional

probabilities of non-intersecting Brownian bridges with exponentially distributed dis-

tances between the endpoints.

Keywords: TASEP, KPZ fluctuations, finite volume, non-intersecting Brownian

bridges

1. Introduction and summary of main results

Non-equilibrium settings involving many degrees of freedom in interaction have been

increasingly investigated in the past decades. A particularly interesting and much

studied [1, 2, 3, 4, 5] emergent dynamics at large scales, known as KPZ universality

[6], describes systems such as growing interfaces or driven particles with short range

dynamics and enough non-linearity. A central object in KPZ universality is the height

function h, a random field depending on space and time. Once the initial condition h0

and the geometry (infinite system, finite system with periodic boundaries, open system

in contact with the environment at the boundaries, . . . ) are specified, the statistics of

h is uniquely determined for all systems in KPZ universality.

In one dimension, several exactly solvable models belong to KPZ universality. The

study of these models has led in the past twenty years to a precise characterization of the

statistics of the height h(x, t) in a variety of settings. On the infinite line, connections to

statistics of extremal eigenvalues in random matrix theory (Tracy-Widom distributions

and Airy processes) have been discovered [7, 8, 9, 10, 11]. More recently [12, 13, 14, 15],

some progress was made for periodic boundaries with some specific initial conditions.

There, finite volume leads to quantization of allowed momenta k in Fourier space, and
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the relaxation modes are described by elementary excitations of particle-hole type [16]

with dispersion k3/2 [17], which can be analyzed by Bethe ansatz.

In this work, we consider the long time limit of one-dimensional KPZ fluctuations

h(x, t) with periodic boundaries x ≡ x+1 and arbitrary initial condition. Starting with a

recent matrix product characterization [18, 19] of the dominant eigenvector of the totally

asymmetric simple exclusion process (TASEP) [20, 21, 22], an exactly solvable model in

KPZ universality which features hard-core particles hopping in the same direction, we

express the long time statistics of h(x, t) with initial condition h0 in terms of extremal

values of independent Brownian bridges (see section 1.4). Equivalently, our results are

formulated, in section 1.6, as conditional probabilities of non-intersecting Brownian

bridges with exponentially distributed distances between the endpoints. Comparison

with earlier results [12] for specific initial conditions leads to precise conjectures for

these Brownian functional (section 1.7). We also perform perturbative expansions for

more general initial conditions. In particular, we find, in section 1.5, that when the

amplitude of the initial height h0 is small, the average height is given in the long time

limit by

〈h(x, t)〉 − t ≃
√
π

2
−

√
2π

4
+

∫ 1

0

dxh0(x) +
√
2π

∑

k∈Z
aka−k(−1)kkπJ1(kπ) + . . .

where the ak’s are the Fourier coefficients of the initial height h0.

The paper is organized as follows. In the rest of this section, known facts about

the relation between TASEP and KPZ universality are recalled and our main results are

precisely stated. In section 2, we derive these results by rewriting the matrix product

expressions of [18, 19] in a simpler form, which allows us to take the limit of large

system sizes in a straightforward manner. In section 3, we calculate various Brownian

expectation values related to the first cumulants of h(x, t). Some technical results are

gathered in the appendices.

1.1. Periodic TASEP

At the microscopic level, we consider the TASEP dynamics on a one-dimensional lattice

(Fig. 1). Each site is either empty or occupied by a single particle, and each particle

may hop independently of the others from its current site i to the site i+1 if the latter

is empty. The hopping rate is fixed equal to 1 with respect to the (microscopic) time

scale tm.

Since we focus on KPZ fluctuations in a finite volume, we restrict in the following to

a periodic lattice with L ≫ 1 sites for the microscopic model. The sites are numbered

by i ∈ Z, i ≡ i + L, with an origin i = 1 chosen arbitrarily. The total number of

particles N and the average density ρ = N/L are conserved by the dynamics. At

time tm, the configuration of TASEP can be specified either by the positions of the

particles Xj(tm), j = 1, . . . , N , distinct modulo L, or by the occupation numbers ni(tm),

i = 1, . . . , L with ni = 1 if site i is occupied and ni = 0 otherwise. A more precise

characterization of the state of the model is through the height function Hi(tm), initially
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Figure 1. Representation of the dynamics of TASEP in terms of hopping particles

(bottom) and corresponding height functionHi (top) for a system with density ρ = 1/3.

equal to Hi(0) =
∑i

k=1(ρ − nk(0)), i = 1, . . . , L, and which increases by 1 each time a

particle moves from site i to site i+ 1. Then, Hi(tm) = H0(tm) +
∑i

k=1(ρ− nk(tm)) at

any time. The time-integrated current Qi(tm) between sites i and i+ 1, defined as the

total number of particles that have hopped from i to i + 1 between time 0 and tm, is

equal to Qi(tm) = Hi(tm)−Hi(0).

In the continuum L ≫ 1, density profiles ρ(x) can be defined as local averages

of the occupation numbers ni over a number L dx of consecutive sites around site

i = ⌊Lx⌋, with 1 ≪ L dx ≪ L. The density profile corresponding to the initial state

of the microscopic model will be denoted by ρ0 in the following. In this work, we are

interested in the large scale fluctuations of the height function Hi(tm) in the KPZ time

scale tm ∼ L3/2, and more specifically in the precise dependency on ρ0 of the fluctuations

at late time tm/L
3/2 ≫ 1 when the system approaches its non-equilibrium steady state.

1.2. Large scale dynamics in finite volume

We first summarize a few known results about deterministic hydrodynamics on the Euler

time scale tm ∼ L. Then we consider finite volume fluctuations on the KPZ time scale

tm ∼ L3/2. In the latter case, the evolution starting from a typical fluctuation and the

evolution starting from a finite density profile have to be treated separately.

1.2.1. Hydrodynamics on the Euler time scale tm ∼ L.

The hydrodynamic time te is defined by tm = teL. For fixed te and average density ρ,

the limit ρe(x, te) = limL→∞ ρm(x, Lte) is well defined and equal to the viscosity solution



Brownian bridges for late time asymptotics of KPZ fluctuations in finite volume 4

of the inviscid Burgers’ equation [23]

d

dte
ρe(x, te) +

d

dx
[ρe(x, te)(1− ρe(x, te))] = 0 . (1)

Burgers’ equation is deterministic and conserves the total density
∫ 1

0
dx ρe(x, te) = ρ.

The initial condition ρe(x, 0) = ρ0(x) and periodic boundary conditions x ≡ x + 1 are

imposed.

The height profile defined from the TASEP height function as

He(x, te) = lim
L→∞

L−1H⌊Lx⌋(Lte) (2)

is given in terms of the solution ρe of Burgers’ equation by

He(x, te) = H0(x) +

∫ te

0

dτρe(x, τ)(1− ρe(x, τ)) , (3)

with initial condition

H0(x) =

∫ x

0

dy (ρ− ρ0(y)) . (4)

This height profile verifies

d

dx
He(x, te) = ρ− ρe(x, te) and

d

dte
He(x, te) = ρe(x, te)(1− ρe(x, te)) . (5)

An important feature of hyperbolic conservation laws such as (1) is the presence

of shocks (i.e. discontinuities in x for ρe(x, te)), whose number evolves in time by a

complicated process of spontaneous generation and merging. For smooth enough initial

condition ρ0, the number of shocks does not change any more after some time, since all

the remaining shocks move with the same asymptotic velocity 1 − 2ρ in the long time

limit. Surprisingly, it is not necessary to solve the whole time evolution to determine how

many shocks survive when te → ∞: Theorem 11.4.1 of [24] asserts that this asymptotic

number of shocks is equal to the number of times the global minimum of H0 is reached.

Denoting by κ any position where H0(κ) is equal to its global minimum min[H0], the

following long time asymptotics (in the moving reference frame with velocity 1− 2ρ) is

satisfied:

He(x+ (1− 2ρ)te, te) ≃ ρ(1− ρ)te +min[H0] +
(x− κ)2

4te
, (6)

for any x such that there is no shock between x and κ.

1.2.2. KPZ time scale tm ∼ L3/2: Evolution from a typical fluctuation.

We define the rescaled time t by

tm =
tL3/2

√

ρ(1− ρ)
(7)

and consider an initial density profile of the form

ρ0(x) = ρ+
√

ρ(1− ρ)
σ0(x)√

L
(8)
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with σ0 periodic of period 1 such that
∫ 1

0
dxσ0(x) = 0. This corresponds to a typical

fluctuation in the stationary state, such that the density profile remains almost surely

equal to the constant ρ at leading order in L for any time t. The corresponding height

function behaves at large L for fixed x, t and ρ as

H(1−2ρ)tm+xL(tm) ≃ ρ(1− ρ)tm +
√

ρ(1− ρ)Lh(x, t) . (9)

The site i at which the height Hi(tm) is considered in (9) moves at the velocity 1 − 2ρ

of density fluctuations. The first term in the right hand side is the contribution of the

instantaneous current ρ(1− ρ). The height fluctuation h(x, t) is a random variable; its

initial value h(x, 0) = h0(x) is given in terms of the initial density profile of TASEP by

h0(x) = −
∫ x

0

dy σ0(y) . (10)

The function h0 is continuous and verifies h0(0) = h0(1) = 0.

The height fluctuation h(x, t) is a random field that has the same law as a specific

solution of the Kardar-Parisi-Zhang (KPZ) equation in the limit of strong non-linearity.

More precisely, one has [25, 26]

h(x, t) = lim
λ→∞

(

hλ,1(x, t/λ)−
λ2t

3

)

= lim
ℓ→∞

h1,ℓ(xℓ, tℓ
3/2)− tℓ3/2/3√

ℓ
, (11)

where hλ,ℓ(x, t) is the properly renormalized [27] solution of the KPZ equation

∂thλ,ℓ(x, t) =
1

2
∂2
xhλ,ℓ(x, t)− λ(∂xhλ,ℓ(x, t))

2 + η(x, t) (12)

with initial condition hλ,ℓ(x, 0) =
√
ℓ h0(x/ℓ). The Gaussian white noise η in the KPZ

equation has covariance 〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′), and periodic boundary

conditions hλ,ℓ(x, t) = hλ,ℓ(x + ℓ, t) are imposed. The second equality in (11) results

from the scaling properties of the KPZ equation, hλ,ℓ(x, t) =
√
α hλ

√
α,ℓ/α(x/α, t/α

2) in

law for arbitrary α > 0.

1.2.3. KPZ time scale tm ∼ L3/2: Evolution from a finite density profile.

We consider now the case of an initial state corresponding to a non-constant density

profile ρ0(x) 6= ρ on the KPZ time scale (7). Exact results [12, 13] for domain wall

initial condition ρ0(x) = 1{0≤x≤ρ} suggest the existence of an analogue to (9). As far as

we know, a theorem for general ρ0 is however still missing. From (6), an additional

deterministic shift Lmin[H0] is contributed to the height by the whole Euler time

scale, te ∈ R
+. Even though other modifications may be needed, the exact result

for domain wall initial condition and simulations in a few other cases suggest that the

height fluctuations are given at large L with fixed x, t and ρ by the rather minimal

modification

H(1−2ρ)tm+xL(tm) ≃ ρ(1− ρ)tm +min
i

Hi(0) +
√

ρ(1− ρ)L h̃(x, t) . (13)

The tilde is used for height fluctuations in (13) in order to distinguish from h(x, t) in

(9). Given the somewhat light evidence given here for (13), a proof would be very much
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welcome. In particular, it may be possible that additional shifts to the average height

will be needed for general initial condition. Comparison between the Brownian bridge

representation for the generating function of h(x, t) and h̃(x, t) in the long time limit

however suggests that any additional shift must vanish when t → ∞.

The height fluctuations h̃(x, t) should in principle be related to a solution of the

KPZ equation as in (11), but with singular initial condition akin to the much studied

sharp wedge case [28, 29, 30, 31] on the infinite line. An additional deterministic shift is

expected compared to (11). On the infinite line [32] or on an open interval [33], this shift

can be extracted from the comparison between the average 〈Zλ,ℓ(x, t)〉 of the Feynman-

Kac solution of the stochastic heat equation obtained from KPZ by the Cole-Hopf

transform Zλ,ℓ(x, t) = e−2λhλ,ℓ(x,t), and Gärtner’s microscopic Cole-Hopf transform for the

exclusion process with partial asymmetry that verifies a closed equation. Unfortunately,

the time evolution of Gärtner’s transform does not seem to be straightforward in the

case of periodic boundaries, and we were not able to state a precise connection to the

KPZ equation with non-constant ρ0.

Comparing (9) and (13) for the two types of initial states of TASEP, we expect that

h̃(x, t) should be recovered from h(x, t) in the limit where the initial amplitude h0 of

h(x, t) is large. Writing explicitly the dependency on the initial condition as h(x, t; h0)

and h̃(x, t;H0), we conjecture that

h(x, t;H/ǫ) ≃ min[H]/ǫ+ h̃(x, t;H) (14)

when ǫ → 0. The conjecture is illustrated in figure 4 for the variance of the height

with parabolic initial condition. Besides, since the long time behaviour of Burgers’

hydrodynamics (6) on the Euler time scale tm ∼ L depends only on the positions of the

global minimum of H0, the statistics of h̃(x, t) on the KPZ time scale tm ∼ L3/2 should

also be independent from H0 except for the positions κ where its global minimum is

reached. In the long time limit, these conjectures are supported by an explicit calculation

of the limit ǫ → 0 of Brownian bridge formulas in section 1.4.2. Comparison with Bethe

ansatz results for domain wall initial condition are also in agreement with (14). In the

following, we call sharp wedge initial condition any finite initial density profile ρ0 such

that the corresponding height function H0 has a unique global minimum.

1.3. Generating function of height fluctuations at late times

Exact Bethe ansatz calculations [12] for a few specific initial conditions suggest that

the moment generating function of the height fluctuations h(x, t) and h̃(x, t), defined

respectively in (9) and (13), is equal in the large L limit to a dynamical partition function

summing contributions from infinitely many configurations r of particle-hole excitations

at the edges of a Fermi sea. For general deterministic initial conditions h0 or H0 defined

above, we conjecture

〈esh(x,t)〉 =
∑

r

θr(s; h0) e
iprx+ter(s) (15)
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〈esh̃(x,t)〉 =
∑

r

θ̃r(s;H0) e
iprx+ter(s) . (16)

For random initial condition, the coefficients θr and θ̃r have to be averaged over the

initial state. The total momentum pr is the sum of the momenta of the excitations. The

function er(s) in (15), (16) has an explicit expression [16] involving sums of momenta

of excitations to the power 3/2 (see [34, 35, 36, 37] for earlier results). At present, the

coefficients θr(s; h0) in (15) are only known for flat (h0 = 0) and stationary (Brownian)

initial conditions whereas the coefficients θ̃r(s;H0) in (16) are only known for sharp

wedge initial condition [12].

In the long time limit, only the fully filled Fermi sea r = 0 with no particle-hole

excitation and zero momentum contributes, and one has

〈esh(x,t)〉 ≃
t→∞

θ(s; h0) e
te(s) (17)

〈esh̃(x,t)〉 ≃
t→∞

θ̃(s;H0) e
te(s) , (18)

with θ(s; h0) = θ0(s; h0), θ̃(s;H0) = θ̃0(s;H0), e(s) = e0(s). The quantities θ(s; h0),

θ̃(s;H0) are written in (64), (65) below as the large L limit of an expression involving

the elements of the stationary eigenstate of a deformed generator of TASEP. From the

Perron-Frobenius theorem, all the components of this eigenvector are nonzero, at least

for generic value of the deformation parameter, which ensures that for r = 0 the right

hand side in (64), (65) is nonzero before taking the limit L → ∞. We conjecture that

this property still holds after the large L limit, and that θ(s; h0), θ̃(s;H0) are nonzero.

This conjecture can also be seen as a consequence of the expected ergodicity of KPZ

dynamics in finite volume, which implies that limt→∞ t−1 log〈esh(x,t)〉 may not depend on

the initial condition. Depending on h0, higher θr(s; h0) with r 6= 0 may however vanish.

This is for instance the case with flat initial condition, for which only eigenstates with

momentum pr = 0 contribute to (15).

If we consider a dynamics which is also conditioned on the final state h1 (respectively

H1), we shall write θ(s; h0 → h1) (resp. θ̃(s;H0 → H1)) for the coefficient in front of

the exponential. We note that these functions θ appear as subleading prefactors to the

dominant exponential behaviour. Similar corrections to large deviation asymptotics have

been investigated for work fluctuations of Brownian particles [38] and heat transport in

harmonic chains [39].

1.4. Extremal values of independent Brownian bridges for θ(s; h0), θ̃(s;H0) and e(s)

One of our main results in this work is that we can relate the functions θ(s; h0),

θ̃(s;H0), with general initial condition h0(x), and e(s), to statistical properties of

standard Brownian bridges (see, for example, the expressions (19), (20) for θ(s; h0)).

Furthermore, we have also found a representation of these functions in terms of

conditioned probabilities of non-intersecting Brownian bridges (see, e.g., the formula

(41)).
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Figure 2. Typical realization b(x) of the standard Brownian bridge plotted as a

function of x.

1.4.1. Relation to Brownian bridges.

The Wiener process w(x), or standard Brownian motion, is a continuous random

function with w(0) = 0 whose increments w(x+ a)−w(x), a > 0 are independent from

w(y), y ≤ x and have Gaussian distribution with mean 0 and variance a. The standard

Brownian bridge b(x), 0 ≤ x ≤ 1 (see figure 2) is constructed from the Wiener process

w(x) by conditioning the latter on the event w(1) = 0. Equivalently, the Brownian

bridge may also be defined as b(x) = w(x)−xw(1), which is convenient for simulations.

The standard Brownian bridge b(x) is a Gaussian process with mean 0 and covariance

〈b(x1)b(x2)〉b = x1(1− x2) for 0 ≤ x1 ≤ x2 ≤ 1.

In the long time limit, the height h(x, t) becomes Brownian, in the sense that

h(x, t) − h(0, t) has the same law as a standard Brownian bridge b(x) [40]. This result

does not say anything, however, about the correlations between h(0, t) and b(x). Using

the matrix product representation obtained by Lazarescu and Mallick in [18, 19] for the

dominant eigenstate of TASEP, we derive in section 2.2 the perturbative expansion near

s = 0 to arbitrary order n ∈ N

θ(s; h0) = θbb,n(s; h0) +O(sn+1) , (19)

with

θbb,n(s; h0) =
〈e−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn〈e−smax[b1−h0]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

〈e−s
∑2n

j=1 max[bj−bj−1]〉b0,...,b2n
. (20)

Here, max[f ] denotes the maximum of a function f(x) in the interval x ∈ [0, 1]. Besides,

expressions of the form 〈. . .〉b0,b1,... always indicate expectation values computed with

respect to independent standard Brownian bridges bj .

More generally, when the dynamics is conditioned on the final height profile

h(x, t) − h(0, t) = h1(x), the same approach gives for θbb,n(s; h0 → h1) a formula

obtained by replacing in the numerator of (20) the factor 〈e−s
∑n

j=1 max[bj−bj−1]〉b0,...,bn
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by 〈e−s
∑n

j=2 max[bj−bj−1]−smax[h1−bn]〉b1,...,bn. Note that the fact that the stationary state

corresponds to a random height profile with the statistics of a standard Brownian bridge

amounts to θbb,n(s; h0) = 〈θbb,n(s; h0 → b)〉b. Additionally, one has 〈θbb,n(s; h0 →
b) θbb,n(s; b → h1)〉b = θbb,n(s; h0 → h1), which is consistent with the insertion of an

intermediate time in 〈esh(x,t)〉.
The large L limit of the eigenvalue equation for the dominant eigenstate of TASEP is

given in section Appendix B.2 in terms of Brownian averages. One finds the perturbative

expansion near s = 0 to arbitrary order n ∈ N

e(s)

s
+

s2

3
= fbb,n(s; h0) +O(sn) (21)

with

fbb,n(s; h0) = −〈b′n(0+) b′n(1−) e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn
〈e−smax[b1−h0]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

. (22)

The derivatives b′n(0
+) and b′n(1

−) in (22) are to be understood as the limits b′n(0
+) =

limM→∞Mbn(1/M), b′n(1
−) = − limM→∞Mbn(1− 1/M). The function h0 in (22) is an

arbitrary, regular enough continuous function with h0(0) = h0(1) = 0. As an eigenvalue

equation, (22) must be independent from the overlaps of the corresponding eigenvector.

Thus, the perturbative expansion of fbb,n(s; h0) up to order sn−1 must a priori not

depend of h0. This can be checked directly by noting that (22) generates no chain of

the form max[b1 − h0]
r1 max[b2 − b1]

r2 . . .max[bn − bn−1]
rn , r1, . . . , rn ≥ 1 linking h0 and

bn at that order.

Remark: Translation invariance. The current Qi(tm) of TASEP between sites i and i+1

with initial configuration C0 is unchanged if one translates both i and all the particles

in the initial state by the same distance. Using Qi(tm) = Hi(tm)−Hi(0) and the large

L asymptotics (9), this implies that h(x, t) − h0(x) is invariant under a simultaneous

translation by an arbitrary distance a of the position x and the initial density profile

σ0. In the long time limit, this is equivalent to

θ(s; h0) = esh0(−a) θ(s; h0( · − a)− h0(−a)) (23)

for any periodic function h0 with period 1.

At first order in s, the identity above reduces from (20) to an average translation

invariance property of the Brownian bridge, that 〈max0≤x≤1[b(x) − h0(x − a)]〉b is

independent of a for any continuous function h0 of period 1. The latter property

can be proved by writing b(x + a) − h0(x) = b(x) − h0(x) + (b(x + a) − b(x)), where

b(x+ a)− b(x) = w(x+ a)− w(x)− aw(1) is equal in law to ŵ(a)− aw(1) with w and

ŵ Wiener processes of mean zero.

We emphasize that translation invariance holds for θ(s; h0) but not for θbb,n(s; h0)

with finite n and s: only the perturbative expansion up to order n in s has to be invariant

when h0(x) is replaced by h0(x− a)− h0(−a).
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1.4.2. Brownian bridge for θ̃(s;H0).

From (14), θ(s;H/ǫ) and θ̃(s;H) are related when ǫ → 0. Furthermore, the discussion at

the end of section 1.2.1 about hydrodynamics at long times on the Euler scale indicates

that θ̃(s;H) should not depend of H except for the locations at which its global minimum

is reached.

The situation is particularly simple for sharp wedge initial condition (that we shall

denote by the acronym sw in the following) where the global minimum is reached only

once, at κ ∈ (0, 1]. For any x ∈ (0, 1], x 6= κ and any realization b of the standard

Brownian bridge the inequality b(κ)− ǫ−1H(κ) > b(x)− ǫ−1H(x) holds for small enough

epsilon. Thus, the random variable max[b − ǫ−1H] + ǫ−1min[H] → b(κ) almost surely

when ǫ → 0. Using translation invariance, one can as well take κ = 0 so that b(κ) = 0,

and (20) leads to

lim
ǫ→0

e−smin[H]/ǫθ(s;H/ǫ) = θ̃(s; sw) , (24)

where

θ̃(s; sw) = θ̃bb,n(s; sw) +O(sn+1) (25)

with

θ̃bb,n(s; sw) =
〈e−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn〈e−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

〈e−s
∑2n

j=1 max[bj−bj−1]〉b0,...,b2n
. (26)

This result is checked in section 1.7.4 up to order s3 for domain wall initial condition

by comparison with the exact Bethe ansatz result.

When the global minimum of H is reached several times, say at discrete

positions κ1, κ2, . . . the procedure above replaces the factor e−smax[b1−ǫ−1H] in (20)

by esmin[H]/ǫ e−smax(b1(κ1),b1(κ2),...). Therefore, the result depends explicitly on the

distances between the positions κj after using translation invariance. In particular,

the mean value of the height 〈h(x, t)〉 in the long time limit is shifted by the amount

−〈max(b(κ1), b(κ2), . . .)〉b as compared to the sharp wedge case.

1.5. First cumulants of the height

The function s 7→ log〈esh(x,t)〉 is the cumulant generating function of the height. At late

times, (17) implies that the cumulant generating function is equal to te(s) + log θ(s; h0)

up to exponentially small corrections. The Legendre transform g of e is the large

deviation function of the height in the stationary state, i.e., the probability density

of the height behaves as P(h(x, t) = tu) ∼ e−tg(u) for large t.

Because of translation invariance, the cumulants of the height are independent

of the position x in the long time limit. The leading term e(s) is also independent

of the initial condition. Its expression, see (44) below, was first obtained by Derrida

and Lebowitz [41] for TASEP, see also [42], and recovered by Brunet and Derrida [43]

for the continuum directed polymer in a random medium, which also belongs to KPZ

universality.
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Figure 3. Plot of 〈max0≤x≤1[b(x) − h(x)]〉b for h(x) = cx1{0≤x<1/2} + c(1 −
x)1{1/2≤x<1} (left) and h(x) = cx(1 − x) (right) as a function of c. The average

is computed with respect to the standard Brownian bridge b. On the left, the black

curve is the exact formula (124), the dashed red curves are the asymptotics c → −∞
(128) and c → +∞ (127) with a = 1/2 and summation up to k = 6, and the dotted

blue curve is the small c expansion (125) with a = 1/2. On the right, the black curve

comes from high precision Bethe ansatz numerics (and matches perfectly (133) for

c < 0), the dashed red curves are the asymptotics c → −∞ (137) and c → +∞ (140),

and the dotted blue curve is the small c expansion (144).

1.5.1. Average height.

Using the fact that 〈max[b1 − b0]〉b0,b1 =
√
π/2 (this expectation value is a special case

of equation (81) below), we deduce from (20) that the mean value of the height in the

case of an initial condition of the form (8) is equal in the long time limit to

〈h(x, t)〉 ≃ t +

√
π

2
− 〈max[b− h0]〉b (27)

up to exponentially small corrections. The leading term t comes from e′(0) = 1, which

is a consequence of the exact expression (44) below.

In order to get a closed expression for the average, we need to calculate the average

〈max[b−h0]〉b over Brownian bridges with the initial condition h0. We shall discuss now

some special cases.

In the case of a flat initial condition h0(x) = 0, we obtain 〈h(x, t)〉 ≃ t+
√
π
2
−

√
2π
4
.

For a stationary initial condition h0(x) = b(x) with b a standard Brownian bridge, the

average cancels out the
√
π/2 term and limt→∞〈h(x, t)〉 − t = 0. Special cases with

piecewise linear and parabolic initial conditions are considered in figure 3.

When h0 is of small amplitude, the following expansion is derived in section 3.2:

〈max[b− ǫh0]〉b =
√
2π

4
− ǫ

∫ 1

0

dxh0(x)− ǫ2
√
2π

∑

k∈Z
aka−k(−1)kkπJ1(kπ) +O(ǫ3) ,(28)

where the ak are the Fourier coefficients of h0, h0(x) =
∑

k∈Z ake
2iπkx and J is the Bessel

function of the first kind.

On the other hand, when h0 is of large amplitude, we recover from (14) the average

〈h̃(x, t)〉 corresponding to a finite initial density profile ρ0. In particular, if the minimum
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of the initial height is reached only once, the sharp wedge case is recovered in the limit of

large amplitude, and (26) implies 〈h̃(x, t)〉 ≃ t+
√
π
2
. More precisely, the asymptotics for

h0 of large amplitude is dominated by the behaviour of h0 around its global minimum.

If the minimum is reached only once, at κ with h0(x) ≃ min[h0] + a|x − κ|ν , the

scaling properties of the Brownian motion give at leading orders in ǫ the asymptotics

〈max0≤x≤1(b(x) − h0(x)/ǫ)〉b ≃ −ǫ−1 min[h0] + (ǫ/a)
1

2ν−1 〈maxx∈R(w(x) − |x|ν)〉w when

ν > 1/2, with w a two-sided Wiener process. For 0 ≤ ν ≤ 1/2, the correction to the

leading term −ǫ−1min[h0] becomes instead exponentially small when ǫ → 0. When

ν = 1, the constant 〈maxx∈R(w(x) − |x|)〉w = 3/4 follows from P(maxx∈R(w(x) −
|x|) < z) = (1 − e−2z)2 for z > 0, see section 3.3. When ν = 2, the constant

〈maxx∈R(w(x) − x2)〉w = Ξ/22/3 can be computed explicitly in terms of the Airy

function as (136), (139) using exact results by Groeneboom [44] about the Wiener

process absorbed by a parabola, see also [45, 46, 47, 48].

In the particular case when h0 is piecewise linear, h0(x) = cx1{0≤x<1/2} + c(1 −
x)1{1/2≤x≤1}, 0 ≤ x ≤ 1, the Brownian bridge average 〈max[b − h0]〉b can be computed

exactly for finite c using standard techniques, see section 3.3. For large |c|, one finds

the asymptotics 〈max[b − h0]〉b ≃ 3
4c

for c > 0 and 〈max[b − h0]〉b ≃ |c|
2
+ 3

4|c| for c < 0.

This is consistent with the discussion in the previous paragraph since the behaviour of

periodized h0 around its minimum is h0(x) ≃ c|x| for c > 0 and h0(x) ≃ − |c|
2
−c|x−1/2|

for c < 0.

In the quadratic case h0(x) = cx(1 − x), exact results [44] for the Wiener process

absorbed by a parabola give the explicit non-perturbative expressions (133) or (135) for

〈max[b − h0]〉b. For large |c|, c < 0, one has in particular 〈max[b(x) − h0]〉b ≃ − c
4
+

Ξ
|4c|1/3 +

1
4c

up to exponentially small corrections, with the constant Ξ ≈ 1.25512 defined

in terms of the Airy function in (136) or (139). The first two terms are in agreement

with the expansion for h0 of large amplitude above since cx(1−x) ≃ − |c|
4
+ |c|(x−1/2)2

when x → 1/2. For large positive c, one has instead 〈max[b − h0]〉b ≃ 3
4c
, which is also

consistent with the discussion above since cx(1− x) ≃ c|x| when x → 0 modulo 1.

1.5.2. Variance of the height.

Using (20) again and the explicit Brownian averages (79), (81), (85) and (91), we obtain

that the variance of the height for the case of an initial condition of the form (8) is equal

in the long time limit to

〈h(x, t)2〉 − 〈h(x, t)〉2 ≃
√
π

2
t+ 1 +

5π

4
− 8π

3
√
3
−

√
π 〈max[b− h0]〉b (29)

+ 〈max[b− h0]
2〉b − 〈max[b− h0]〉2b + 2〈max[b1 − h0] max[b2 − b1]〉b1,b2

up to exponentially small corrections. The leading term in t, equal to e′′(0)t, follows

from the exact expression (44) below.

For a flat initial condition h0(x) = 0, we obtain in particular

〈h(x, t)2〉 − 〈h(x, t)〉2 ≃
√
π

2
t +

1

2
+
(7

4
− 1

2
√
2
− 8

3
√
3

)

π (30)
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Figure 4. Plot of the variance of the height 〈h(x, t)2〉−〈h(x, t)〉2, minus its asymptotic

value
√
π
2

t in the long time limit, as a function of the amplitude c of the initial height

h0 in the parabolic case h0(x) = cx(1−x). The variance is computed numerically from

(29) by averaging Brownian bridges discretized uniformly with 106 points. The upper

and lower curves correspond to the statistical average plus and minus the standard

deviation for an averaging over 106 Brownian bridges. The red, dashed asymptotes at

small and large amplitude c are respectively given by (30) and (32).

For a stationary initial condition h0(x) = b(x) with b a standard Brownian bridge, we

have

〈h(x, t)2〉 − 〈h(x, t)〉2 ≃
√
π

2
t + 1 +

(1

2
− 4

3
√
3

)

π . (31)

Similarly, using (26), we deduce that the variance of the height in the sharp wedge

case is equal in the long time limit to

〈h̃(x, t)2〉 − 〈h̃(x, t)〉2 ≃
√
π

2
t + 1 +

(5

4
− 8

3
√
3

)

π . (32)

The crossover between flat and sharp wedge initial conditions is plotted in figure 4 for

the example of a parabolic interface.

1.5.3. Multiple point correlations.

The Brownian representation for the one-point generating function 〈esh(x,t)〉 in the long

time limit, discussed in the previous sections, can readily be generalized to multiple-

point correlations. Introducing a function s(x), 0 ≤ x ≤ 1, one has

〈e
∫ 1
0
dx s(x)h(x,t)〉 ≃ Θ[s; h0] e

te(s) (33)

with s =
∫ 1

0
dx s(x). The prefactor Θ[s; h0] is now a functional of the function s(x) (and

it must not be confused with θ(s; h0) with s scalar considered in the previous sections)

verifies Θ[s; h0] = Θbb,n[s; h0] +O(sn+1) where Θbb,n[s; h0] can be expressed in terms of

standard Brownian bridges as

Θbb,n[s; h0] = 〈e
∫ 1
0
dx s(x)bn(x)−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn (34)

× 〈e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn
〈e−s

∑2n
j=1 max[bj−bj−1]〉b0,...,b2n

.
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Note that the special case s(x) = −s δ′(x − x0), with s = 0, leads to 〈es ∂xh(x,t)〉 →
〈es b′(x)〉b when t → ∞, which is consistent with the fact that the stationary state of

the KPZ equation, up to a global shift removing the average drift, is Brownian (i.e.

h(x, t) − h(0, t) has the same statistics as a standard Brownian bridge b(x) correlated

to h(0, t) but decoupled from the initial condition h0, as indicated by (34)).

The Family-Vicsek scaling function [49] fFV(t) = 〈(
∫ 1

0
dxh2(x, t))−(

∫ 1

0
dxh(x, t))2〉,

which characterizes the width of the interface, is another example involving multiple-

point statistics of the height. Since fFV(t) = 〈
∫ 1

0
dx (h(x, t) − h(t))2〉 with h(t) =

∫ 1

0
dxh(x, t) and h(x, t) − h(t) → b(x) −

∫ 1

0
dy b(y) when t → ∞ with b a standard

Brownian bridge from the previous paragraph, one has fFV(∞) = 〈(
∫ 1

0
dx b2(x)) −

(
∫ 1

0
dx b(x))2〉b, and the covariance of the standard Brownian bridge implies fFV(∞) =

1/12. An alternative derivation, which follows more directly from (34), consists in using

translation invariance of the moments of h(x, t) to write

fFV(∞) = lim
t→∞

〈h(x, t)2〉 −
〈(

∫ 1

0

dxh(x, t)
)2〉

(35)

= ∂2
s

(

〈esh(x,t)〉 − 〈es
∫ 1
0
dx h(x,t)〉

)

|s→0
.

From (20), and (34) with s(x) constant, one finds fFV(∞) = −〈(
∫ 1

0
dx b(x))2〉b +

2〈max[b2 − b1]
∫ 1

0
dx b2(x)〉b1,b2 . Comparison with fFV(∞) = 1/12 implies the statistical

identity

〈max[b2 − b1]

∫ 1

0

dx b2(x)〉b1,b2 =
1

12
, (36)

that we have checked numerically.

1.5.4. Multiple time correlations.

Correlations between multiple times t1, t2, . . . taken far apart can also be computed

using the fact that the system reaches stationarity at the intermediate times, i.e. each

of the h(x, ti)− h(0, ti) are independent Brownian bridges in x.

For simplicity, we consider only the two-time correlation 〈es1h(0,t1)+s2h(x,t2)〉 with

0 ≪ t1 ≪ t2. Writing es1h(0,t1)+s2h(x,t2) = e(s1+s2)h(0,t1) es2(h(x,t2)−h(0,t1)), the first factor

e(s1+s2)h(0,t1) depends only on the evolution between time 0 and time t1, while in the

second factor, h(x, t2)−h(0, t1) has the same distribution as the KPZ height at position

x and time t2 − t1 with Brownian bridge initial condition b(x′) = h(x′, t1) − h(0, t1).

This leads to

〈es1h(0,t1)+s2h(x,t2)〉 ≃ 〈θ(s1 + s2; h0 → b)θ(s2; b)〉b et1e(s1+s2)+(t2−t1)e(s2) .(37)

The coefficient θ(s1 + s2; h0 → b), corresponding to an evolution conditioned on the

final state b, has a perturbative expansion for small s1+s2 in terms of Brownian bridges

given below (20).
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Figure 5. Plot for j = −3, . . . , 3 and s = 2 of a typical realization of the Brownian

bridges bsj(x) defined in (38) and conditioned never to intersect.

1.6. Conditional probabilities of non-intersecting Brownian bridges

The expressions of the previous section involving extremal values of independent

standard Brownian bridges can be conveniently rewritten in terms of conditional

probabilities of non-intersecting Brownian bridges.

We introduce Brownian bridges bsj , j ∈ Z depending on a parameter s > 0 by

bsj(x) = bj(x)−
∑|j|

k=1 z−k j < 0

bs0(x) = b0(x) j = 0

bsj(x) = bj(x)−
∑j

k=1 zk j > 0

, (38)

see figure 5. The bj , j ∈ Z are independent standard Brownian bridges (with endpoints

bj(0) = bj(1) = 0) and the zk, k ∈ Z are independent (from each other and from

the bj ’s) exponentially distributed random variables with parameter s of density s e−sz.

Equivalently, the endpoints bsj(0) = bsj(1) are consecutive events of a Poisson point

process with rate s conditioned on an event at the origin. The bridges bsj are not

independent because their endpoints are correlated. For any j < 0 < k, however, bsj , b
s
0

and bsk are independent.

The Brownian bridge expectation value 〈e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn in

(20) is equal to
∫∞
0

dz1 . . .dzn e
−s(z1+...+zn)∂z1 . . . ∂znF (z1, . . . , zn; h0), with F given by

F (z1, . . . , zn; h0) = P(b1 − h0 < z1, b2 − b1 < z2, . . . , bn − bn−1 < zn). When s > 0, the

derivatives can be eliminated using partial integration. Using F (. . . , 0, . . .) = 0, one

obtains

〈e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn (39)

=

∫ ∞

0

dz1 . . .dzn s
ne−s(z1+...+zn)F (z1, . . . , zn; h0) .

This formula can be interpreted as the probability that h0, bs−1, . . ., bs−n are non-
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intersecting:

〈e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn = P(bs−n < . . . < bs−1 < h0) . (40)

Therefore, the coefficient θbb(s; h0) from (20) can be rewritten as

θbb,n(s; h0) =
P(bs−1 < h0|bs−n < . . . < bs−1)

P(bs−1 < bs0|bs−n < . . . < bs−1 and bs0 < . . . < bsn)
. (41)

Similarly, the coefficient θ̃bb,n(s; sw) from (26) is equal to

θ̃bb,n(s; sw) =
1

P(bs−1 < bs0|bs−n < . . . < bs−1 and bs0 < . . . < bsn)
. (42)

which is identical to the denominator in (41).

Finally, the coefficient fbb,n(s; h0) from (22) giving the perturbative expansion of

the dominant eigenvalue becomes, in this interpretation,

fbb,n(s; h0) = −〈bs−n
′(0+) bs−n

′(1−)〉bs−n<...<bs−1<h0 , (43)

where the expectation value is computed with respect to non-intersecting bridges.

1.7. Conjectures for some expectation values from exact Bethe ansatz formulas

At large L, the eigenvalue equation for the dominant eigenstate of TASEP gives the

cumulant generating function of the height e(s) in terms of Brownian bridges, see (21)

and (22). Furthermore, the general formula (20) for θ(s; h0) is expected to match known

explicit formulas for specific initial conditions, that were derived previously, in a non-

rigorous way, using singular Euler-Maclaurin asymptotics of the Bethe eigenvectors

of TASEP [50, 51, 12]. This allows us to formulate precise conjectures for some

expectation values of Brownian bridges involving extremal values, or equivalently,

conditional probabilities of non-intersecting bridges with exponentially distributed

distances between the endpoints. Direct probabilistic proofs of these conjectures are

still unknown.

1.7.1. Dominant eigenvalue.

Exact Bethe ansatz calculations [41] for TASEP give the dominant eigenvalue as

e(s) = χ(ν(s)) , (44)

with χ the polylogarithm

χ(v) = −Li5/2(−ev)√
2π

, (45)

and ν(s) the solution of

χ′(ν(s)) = s . (46)



Brownian bridges for late time asymptotics of KPZ fluctuations in finite volume 17

For s > 0, (46) defines ν(s) uniquely since χ′ is a bijection from R to R
+. When s → 0+,

one has ν(s) = log(
√
2π s) +

√
π
2
s + O(s2) and e(s) =χ(ν(s)) = s +

√
π
4
s2 + O(s3).

Expanding to the fifth order, we have:

s2

3
+

χ(ν(s))

s
= 1 +

√
π

4
s+

(1

3
+

π

4
− 4π

9
√
3

)

s2 (47)

+
( 5

16
+

3

8
√
2
− 1√

3

)

π3/2s3 +O(s4) .

For s < 0, an analytic continuation is needed [42].

Alternatively, the perturbative expansion of e(s) up to arbitrary order in s can be

expressed from (21) in terms of Brownian bridges (22). Comparing with (44) leads to

Conjecture 1 Let n be a non negative integer and h0 an arbitrary regular enough

continuous function with h0(0) = h0(1) = 0. We consider

fbb,n(s; h0) = −〈b′n(0+) b′n(1−) e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn
〈e−smax[b1−h0]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

, (48)

where the averages are taken over independent standard Brownian bridges b1, . . . , bn.

The perturbative expansion fbb,n(s; h0) = s2

3
+ χ(ν(s))

s
+ O(sn) is conjectured, with χ

defined in (45) and ν(s) the solution of (46). This perturbative expansion is in particular

independent of h0 up to order sn−1.

The case n = 0 is a consequence of 〈b′(0+) b′(1−)〉b = −1, which follows from the

covariance of the Brownian bridge. For n = 2, using also 〈max[b1− b0]〉b0,b1 =
√
π/2, the

conjecture implies 〈b′2(0+) b′2(1−)max[b2 − b1]〉b1,b2 = −√
π/4, which agrees reasonably

well with numerical simulations of the Brownian bridge. For n = 3, additional numerical

simulations roughly agree with the conjecture.

Remark: The function fbb,n(s; h0) in conjecture 1 has the alternative expression

fbb,n(s; h0) = −〈bs−n
′(0+) bs−n

′(1−)〉bs−n<...<bs−1<h0 in terms of the Brownian bridges bsj
with exponentially distributed distances between the endpoints defined in section 1.6,

and conditioned to never intersect.

1.7.2. Flat initial condition.

The flat initial condition corresponds to an initial density profile ρ0 of the form (8) with

σ0(x) = 0, and thus h0(x) = 0. Comparing with exact results from [12] suggests that

θ(s; 0) = θflat(s) with θflat given by

θflat(s) =
s exp(1

2

∫ ν(s)

−∞ dv χ′′(v)2)

(1 + eν(s))1/4χ′′(ν(s))
(49)

= 1 +
(

√
π

2
−

√
2π

4

)

s+
(1

4
+
(17

16
− 1

2
√
2
− 4

3
√
3

)

π
)

s2 (50)

+
(( 1

24
− 1

8
√
2

)√
π +

(55

32
+

9

32
√
2
− 4√

3
+

1√
6

)

π3/2
)

s3 +O(s4) .

The function χ is defined in (45), and ν(s) is the solution of (46).
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Alternatively, the perturbative expansion of θ(s; 0) up to arbitrary order in s can

be expressed from (19) in terms of Brownian bridges (20). This leads to the following

conjecture:

Conjecture 2 Let n be a non-negative integer. We consider the function

θbb,n(s; 0) =
〈e−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn〈e−smax[b1]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

〈e−s
∑2n

j=1 max[bj−bj−1]〉b0,...,b2n
, (51)

where the averages are taken over independent standard Brownian bridges bj. The

perturbative expansion θbb,n(s; 0) = θflat(s)+O(sn+1) is conjectured, with θflat(s) defined

in (49).

This conjecture can be checked directly up to order n = 2 by comparing the

expansion (51) with the expectation values 〈max[b]〉b =
√
2π/4, 〈max[b]2〉b = 1/2,

〈max[b1 − b0]〉b0,b1 =
√
π/2, 〈max[b1 − b0]

2〉b0,b1 = 1, 〈max[b0] max[b1 − b0]〉b0,b1 =

−1
2
+ 5π

16
and 〈max[b1 − b0] max[b2 − b1]〉b0,b1,b2 = −1

2
+ 2π

3
√
3
, which are derived in

section 3.1. For n = 3, using additional results from section 3.1, (49) leads to

〈max[b0] max[b1 − b0] max[b2 − b1]〉b0,b1,b2 = − 9
√
π

16
√
2
− 41

√
π

96
+ 15π3/2

32
√
2

≈ 0.383683, which

agrees perfectly with the numerics in section 3.1.3.

Remark: The function θbb,n(s; 0) in conjecture 2 has the alternative expression

θbb,n(s; 0) =
P(bs−1<0|bs−n<...<bs−1)

P(bs−1<bs0|bs−n<...<bs−1 and bs0<...<bsn)
in terms of the non-intersecting Brownian

bridges bsj defined in section 1.6.

1.7.3. Stationary initial condition.

The stationary initial condition corresponds to an initial density profile ρ0 of the form

(8), but with a corresponding h0 random and equal in law to a standard Brownian bridge

b. The coefficient θ in the moment generating function (17) of h(x, t) for stationary initial

condition is then equal to the average 〈θ(s; b)〉b. Exact results from [12] suggest that

〈θ(s; b)〉b = θstat(s) with b a standard Brownian bridge and θstat given by

θstat(s) =

√
2π s2 exp(

∫ ν(s)

−∞ dv χ′′(v)2)

eν(s)χ′′(ν(s))
(52)

= 1 +
(1

2
+
(1

4
− 2

3
√
3

)

π
)

s2 (53)

+
(

−
√
π

6
+
(1

2
+

1√
2
− 2√

3

)

π3/2
)

s3 +O(s4) .

The function χ is defined in (45), and ν(s) is the solution of (46).

Alternatively, the perturbative expansion of 〈θ(s; b)〉b up to arbitrary order in s can

be expressed from (19) in terms of Brownian bridges (20). This leads to the following

conjecture:

Conjecture 3 Let n be a non-negative integer. We consider the function

〈θbb,n(s; b)〉b =
(〈e−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn)2

〈e−s
∑2n

j=1 max[bj−bj−1]〉b0,...,b2n
, (54)
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where the averages are taken over independent standard Brownian bridges bj. The

perturbative expansion 〈θbb,n(s; b)〉b = θstat(s) + O(sn+1) is conjectured, with θstat(s)

defined in (52).

This conjecture can be checked directly up to n = 2 by using the expectation values

〈max[b1 − b0]〉b0,b1 =
√
π/2 and 〈max[b1 − b0] max[b2 − b1]〉b0,b1,b2 = −1

2
+ 2π

3
√
3
derived

in section 3.1.2. For n = 3, using additional results from section 3.1.2, (52) leads to

〈max[b1− b0] max[b2− b1] max[b3− b2]〉b0,b1,b2,b3 = −19
√
π

24
+ π3/2

2
√
2
≈ 0.565509, which agrees

perfectly with the numerics in section 3.1.2.

Remark: The function 〈θbb,n(s; b)〉b in conjecture 3 has the alternative expression

〈θbb,n(s; b)〉b = P(bs−1<bs0|bs−n<...<bs−1)

P(bs−1<bs0|bs−n<...<bs−1 and bs0<...<bsn)
in terms of the non-intersecting Brownian

bridges bsj defined in section 1.6.

1.7.4. Domain wall initial condition.

Domain wall initial condition corresponds to the finite density profile ρ0(x) = 1{0≤x≤ρ}
and to the height profile H0 from (4), H0(x) = −(1−ρ)x1{0≤x≤ρ}+ ρ(x−1)1{ρ<x≤1} for

x in the interval [0, 1]. The global minimum min[H0] = −ρ(1− ρ) is reached only once,

at x = ρ. Using (14) and (24), exact results in [12] for domain wall initial condition

suggest θ̃(s; sw) = θ̃dw(s) with θ̃dw given by

θ̃dw(s) =
s exp(

∫ ν(s)

−∞ dv χ′′(v)2)

χ′′(ν(s))
(55)

= 1 +

√
π

2
s+

(1

2
+
(3

4
− 4

3
√
3

)

π
)

s2 (56)

+
(

√
π

12
+
(5

4
+

3

2
√
2
− 4√

3

)

π3/2
)

s3 +O(s4) .

The function χ is defined in (45), and ν(s) is the solution of (46).

Alternatively, the perturbative expansion of θ̃(s; sw) up to arbitrary order in s can

be expressed from (25) in terms of Brownian bridges (26). This leads to the following

conjecture:

Conjecture 4 Let n be a non-negative integer. We consider the function

θ̃bb,n(s; sw) =
〈e−s

∑n
j=1 max[bj−bj−1]〉b0,...,bn〈e−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

〈e−s
∑2n

j=1 max[bj−bj−1]〉b0,...,b2n
, (57)

where the averages are taken over independent standard Brownian bridges bj. The

perturbative expansion θ̃bb,n(s; sw) = θ̃dw(s)+O(sn+1) is conjectured, with θ̃dw(s) defined

in (55).

This conjecture can be checked directly up to n = 2 by using the expectation values

〈max[b1−b0]〉b0,b1 =
√
π/2, 〈max[b1−b0]

2〉b0,b1 = 1 and 〈max[b1−b0] max[b2−b1]〉b0,b1,b2 =
−1

2
+ 2π

3
√
3
derived in section 3.1. For n = 3, using additional results from section 3.1.2,

(55) leads again to 〈max[b1 − b0] max[b2 − b1] max[b3 − b2]〉b0,b1,b2,b3 = −19
√
π

24
+ π3/2

2
√
2
≈

0.565509, which agrees perfectly with the numerics in section 3.1.2.
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Remark: The function θ̃bb,n(s; sw) in conjecture 4 has the alternative expression

θ̃bb,n(s; sw) = 1/P(bs−1 < bs0|bs−n < . . . < bs−1 and bs0 < . . . < bsn) in terms of the

non-intersecting Brownian bridges bsj defined in section 1.6.

1.7.5. Ratio between stationary and domain wall initial condition.

We observe that the ratio of (52) and (55) has a simple expression involving only ν(s).

From conjectures 3 and 4, this ratio can be expressed in terms of Brownian bridges as

〈e−s
∑n

j=1 max[bj−bj−1]〉b0,...,bn
〈e−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

=
√
2π s e−ν(s) +O(sn+1) , (58)

with
√
2π s e−ν(s) = 1−

√
π

2
s+

( 2π

3
√
3
− π

4

)

s2 +
( 1√

3
− 1

4
− 1

2
√
2

)

π3/2s3 +O(s4) . (59)

Alternatively, using the non-intersecting Brownian bridges bsj defined in section 1.6, one

has

P(bs−1 < bs0|bs−n < . . . < bs−1) =
√
2π s e−ν(s) +O(sn+1) . (60)

1.8. Conclusions

We have derived in this article a relation between late time KPZ fluctuations in

finite volume with periodic boundaries and non-intersecting Brownian bridges with

exponentially distributed distances between the endpoints is obtained. This relation is

obtained, after taking a continuous limit, from the exact matrix product representation

[18, 19] for the dominant eigenstate of a deformed Markov operator counting the

current in TASEP. It would be desirable to find a direct probabilistic derivation in

the continuum, starting already with the KPZ equation (or its Cole-Hopf transform,

the stochastic heat equation with multiplicative noise).

The relation between KPZ fluctuations and non-intersecting Brownians studied in

this paper is reminiscent of the interpretation of the Airy2 process, describing spatial

correlations at a given time of an infinitely long KPZ interface with nonzero curvature,

as a large n scaling limit of Dyson’s n × n matrix Brownian motion [52], whose n

eigenvalues are equal in law to Wiener processes conditioned to never intersect [53].

The study of non-intersecting Wiener processes in various configurations has been very

active in the past few years [54], especially in relation with KPZ universality.

Using recent asymptotic calculations [12] of Bethe eigenstates for TASEP, the

connection to Brownian bridges studied in this paper additionally provides nice exact

formulas (49), (52), (55) involving polylogarithms for a few conditional probabilities

related to non-intersecting Brownian bridges, or equivalently, for expectation values

involving maxima of Brownian bridges. Precise statements are formulated in section

1.7. Again, direct proofs of these formulas would be welcome, as well as extensions to

more general initial states, especially perturbative expansions for initial heights with

either large or small amplitude.
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Finally, generalization of the Brownian bridge formulas to KPZ fluctuations in an

interval with open boundaries, where the stationary state is no longer a Brownian bridge

but instead the sum of a Brownian bridge plus an independent Brownian excursion [55],

are definitely worth investigating. Besides, extensions to the higher excited states ap-

pearing in the dynamical partition function (15) would shed light on the relaxation

process.

Acknowledgement: This work was granted access to the HPC resources of CALMIP

supercomputing center under the allocation 2018-P18003.

2. From the matrix product representation to Brownian bridges

In this section, we explain how the matrix product representation of [18, 19] can be

reformulated in terms of height functions, and show that large L asymptotics lead to

the Brownian bridge formulas of section 1.4.

2.1. Deformed Markov operator and height fluctuations

Let Ω be the set of configurations (micro-states) of the periodic TASEP with L sites and

N particles, of cardinal |Ω| =
(

L
N

)

, and Ptm(C) the probabilities of the configurations

C ∈ Ω at time tm. Since TASEP is a Markov (i.e. memoryless) process, the evolution in

time of the probability vector |P (tm)〉 =
∑

C∈Ω Ptm(C)|C〉 is given by the master equation

d

dtm
|P (tm)〉 = M |P (tm)〉 , (61)

where M is the Markov operator.

The configurations C ∈ Ω do not keep track of the number of particles that have

hopped from a given site i to the next site i+ 1 up to time tm. In order to characterize

the fluctuations of the height function Hi(tm), a local deformation Mi(γ) of the Markov

operator is needed [41]. This deformation is built by multiplying the elements of M

corresponding to transitions from the site i to the site i+ 1 by the factor eγ , where the

deformation parameter γ is a fugacity conjugate to the height.

The generating function of the height 〈eγHi(tm)〉 can be expanded over the eigenstates

of Mi(γ), as recalled in Appendix A. The universal KPZ statistics at large L on the time

scale (7) are then formulated in terms of the rescaled fugacity s defined by

γ =
s

√

ρ(1− ρ)L
. (62)

On this time scale, only the eigenstates of Mi(γ) with eigenvalue Er(γ) (which is

independent of i, see Appendix A) such that Re(Er(γ) − E0(γ)) ∼ L−3/2 contribute.

We denote by |Ψ0
r(γ)〉 and 〈Ψ0

r(γ)| the corresponding right and left eigenvectors.

The functions er(s) from (15), (16) correspond to the term of order L−3/2 in the

large L asymptotics of the eigenvalues Er(γ), as shown in (A.3):

Er(γ)− ρ(1− ρ)γ
√

ρ(1− ρ)
≃ − i(1 − 2ρ)pr

L
+

er(s)

L3/2
. (63)
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The dominant eigenvalue e(s) = e0(s) is given by (44) and explicit formulas for all the

coefficients er(s) are also known [16].

Furthermore, for an initial condition of the form (8), and the corresponding height

profile h0 defined in (10), the coefficients θr(s; h0) in (15) are obtained using (9), (63)

and (A.3) as

θr(s; h0) = lim
L→∞

(
∑

C∈Ω〈C|Ψ0
r(γ)〉) 〈Ψ0

r(γ)|P0〉
〈Ψ0

r(γ)|Ψ0
r(γ)〉

, (64)

with P0 the initial state. Exact results for flat initial conditions [51] (where Xj(0) = j/ρ,

with ρ−1 integer) and stationary initial conditions[12] (where all C in Ω have the same

weight 1/|Ω|) as well as high precision Bethe ansatz numerics for a few other initial

states, confirm that the large L limit in (64) is well defined.

Similarly, for a finite initial density profile ρ0, with corresponding height profile H0

defined in (4), the coefficients θ̃r(s;H0) in (16) are given by, using (13), (63) and (A.3),

θ̃r(s;H0) = lim
L→∞

e−L2γmin[H0]

(

∑

C∈Ω〈C|Ψ0
r(γ)〉

)

〈Ψ0
r(γ)|P0〉

〈Ψ0
r(γ)|Ψ0

r(γ)〉
. (65)

Exact Bethe ansatz results for domain wall [50] initial conditionXj(0) = j, j = 1, . . . , N ,

high precision extrapolation in some cases with piecewise constant density profile with

more domain walls, and additional numerics for a few other cases confirm again that

the large L limit in (65) is well defined.

2.2. Dominant eigenvector: matrix product and height representations

The left and right dominant eigenvectors of Mi(γ) have a matrix product representation

found in [18, 19]. The alternative formulation introduced below in terms of height

functions is the key to the asymptotic analysis performed in this paper, which leads to

Brownian bridges.

2.2.1. Matrix product representation.

The dominant eigenvalue of the (non-deformed) Markov operator M = M0(0) is equal

to zero. The corresponding left and right dominant eigenvectors are represented in

configuration basis by

〈0| = 1

Ω

∑

C
〈C| and |0〉 = 1

Ω

∑

C
|C〉 . (66)

The first equation follows directly from the Markov property, while the second one is a

consequence of pairwise balance [20].

The dominant eigenvalue of the deformed operator M0(γ) is no longer zero when

γ 6= 0. The dominant eigenvalue and the corresponding eigenvectors of M0(γ) were

obtained in [18, 19] (though these papers deal mainly with the more complicated case of

the asymmetric exclusion process with open boundaries, the periodic case is mentioned

in [19]).
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The dominant eigenvectors 〈Ψ0
0(γ)| and |Ψ0

0(γ)〉 of M0(γ) are constructed

perturbatively, with respect to γ, by repeated action on the vectors given in (66) of

a transfer operator T (γ) which commutes with M0(γ) and such that T (0) ∝ |0〉〈0|. For
any non-negative integer n, one has

〈Ψ0
0(γ)| = 〈0|T (γ)n +O(γn+1) (67)

|Ψ0
0(γ)〉 = T (γ)n|0〉+O(γn+1) . (68)

In the canonical basis, the transfer operator has the following matrix product

representation

〈C′|T (γ)|C〉 = tr[AXn′
1,n1

Xn′
2,n2

. . .Xn′
L,nL

] , (69)

where the configurations C and C′ are represented by their respective occupation numbers

ni and n′
i. The operators Xn′,n are

X0,0 = X1,1 = 1 , X1,0 = D , X0,1 = E , (70)

where A, D and E verify the algebra

DA = e−γAD , AE = e−γEA , DE = 1 , (71)

and the normalization tr[A] = 1 is chosen.

A similar transfer operator structure was also used in [56] to generate the dominant

eigenstate of the (non-deformed) Markov operator of an exclusion process involving more

species of particles. There, eγ was replaced by the ratio between forward and backward

hopping rates.

2.2.2. Height representation of the operator T (γ).

The starting point of all the calculations in the present paper is the alternative

representation

〈C′|T (γ)|C〉 = exp
(

− γ max
1≤i≤L

(H ′
i −Hi)

)

(72)

for the transfer operator in terms of the height function Hi =
∑i

k=1(ρ−nk), H0 = HL =

0, and similarly for H ′
i in terms of n′

k.

The expression (72) can be derived graphically from (69) by plotting H ′
i − Hi =

∑i
k=1(nk − n′

k) as a function of the site i = 1, . . . , L. After connecting the dots, each

section of the graph between neighbouring sites is associated to an operator in the matrix

product representation (69), (70): the horizontal sections of the graph correspond to 1,

the increasing sections to E and the decreasing sections to D.

i
0 1 2 . . . L

E
1

E D

D
1

D

D
1

E

E
1

E D
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Since H0 = HL = H ′
0 = H ′

L = 0, the number of operators D and E is the same.

Removing horizontal sections of the graph does not change the value of the matrix

product tr[AXn′
1,n1

Xn′
2,n2

. . . Xn′
L,nL

]. Furthermore, the algebra DE = 1 ensures that

one can also erase a decreasing section followed by an increasing section of the same

length without changing the matrix product. For the above example, this procedure

leads to

E

E D

D

We observe that the erasing procedure does not change the maximum m =

max1≤i≤L(H
′
i −Hi) of the curve, and always leads to the matrix product 〈C′|T (γ)|C〉 =

tr[AEmDm]. The algebra (71) together with the normalization tr[A] = 1 finally leads

to (72).

2.3. Coefficients θ and θ̃ of the height generating functions at late time

Combining the expressions (64) and (65) for θ(s; h0) and θ̃(s;H0) with the matrix

product representation (67), (68) of the dominant eigenvector, we obtain a perturbative

expansion up to arbitrary order n in s of the coefficients θ and θ̃:

θ(s; h0) = lim
L→∞

∑

C∈Ω〈C|T (γ)n|0〉〈0|T (γ)n|P0〉
〈0|T (γ)2n|0〉 +O(sn+1) (73)

θ̃(s;H0) = lim
L→∞

e−L2γmin[H0]

∑

C∈Ω〈C|T (γ)n|0〉〈0|T (γ)n|P0〉
〈0|T (γ)2n|0〉 +O(sn+1) . (74)

The large L limit in (73) and (74) can be performed by first inserting the

decomposition of the identity 1 =
∑

C∈Ω |C〉〈C| between the operators T (γ) and

interpreting the configurations C in height representation as random walks. In the scaling

limit, these random walks then converge to Brownian bridges by Donsker’s theorem (see

e.g. [57]; for completeness sake, a derivation of this fact is provided in Appendix B).

Combining (73), (B.11) and (B.21) yields (19) and (20). Similarly, combining (74),

(B.11) and (B.21) leads to (25) and (26).

2.4. The Derrida-Lebowitz large deviation function e(s)

The eigenvalue equation for the left dominant eigenvector of M0(γ) reads

〈Ψ0(γ)|M0(γ)|P0〉 = E0(γ)〈Ψ0(γ)|P0〉, with |P0〉 an arbitrary vector. Using (67), (66)

and the fact that M0(γ) and T (γ) commute, one has for any non-negative integer n
∑

C′∈Ω
〈C′|M0(γ)T (γ)

n|P0〉 = E0(γ)
∑

C∈Ω
〈C|T (γ)n|P0〉+O(γn+1) . (75)

Next, we remark that the deformed operator M0(γ) differs from M = M0(0) only

through boundary terms. Besides, since M is a Markov operator,
∑

C〈C| is the left
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eigenvector of M with eigenvalue 0. This leads to the relation
∑

C′∈Ω
〈C′|M0(γ)|C〉 = (eγ − 1)1{n1=0}1{nL=1} , (76)

where the ni’s are the occupation numbers for the configuration C. Inserting the identity

1 =
∑

C∈Ω |C〉〈C| between M0(γ) and T (γ)n in the left side of (75), and using (76) in

order to eliminate the summation over C′, we finally obtain
∑

C∈Ω
1{n1=0}1{nL=1}〈C|T (γ)n|P0〉 =

E0(γ)

eγ − 1

∑

C∈Ω
〈C|T (γ)n|P0〉+O(γn+1) . (77)

In the left hand side, the ni’s are the occupation numbers of the configuration C. The

expression (77) does not involve M0(γ) any more, which makes it particularly suitable

for large L asymptotic analysis. The derivation of (21), (22) from (77) is worked out in

Appendix B.2 using a sub-leading correction to Donsker’s theorem.

3. Calculation of some Brownian averages involving extremal values

In this section, we compute some Brownian expectation values that are relevant to

obtain the first cumulants of the KPZ height. We perform perturbative expansions for

initial conditions with small and large amplitudes. We also obtain exact results in the

case the initial height fonction is piecewise-linear or is parabolic.

3.1. Elementary expectation values

3.1.1. Moments of max[b].

The probability distribution of the maximum of a Brownian bridge b can be computed

by the method of images. One has

P(max[b] < z) = (1− e−2z2)1{z>0} , (78)

which implies the classical result

〈max[b]r〉b = 2−r/2 Γ(1 + r/2) . (79)

The corresponding generating function involves the error function:

〈e−smax[b]〉b = 1−
√
2π

4
s es

2/8
(

1− erf
( s

2
√
2

))

. (80)

3.1.2. Brownian averages for stationary and domain wall initial condition.

We compute in this section a few Brownian averages related to (54) and (57), which

provide a partial check of conjectures 3 and 4.

The expectation value 〈max[b1− b0]
r〉b0,b1 reduces to 〈max[b]〉b since (b1− b0)/

√
2 is

equal in law to a standard Brownian bridge. Thus,

〈max[b1 − b0]
r〉b0,b1 = Γ(1 + r/2) (81)

and

〈e−smax[b1−b0]〉b0 = 1 +

√
π

2
s es

2/4
(

− 1 + erf
(s

2

))

. (82)
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For more general correlation functions of the form 〈max[b1 − b0]
r1 max[b2 −

b1]
r2 . . .〉b0,b1,b2,... with independent standard Brownian bridges bj , we use

P(b1 − b0 < z1, . . . , bn − bn−1 < zn) (83)

=
P(w1 − w0 < z1, . . . , wn − wn−1 < zn, 0 < w0(1) < dy0, . . . , 0 < wn(1) < dyn)

P(0 < w0(1) < dy0, . . . , 0 < wn(1) < dyn)
,

where wj, j = 0, . . . , n are independent Wiener processes and all dyj → 0. The

denominator is equal to (
√
2π)−n−1dy0 . . .dyn. The numerator is the distribution of a

process of n+1 Brownian motions that terminates when two particles collide, for which

the Karlin-McGregor formula [58] gives a determinant. Alternatively, the numerator can

be thought of as a n+ 1 dimensional Brownian motion in the Weyl chamber associated

to root system An with absorbing boundaries, and equation (6) of [53] gives

P(b1 − b0 < z1, . . . , bn − bn−1 < zn) = det
(

e
− 1

2
(

j∑

ℓ=1

zℓ−
k∑

ℓ=1

zℓ)
2
)

j,k=0,...,n
. (84)

The probability distribution (84) implies in particular after some calculations

〈max[b1 − b0] max[b2 − b1]〉b0,b1,b2 = −1

2
+

2π

3
√
3

(85)

〈max[b1 − b0]
2max[b2 − b1]〉b0,b1,b2 =

5
√
π

12
(86)

〈max[b1 − b0] max[b2 − b1]
2〉b0,b1,b2 =

5
√
π

12
. (87)

Furthermore, numerical integration gives

〈max[b1 − b0] max[b2 − b1] max[b3 − b2]〉b0,b1,b2,b3 ≈ 0.565509 . (88)

3.1.3. Brownian averages for flat initial condition.

We compute in this section Brownian averages related to (51) with flat initial condition,

which provide a partial check of conjecture 2.

We consider independent standard Brownian bridges bj with bj(0) = bj(1) = 0,

j = 0, . . . , n. Then

P(b0 < z0, b1 − b0 < z1, . . . , bn − bn−1 < zn) (89)

=
P(w0 < z0, w1 − w0 < z1, . . . , wn − wn−1 < zn, 0 < w0(1) < dy0, . . .)

P(0 < w0(1) < dy0, . . . , 0 < wn(1) < dyn)
,

where wj, j = 0, . . . , n are independent Wiener processes and all dyj → 0. The

denominator is equal to (
√
2π)−n−1dy0 . . .dyn. The numerator is the distribution of

a process of n+1 Brownian motions on the negative real axis that terminates when two

particles collide or when one particle reaches the origin. Alternatively, the numerator

can be thought of as the distribution of a n + 1 dimensional Brownian motion in the

Weyl chamber associated to root system Bn+1 with absorbing boundaries, and equation

(9) of [53] leads to

P(b0 < z0, b1 − b0 < z1, . . . , bn − bn−1 < zn) (90)

= det
(

e
− 1

2
(

j∑

ℓ=0
zℓ−

k∑

ℓ=0
zℓ)

2

− e
− 1

2
(

j∑

ℓ=0
zℓ+

k∑

ℓ=0
zℓ)

2
)

j,k=0,...,n
.
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The probability distribution (90) implies in particular after some calculations

〈max[b0] max[b1 − b0]〉b0,b1 = −1

2
+

5π

16
(91)

〈max[b0]
2max[b1 − b0]〉b0,b1 =

13
√
π

16
− 7

√
π

8
√
2

(92)

〈max[b0] max[b1 − b0]
2〉b0,b1 =

13
√
π

8
√
2

− 7
√
π

8
. (93)

Furthermore, numerical integration gives

〈max[b0] max[b1 − b0] max[b2 − b1]〉b0,b1,b2 ≈ 0.383683 . (94)

3.2. Perturbative expansion of 〈max[b− h]〉b for h of small amplitude

We study in this section the perturbative expansion of 〈max[b − h]〉b for h of small

amplitude, with b(t) a standard Brownian bridge and h(t) a continuous function with

h(0) = h(1) = 0. The variable is called t in this section only in order to conform

to usual notations for diffusive processes. The perturbative expansion is worked out

independently from three approaches: a naive perturbative solution of the heat equation,

the relation to first passage time, and the Cameron-Martin formula.

3.2.1. Perturbative solution of the heat equation.

We consider in this section the probability density Ph(t, y, z) defined as

Ph(t, y, z)dy = P(max
0≤s≤t

(w(s)− h(s)) < z, y < w(t) < y + dy) , (95)

where w(t), w(0) = 0 is the Wiener process. The function Ph is the solution of the heat

equation with appropriate initial and boundary conditions:

∂tPh(t, y, z) =
1

2
∂2
yPh(t, y, z) (96)

Ph(0, y, z) = δ(y)1{y<z} (97)

Ph(t, z + h(t), z) = 0 . (98)

In the special case h = 0, the function P0(t, y, z) can be obtained directly from the

method of images as

P0(t, y, z) =
e−

y2

2t

√
2πt

− e−
(2z−y)2

2t

√
2πt

, (99)

which is indeed the solution of (96)-(98). We are interested in corrections to (99) for

Pǫh(t, y, z) when ǫ → 0, and write

Pǫh(t, y, z) =

∞
∑

j=0

Pj,h(t, y, z) ǫ
j , (100)

with P0,h = P0. From (96)-(98), the functions Pj,h(t, y, z) are still solution of the heat

equation, but with zero initial condition for j ≥ 1 and a boundary condition involving
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Pk,h, k < j:

∂tPj,h(t, y, z) =
1

2
∂2
yPj,h(t, y, z) (101)

Pj,h(0, y, z) = 0 (j ≥ 1) (102)
j

∑

k=0

h(t)k

k!
P

(0,k,0)
j−k,h (t, z, z) = 0 . (103)

It is a classical result (see e.g. [59]) that the solution of (101) with zero initial condition

(102) can be expressed in terms of the space derivative of the heat kernel and the

boundary value Pj(t, z, z) as

Pj,h(t, y, z) =
j≥1

∫ t

0

ds
(z − y) e

− (z−y)2

2(t−s)

√
2π (t− s)3/2

Pj,h(s, z, z) . (104)

Inserting (104) into the boundary condition (103) for k 6= 0 then gives a systematic

recursive solution for Pj,h(t, y, z). We find in particular

P1,h(t, z, z) =
2z e−

z2

2t

√
2π t3/2

h(t) (105)

and

P2,h(t, z, z) = −2z e−
z2

2t

π t2
h(t)2 − zh(t)

π

∫ t

0

ds

(t− s)3/2

(e−
z2

2t h(t)

t3/2
− e−

z2

2s h(s)

s3/2

)

. (106)

Corresponding expressions for P1,h(t, y, z) and P2,h(t, y, z) are given by (104).

The statistics of max[b − h] = max0≤t≤1(b(t) − h(t)) for b a standard Brownian

bridge (i.e. a Wiener process conditioned on the event w(1) = 0) can be computed in

terms of Ph(1, 0, z). Using P(max[w − h] < z|w(1) = 0) = limdy→0 P(max[w − h] <

z, 0 < w(1) < dy)/P(0 < w(1) < dy) and P(0 < w(1) < dy) = dy/
√
2π, one has

P(max[b− h] < z) =
√
2π Ph(1, 0, z) . (107)

For small ǫ, we write 〈max[b − ǫh]〉b = µ0[h] + µ1[h] ǫ + µ2[h] ǫ
2 + . . .. Then, (107)

supplemented by the perturbative expansion (100) with (99), (105) and (106) gives at

first orders in ǫ

µ0[h] =

√
2π

4
(108)

µ1[h] = −
∫ 1

0

dt h(t) (109)

µ2[h] =

∫ 1

0

dt

(

2h(t)2√
2πt

−
∫ t

0

ds
( h(s)h(t)√

2π(t− s)3/2(1 + s− t)3/2
(110)

− h(t)2√
2π(t− s)3/2

)

)

.

The first coefficient (108) is the well known expectation value of the maximum of a

standard Brownian bridge.
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It turns out that the first µn[h] have much simpler expressions in terms of the

Fourier coefficients ak of h defined as

h(t) =
∑

k∈Z
ak e

2iπkt . (111)

One has µ1[h] = −a0, and after some calculations, the double integrals for the coefficient

µ2[h] can be rewritten as

µ2[h] = −
√
2π

∑

k∈Z
aka−k(−1)kkπJ1(kπ) (112)

with J the Bessel function of the first kind. This proves equation (28).

3.2.2. First passage time to the boundary.

For a Wiener process w(t), the first passage time T [w] to the boundary h(t) + z with

z > 0 is the smallest t > 0 such that w(t) = h(t) + z. The probability density of

T [w] is written as pw in the following, with the dependency in h and z kept implicit.

Similarly, we write pbb for the probability density of the first passage time of a standard

Brownian bridge to the boundary h(t) + z. Using the fact that b(t) is equal in law

to w(t) conditioned on w(1) = 0 and the Markov property of the Wiener process, the

densities pw and pbb are related for t < 1 by

pbb(t) =
√
2π pw(t)

e−
(h(t)+z)2

2(1−t)

√

2π(1− t)
. (113)

The density pw was first computed explicitly by Durbin [60], see also [61], as

pw(t0) =

∞
∑

j=1

(−1)j
∫

0<tj−1<...<t1<t0

dt1 . . .dtj−1

(h(tj−1) + z

tj−1
− h′(tj−1)

)

(114)

×
j−1
∏

i=1

(h(ti−1)− h(ti)

ti−1 − ti
− h′(ti−1)

) e
− (h(tj−1)+z)2

2tj−1

√

2πtj−1

j−1
∏

i=1

e
− (h(ti−1)−h(ti))

2

2(ti−1−ti)

√

2π(ti−1 − ti)
.

This expression for pw can be derived from an integral equation resulting from the

conservation of probability (Chapman-Kolmogorov equation) with the boundary as the

intermediate point. Using P(max[b−h] < z) = 1−
∫ 1

0
dt pbb(t), the average 〈max[b−h]〉b

can finally be expressed in terms of the first passage density pbb as

〈max[b− h]〉b = −
∫ ∞

0

dz z∂z

∫ 1

0

dt pbb(t) . (115)

Expanding (113) and (114) for h of small amplitude, the integral over z can be performed

explicitly, and we recover (108), (109) after some calculations.

3.2.3. Cameron-Martin formula.

We consider in this section the Cameron-Martin formula [62], which describes the

change of the Wiener measure under translations. Let F be a functional acting

on continuous functions on the interval [0, 1] and h a continuous function on the
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same interval with h(0) = 0. Under technical hypotheses on F and h, one has

〈F [w − h]〉w = e−
1
2

∫ 1
0 dt h′(t)2〈F [w] e−

∫ 1
0
dt h′(t)w′(t)〉w, where the expectations values are

computed with respect to the Wiener process w(t), w(0) = 0. Choosing a function h

that verifies additionally h(1) = 0 and replacing F [g] by F [g]1{g(1)=0}, this implies the

identity

〈F [b− h]〉b = e−
1
2

∫ 1
0 dt h′(t)2〈F [b] e−

∫ 1
0 dt h′(t)b′(t)〉b , (116)

where b is the standard Brownian bridge. Assuming h′ is continuous and taking

F = max, one finds

〈max[b− h]〉b = e−
1
2

∫ 1
0 dt h′(t)2

∞
∑

n=0

1

n!

∫ 1

0

dt1 . . . dtn h
′′(t1) . . . h

′′(tn) (117)

× 〈b(t1) . . . b(tn)max[b]〉b .
The remaining expectation value can be computed from

P(max b < z, y1 < b(t1) < y1 + dy1, . . . , yn < b(tn) < yn + dyn) (118)

= dy1 . . .dyn
√
2π

( e
− y21

2t1

√
2πt1

− e
− (2z−y1)

2

2t1

√
2πt1

)( e
− (y2−y1)

2

2(t2−t1)

√

2π(t2 − t1)
− e

− (2z−y1−y2)
2

2(t2−t1)

√

2π(t2 − t1)

)

× . . .

. . .×
( e

− (yn−yn−1)
2

2(tn−tn−1)

√

2π(tn − tn−1)
− e

− (2z−yn−1−yn)2

2(tn−tn−1)

√

2π(tn − tn−1)

)( e−
y2n

2(1−tn)

√

2π(1− tn)
− e−

(2z−yn)2

2(1−tn)

√

2π(1− tn)

)

,

valid in the sector 0 < t1 < . . . < tn < 1, and which follows directly from (99).

Expanding for h with small amplitude, the identity

√
2π

∫ ∞

0

dz

∫ z

−∞
dy yz∂z

( e−
y2

2t

√
2πt

− e−
(2z−y)2

2t

√
2πt

)( e−
y2

2(1−t)

√

2π(1− t)
− e−

(2z−y)2

2(1−t)

√

2π(1− t)

)

=
t(1− t)

2
(119)

allows to recover max[b− h] ≃
√
2π
4

−
∫ 1

0
dt h(t).

3.3. 〈max[b− h]〉b for h piecewise linear

In all this section, we restrict to the special case h(x) = cx1{0≤x<a} + ca 1−x
1−a

1{a≤x<1}
with 0 < a < 1, corresponding for TASEP to a small initial domain wall with reduced

density profile σ0(x) = −c1{0≤x<a} + ca
1−a

1{a≤x<1}. We compute 〈max[b − h]〉b using

the Cameron-Martin formula, see figure 3 for a plot as a function of the amplitude c.

Perturbative expansions for small and large c are also studied.

3.3.1. Exact formula.

We consider the Cameron-Martin formula (116) with the functional F = max. After

splitting the integrals at x = a since h′(x) is not continuous at that point, partial

integration of the integral inside the expectation value on the right leads to

〈max[b− h]〉b = e−
ac2

2(1−a) 〈e− c
1−a

b(a) max[b]〉b . (120)
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The joint probability of max[b] and b(a) is needed in order to evaluate the expectation

value on the right hand side. Introducing the notation w(a) ∈ dy for w(a) ∈ (y, y+dy),

the definition of the standard Brownian bridge b(x) as a Wiener process w(x) conditioned

on w(1) = 0, followed by the Markov property of the Wiener process, leads to

P(max[b] < z, b(a) ∈ dy)

=
P( max

0<x<a
w(x) < z,w(a) ∈ dy, max

a<x<1
w(x) < z,w(1) ∈ (0, du)|w(0) = 0)

P(w(1) ∈ du|w(0) = 0)

=

√
2π

du
P( max

0<x<a
w(x) < z,w(a) ∈ dy|w(0) = 0) (121)

× P( max
a<x<1

w(x) < z,w(1) ∈ (0, du)|w(a) = y) .

Using translation invariance of the Wiener process, the two remaining probabilities are

given by (99). Inserting into (120), we obtain

〈max[b− h]〉b =
e−

ac2

2(1−a)

√

2πa(1− a)

∫ ∞

0

dz z ∂z

∫ ∞

0

dy e−
c(z−y)
1−a (122)

×
(

e−
(z−y)2

2a − e−
(z+y)2

2a

)(

e−
(z−y)2

2(1−a) − e−
(z+y)2

2(1−a)

)

.

The integral over y can be computed in terms of the error function erf as

〈max[b− h]〉b =
∫ ∞

0

dz z∂z

[1

2

(

1 + erf
( ca+ z
√

2a(1− a)

))

(123)

− e−2cz−2z2

2

(

1 + erf
(ca− z + 2az
√

2a(1− a)

))

− e−
2acz
1−a

−2z2

2

(

1 + erf
(ca+ z − 2az
√

2a(1− a)

))

+
e−

2cz
1−a

2

(

1 + erf
( ca− z
√

2a(1− a)

))]

.

Furthermore, in the symmetric case a = 1/2, both integrals of (122) can be computed

explicitly, and one has

〈max[b− h]〉b = − 1

4c
− c− c−1

4

(

1− erf
( c√

2

))

(124)

+
e−

c2

2

2
√
2π

+
π e

c2

2

2
√
2π

(

1 + erf
( c√

2

))(

1− erf
( c√

2

))

.

3.3.2. Small c perturbative expansion.

From (122), the perturbative expansion near c = 0 of 〈max[b−h]〉b gives for arbitrary a

〈max[b− h]〉b =
√
2π

4
− ac

2
+
(

√
2π

16
−

√

a(1− a)

2
√
2π

− a(1− a)
√
2π

8
(125)

+
2a3/2(1− a)3/2

3
√
2π

+
1− 2a

4
√
2π

(

arctan

√

a

1− a
− arctan

√

1− a

a

)) c2

(1− a)2
+O(c3) .

Remark: Comparing the terms of order two in c in the above formula with (28) and
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using the Fourier series representation h(x) =
∑∞

k=−∞ ake
2iπkx with a0 = ac/2 and

ak = c
1−a

e−2iπka−1
4π2k2

, k 6= 0, we find the following identity valid for arbitrary values of a:

∞
∑

k=1

(−1)kJ1(kπ) sin
2(πka)

π2k3
= −π

8
+

√

a(1− a)

2
+

πa(1− a)

4
− 2a3/2(1− a)3/2

3
(126)

− 1− 2a

4

(

arctan

√

a

1− a
− arctan

√

1− a

a

)

.

We have not been able to find this identity in the literature.

3.3.3. Asymptotics for c → +∞.

After making the change of variable z = w/c in (123), the large c limit of all four error

functions is erf(. . .) ≃ 1 up to exponentially small terms. Expanding the remaining

factors at large c and computing the integral over w finally gives the asymptotic

expansion

〈max[b− h]〉b ≃
1− a+ a2

2ac
+

∞
∑

k=1

(−1)k(2k)!

2k+1k!c2k+1

(

1 +
(1− a

a

)2k+1)

. (127)

For the symmetric case a = 1/2, the leading term is in particular 〈max[b − h]〉b ≃ 3
4c
,

in agreement with 〈maxx∈R(w(x) − |x|)〉w = 3/4 for a two-sided Wiener process, as

explained in section 1.5.1 for h0 of large amplitude.

3.3.4. Asymptotics for c → −∞.

We start again with (123), make the change of variable z = w− ca and use 1+ erf(q) ≃
− e−q2

√
π

∑∞
k=0

(−1)k(2k)!
22kk!q2k+1 when q → −∞ on the three error functions with large argument.

Neglecting exponentially small terms, the integral over w ∈ (ca,∞) in 〈max[b−h]〉b can
be extended to w ∈ R. After further large |c| expansions, the Gaussian integrals over w

can be computed. A little algebra finally gives

〈max[b− h]〉b ≃ −ca− 1− a+ a2

2ac
−

∞
∑

k=1

(−1)k(2k)!

2k+1k!c2k+1

(

1 +
(1− a

a

)2k+1)

. (128)

This is essentially the same asymptotic series as when c → +∞. The extra leading term

−ca is simply equal to −min[h] when c < 0, in agreement with the discussion in section

1.5.1 for h0 of large amplitude.

3.4. 〈max[b− h]〉b for the parabola

In all this section, we restrict to the special case h(x) = cx(1 − x), corresponding for

TASEP to an initial linear ramp with reduced density profile σ0(x) = 2c(x− 1/2). We

write an expression for 〈max[b − h]〉b using exact results [44] for the Wiener process

absorbed by a parabola, see figure 3 for a plot as a function of the amplitude c.

Perturbative expansions for small and large c are also studied.
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3.4.1. Exact formula.

From [44], the probability that a standard Wiener process w(x) with w(0) = 0 stays

under a parabola is known explicitly. One has for c < 0

P

(

max
0≤x≤1

(w(x)− cx(1 − x)) < z, 0 < w(1) < dy
)

= Kz,c(1) dy , (129)

where the Laplace transform of Kz,c is

∫ ∞

0

du e−λuKz,c(u) =
2πe−2cz− c2

6

|4c|1/3 Ai2
(2λ− 4cz

|4c|2/3
)

(Bi
(

2λ−4cz
|4c|2/3

)

Ai
(

2λ−4cz
|4c|2/3

) −
Bi
(

2λ
|4c|2/3

)

Ai
(

2λ
|4c|2/3

)

)

, (130)

with Ai and Bi the Airy functions (see e.g. [63] section 9). Since the zeroes aj of Ai are

on the negative real axis, the Laplace transform can be inverted with an integral on the

imaginary axis:

Kz,c(u) =
e−2cz− c2

6

i|4c|1/3
∫ i∞

−i∞
dλ eλuAi2

(2λ− 4cz

|4c|2/3
)

(Bi
(

2λ−4cz
|4c|2/3

)

Ai
(

2λ−4cz
|4c|2/3

) −
Bi
(

2λ
|4c|2/3

)

Ai
(

2λ
|4c|2/3

)

)

. (131)

Then, using the relation ∂y
Bi(y)
Ai(y)

= 1
πAi2(y)

, one finds after a few changes of variables and

a shift of the contour for λ

Kz,c(1) =
e−

c2

6

iπ

∫ z

0

dy

∫ i∞

−i∞
dλ eλ−2cy

Ai2(2λ−4cy
|4c|2/3 )

Ai2( 2λ
|4c|2/3 )

. (132)

We obtain for the standard Brownian bridge b(x) and the parabola h(x) = cx(1 − x)

with c < 0

〈max[b− h]〉b =
√
2π

e−
c2

6

iπ

∫ ∞

0

dz

∫ i∞

−i∞
dλ z eλ−2cz

Ai2(2λ−4cz
|4c|2/3 )

Ai2( 2λ
|4c|2/3 )

. (133)

Alternatively, the integral over λ can be computed from residues at the zeroes of

Ai2( 2λ
|4c|2/3 ). Taking into account only the J first zeroes aj for the moment, we find

after partial integration in the variable z

〈max[b− h]〉b =
√
2π

e−
c2

6

iπ

∫ ∞

0

dz

∫ i∞+
|4c|2/3

2

aJ+aJ+1
2

−i∞+ |4c|2/3

2

aJ+aJ+1
2

dλ z eλ−2cz
Ai2(2λ−4cz

|4c|2/3 )

Ai2( 2λ
|4c|2/3 )

−
√
2π e−

c2

6

J
∑

j=1

∫ ∞

aj

dz e
|4c|2/3z

2
Ai(z)2

Ai′(aj)2
. (134)

Using the derivative with respect to q of the relation
∫∞
−∞ dz eqzAi2(z + a) = e

q3

12 −qa
√
4πq

, we

express the integral for z between 0 and infinity in (134) as an explicit term proportional

to ec
2/6 minus an integral for z between −∞ and 0, which vanishes when J → ∞. The

remaining integral over λ can then be computed at large J from
∫ i∞
−i∞

λ dλ
cos2(λ)

= 0 and
∫ i∞
−i∞

dλ
cos2(λ)

= 2i after using the asymptotics Ai(x) ≃ cos( 2
3
(−x)3/2−π/4)√
π(−x)1/4

for x close to the

negative real axis. We finally find the alternative expression

〈max[b− h]〉b = lim
J→∞

(3πJ/2)2/3

|4c|1/3 − c

4
+

1

4c
−

√
2π e−

c2

6

J
∑

j=1

∫ ∞

aj

dz e
|4c|2/3z

2
Ai(z)2

Ai′(aj)2
. (135)
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3.4.2. Large c asymptotics, c < 0.

The large |c| expansion of 〈max[b− h]〉b can be extracted from (133). After making the

changes of variables λ = |4c|2/3µ/2 and z = y − c/4 − µ/|4c|1/3, we observe that the

exponentially large factors of the integrand cancel since Ai(x) ≃ e−2x3/2/3

2
√
πx1/4 at large x away

from the negative real axis. In particular, we find that the integrand is proportional to

e−2y2 . Since the integral over y is between c/4 + µ/|4c|1/3 and +∞, the missing part of

the integral between −∞ and c/4 + µ/|4c|1/3 gives an exponentially small contribution

to 〈max[b − h]〉b. Neglecting these exponentially small terms, the integrals over µ give

two constants:
∫ i∞

−i∞

dµ

2iπ

1

Ai(µ)2
= 1 and

∫ i∞

−i∞

dµ

2iπ

−µ

Ai(µ)2
= Ξ ≈ 1.25512 . (136)

The remaining integral over y can be computed using
∫∞
−∞ dz eqzAi2(z+a) = e

q3

12−qa
√
4πq

and

its derivative with respect to q. In the end, we find

〈max[b− h]〉b ≃ − c

4
+

Ξ

|4c|1/3 +
1

4c
(137)

up to exponentially small terms signaling the presence of an essential singularity when

c → −∞.

The asymptotics (137) can also be recovered from (135), with a better

characterization of the exponentially small terms, by using again
∫∞
−∞ dz eqzAi2(z+a) =

e
q3

12 −qa
√
4πq

to rewrite (135) with an integral over z between −∞ and aj. We find at leading

orders in |c|

〈max[b− h]〉b ≃ − c

4
+

Ξ

|4c|1/3 +
1

4c
+

√
2π

c2
e−

c2

6
+

|4c|2/3a1
2 , (138)

with an alternative expression for the constant Ξ,

Ξ = lim
J→∞

(3πJ

2

)2/3

−
J

∑

j=1

1

Ai′(aj)2
. (139)

As explained in section 1.5.1, the constant Ξ is universal for all functions h quadratic

around their global minimum, if this minimum is reached only once.

3.4.3. Large c asymptotics, c > 0.

The analytic continuation to c > 0 of (133) would be needed. We turn instead to Bethe

ansatz numerics, which indicate that

〈max[b− h]〉b ≃
3

4c
(140)

when c → +∞. This is expected from the discussion about h0 of large amplitude in

section 1.5.1 since when c > 0, h(x) behaves near the location x = 0 of its global

minimum as h(x) ≃ |x|.
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3.4.4. Small c perturbative expansion.

We start with (133) and shift the contour for λ to the line r + iR with r > c2/2 > 0.

When c → 0, the arguments of the Airy functions become large and stay away from the

negative real axis. We can then use the asymptotics [63]

Ai(x) ≃ e−
2
3
x3/2

2
√
π x1/4

∞
∑

k=0

(6k − 1)!! (−1)k

(2k − 1)!! k! 144kx3k/2
. (141)

After the small c expansion, the integrand of (133) has the form

√
2π

e−
c2

6

iπ
z eλ−2cz

Ai2(2λ−4cz
|4c|2/3 )

Ai2( 2λ
|4c|2/3 )

≃ e−
c2

6

√
2π i

eλ−2z
√
2λ−2cz

(

2z +
∞
∑

k=0

ck
2k
∑

j=0

bj,kz
j+1

(2λ)
3k−j

2

)

, (142)

where the constants bj,k are rational numbers. Since r > c2/2, the integral over z

converges, and one has

〈max[b− h]〉b =
e−

c2

6

√
2π i

∞
∑

k=0

ck
2k
∑

j=0

bj,k
(j + 1)!

2j+2

∫ r+i∞

r−i∞
dλ

eλ

(2λ)
3k
2
+1(1− c√

2λ
)j+2

. (143)

The remaining integral over λ can be computed after expanding the integrand near c = 0

using
∫ r+i∞
r−i∞ dλ eλ/λm+1 = 2iπ/m! and

∫ r+i∞
r−i∞ dλ eλ/λm+1/2 = 2m+1i

√
π/(2m− 1)!! for m

non-negative integer. In the end, we obtain the perturbative expansion

〈max[b− h]〉b =
√
2π

4
− c

6
+

√
2π

192
c2 +

1

945
c3 −

√
2π

36864
c4

− 2

81081
c5 − 5

√
2π

18579456
c6 +O(c7) . (144)

The first two terms of (144) are recovered immediately from the perturbative

expansion max[b − h] ≃
√
2π
4

−
∫ 1

0
dxh(x) for general h. For the third term, using

(112) with the Fourier representation of the parabola t(1 − t) = 1
6
−

∑

k∈Z∗
e2iπkt

2π2k2
gives

the Schlömilch series [64]
∞
∑

k=1

(−1)kJ1(kπ)

k3
= −π3

96
, (145)

which can be derived for instance by integrating (126) with respect to a, and leads to the

term
√
2πc2/192 in (144). We observe that (145) can be recovered in a more direct (but

non-rigorous) way by expanding the Bessel function as J1(kπ) =
∑∞

j=0
(−1)j(kπ/2)2j+1

j!(j+1)!
,

exchanging the sums over j and k and removing the divergent terms in the sum over k

with the prescription
∑∞

k=1(−1)kk2j−2 ≡ (22j−1 − 1) ζ(2− 2j). The identity (145) then

follows from the explicit expressions ζ(2) = π2/6, ζ(0) = −1/2 and ζ(2 − 2j) = 0 for

j ≥ 2. Unfortunately, the same kind of reasoning does not allow to obtain the more

general series (126).

Appendix A. Generating function of the height and eigenstates of TASEP

In this appendix, we recall how the generating function of the height function Hi(tm) of

TASEP can be computed in terms of a deformed Markov operator.
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We consider the vector space VΩ with dimension |Ω| generated by the set of

configurations Ω. The elements |C〉 of the canonical basis of VΩ are noted either

|X1, . . . , XN〉 or |n1, . . . , nL〉 in terms of the positions of the particles or the occupation

numbers. The vector |P (tm)〉, initially equal to |P0〉, evolves in time by the master

equation d
dtm

|P (tm)〉 = M |P (tm)〉 with M the Markov operator.

We consider the (globally) deformed Markov operator M(γ) obtained after

multiplying by eγ/L all non-diagonal elements of the Markov operatorM in the canonical

basis. The operator M(γ) commutes with the translation operator U defined by

U |X1, . . . , XN〉 = |X1+1, . . . , XN +1〉. It is then possible to diagonalize simultaneously

M(γ) and U . Introducing for r = 0, . . . , |Ω| − 1 the left and right eigenvectors 〈Ψr(γ)|
and |Ψr(γ)〉, one has

〈Ψr(γ)|M(γ) = Er(γ)〈Ψr(γ)| M(γ)|Ψr(γ)〉 = Er(γ)|Ψr(γ)〉 (A.1)

and

〈Ψr(γ)|U = e−ipr/L〈Ψr(γ)| U |Ψr(γ)〉 = e−ipr/L|Ψr(γ)〉 . (A.2)

The dominant eigenstate r = 0, corresponding for γ ∈ R to the eigenvalue of M(γ) with

largest real part, has momentum p0 = 0. The eigenvalues Er(γ) are in general complex

numbers, while the momenta pr are integer multiples of 2π.

The master equation describing the evolution in time of the joint probability

Ptm(C, Qi) of the microscopic state C and of the current Qi(tm) couples the probabilities

with different values of Qi. This can be remedied by introducing the generating function

Ftm(C, γ) =
∑

Qi∈Z e
γQiPtm(C, Qi), with γ a fugacity conjugate to Qi. The master

equation for |F (tm, γ)〉 =
∑

C∈Ω Ftm(C, γ)|C〉 is then d
dtm

|F (tm, γ)〉 = Mi(γ)|F (tm, γ)〉
with Mi(γ) a (local) deformation of the Markov operator obtained from M after

multiplying by eγ the elements of M corresponding to moves from the site i to the

site i + 1. The generating function of the current 〈eγQi(tm)〉 can then be written as

〈eγQi(tm)〉 =
∑

C∈Ω〈C|etmMi(γ)|P0〉. Globally and locally deformed Markov matrices have

the same eigenvalues Er(γ) since they are related by the similarity transformation

Mi(γ) = e−γSiM(γ)eγSi . The operator Si, diagonal in the canonical basis, is such that

Si|X1, . . . , XN〉 = 1
L

∑N
j=1[Xj ]i, where [X ]i is the integer between 1 and L counting the

position X from site i+ 1, [X + i]i = X modulo L.

Since the height function is related to the current by Qi(tm) = Hi(tm) −
Hi(0), the generating function of the height can be written as 〈eγHi(tm)〉 =
∑

C∈Ω〈C|etmMi(γ)eγH0i|P0〉, where the operator H0i is defined by H0i|n1, . . . , nL〉 =
∑i

k=1(ρ−nk)|n1, . . . , nL〉. Using the identity H0i = S0−Si and the similarity transform

from Mi(γ) to M(γ), one has 〈eγHi(tm)〉 =
∑

C∈Ω〈C|e−γSietmM(γ)eγS0 |P0〉. Expanding

the operator etmM(γ) over the eigenstates of M(γ) and using Si = U iS0U
−i, (A.2) and

∑

C∈Ω〈C|U i =
∑

C∈Ω〈C| finally gives

〈eγHi(tm)〉 =
|Ω|−1
∑

r=0

(
∑

C∈Ω〈C|Ψ0
r(γ)〉) 〈Ψ0

r(γ)|P0〉
〈Ψ0

r(γ)|Ψ0
r(γ)〉

etmEr(γ)+i ipr
L , (A.3)
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where 〈Ψ0
r(γ)| = 〈Ψr(γ)|eγS0 and |Ψ0

r(γ)〉 = e−γS0 |Ψr(γ)〉 are the left and right

eigenvectors of the locally deformed Markov operator M0(γ) at site 0 (modulo L). More

generally, multiple point correlations can be considered by introducing the operator

M({γi}), obtained after multiplying by eγi/L the elements of M corresponding to moves

from the site i to the site i + 1 for any i = 1, . . . , L. The identity M({γi}) =

e−
1
L

∑L
i=1 γiSiM(γ)e

1
L

∑L
i=1 γiSi with γ = 1

L

∑L
i=1 γi leads to

〈e 1
L

∑L
i=1 γiHi(tm)〉 =

|Ω|−1
∑

r=0

(
∑

C∈Ω〈C|e
1
L

∑L
i=1 γiH0i|Ψ0

r(γ)〉) 〈Ψ0
r(γ)|P0〉

〈Ψ0
r(γ)|Ψ0

r(γ)〉
etmEr(γ) . (A.4)

Appendix B. Continuum limit of TASEP and Brownian bridges

By Donsker’s theorem, see e.g. [57], the height functionHi becomes a standard Brownian

bridge in the continuum when each configuration C ∈ Ω of TASEP has the same weight.

For completeness, we re-derive this property in Appendix B.1 by splitting the system

into M boxes of length L/M with 1 ≪ M ≪ L. Then, in Appendix B.2, we compute

the first correction in L, that is needed to derive (21) and (22). Finally, the asymptotics

of the operator T (γ) defined in (72) is obtained in Appendix B.3.

Appendix B.1. Sum over configurations of TASEP and Brownian bridges

For a configuration C ∈ Ω of TASEP with L particles and N sites, we partition

the system into M boxes of consecutive sites Bm = {(m − 1)L/M + 1, . . . , mL/M},
m = 1, . . . ,M . The integer M has to divide L, and each box contains exactly L/M

sites.

We introduce the box variables

ρm =
M

L

∑

i∈Bm

ni (B.1)

σm =

√
L(ρm − ρ)
√

ρ(1− ρ)
(B.2)

hm = − 1

M

m
∑

n=1

σn , (B.3)

with ni the occupation numbers corresponding to C. Since n1 + . . .+ nL = N , one has

ρ1 + . . .+ ρM = ρM , σ1 + . . .+ σM = 0 and h0 = hM = 0‡.
Let f(h0, . . . , hM) be an arbitrary function of the box variables hm. Then, the

average 〈f(h0, . . . , hM)〉Ω = |Ω|−1
∑

C∈Ω f(h0, . . . , hM) over all configurations with the

same weight is equal to

〈f(h0, . . . , hM)〉Ω =
1

|Ω|
∑

ρ1,...,ρM∈M
L

[[0,L/M]]

ρ1+...+ρM=ρM

f(h0, . . . , hM)

M
∏

m=1

(

L/M

Lρm/M

)

, (B.4)

‡ The box variable h0 in this section must not be confused with the height profile h0(x) from (10).
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where the box variables hm on the right are defined from the box variables ρm
using (B.3) and (B.2). The binomial coefficients represent the number of ways to

place Lρm/M particles among the L/M sites of box m with the exclusion constraint.

Replacing the variables ρm ∈ M
L
[[0, L/M ]], ρ1 + . . . + ρM = ρM with the variables

σm ∈ M√
ρ(1−ρ)L

[[−N
M
, L−N

M
]], σ1 + . . . + σM = 0 defined in (B.2), the sum over the σm is

dominated at large L by σm’s of order L
0. Using Stirling’s formula (including the first

few sub-leading terms), we have the large L asymptotics with finite ρ and σm
(

L/M

Lρm/M

)

=

(

L/M
Lρ
M
(1 +

√
1−ρ σm√
ρ
√
L
)

)

(B.5)

≃ e−
L
M

(ρ log ρ+(1−ρ) log(ρ))−σm
√

ρ(1−ρ)L

M
log ρ

1−ρ
−σ2

m
2M

√

2πρ(1− ρ)L/M

(

1− (1− 2ρ)σm(3− σ2
m

M
)

6
√

ρ(1− ρ)L
+

B(σm)

L

)

and
(

L

ρL

)

≃ e−L(ρ log ρ+(1−ρ) log(ρ))

√

2πρ(1− ρ)L

(

1− B

L

)

. (B.6)

The precise values of the coefficients B(σm) and B will not be needed in the following.

Using σ1 + . . .+ σM = 0, one finds after some simplifications
M
∏

m=1

(

L/M
Lρ
M
(1 +

√
1−ρ σm√
ρ
√
L
)

)

(

L

ρL

) ≃ MM/2e
− 1

2M

M∑

m=1
σ2
m

(2πρ(1− ρ)L)
M−1

2

(

1 +
(1− 2ρ)

∑M
m=1 σ

3
m

6M
√

ρ(1− ρ)L
(B.7)

+
B(σ1, . . . , σM)

L

)

.

The large L asymptotics of (B.4) can be computed using the Euler-Maclaurin

formula. Since the summand in (B.4) is exponentially smaller for σm close to the

boundaries of the summation range than for σm ∼ L0, boundary terms of the Euler-

Maclaurin formula with Bernoulli numbers do not contribute to the algebraic part in L

of the expansion. We transform only the sums over σ1, . . . , σM−1 into integrals, since

σM is then fixed by the constraint σ1 + . . . + σM . In the end, we add another integral

for σM and a δ function in order to enforce the constraint. One has

〈f(h0, . . . , hM)〉Ω ≃ M
√
2π

(2πM)M/2

∫ ∞

−∞
dσ1 . . .dσMδ(σ1 + . . .+ σM )f(h0, . . . , hM) (B.8)

× e−
1

2M

∑M
m=1 σ

2
m

(

1 +
(1− 2ρ)

∑M
m=1 σ

3
m

6M
√

ρ(1− ρ)L
+

B(σ1, . . . , σM)

L

)

,

where the hm are given in terms of the σm by (B.3). After a change of variables from

the σm to the hm, we finally obtain

〈f(h0, . . . , hM)〉Ω ≃
√
2π

(2π/M)M/2

∫ ∞

−∞
dh0 . . .dhMδ(h0)δ(hM)f(h0, . . . , hM) (B.9)

× e−
M
2

∑M
m=1(hm−hm−1)2

(

1− (1− 2ρ)M2
∑M

m=1(hm − hm−1)
3

6
√

ρ(1− ρ)L
+

C(h0, . . . , hM)

L

)

,
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where the precise expression for C(h0, . . . , hM) will not be needed in the following. We

recognize in the expression above the M-point distribution of the standard Brownian

bridge b:

〈f(b(0), b(1/M), . . . , b(1))〉b (B.10)

=

√
2π

(2π/M)M/2

∫ ∞

−∞
dh0 . . .dhMδ(h0)δ(hM)f(h0, . . . , hM)e−

M
2

∑M
m=1(hm−hm−1)2 ,

which can be derived for instance from the representation b(x) = w(x) − xw(1) where

w is the Wiener process starting at w(0) = 0. Thus, one has

〈f(h0, . . . , hM)〉Ω →
L→∞

〈f(b(0), b(1/M), . . . , b(1))〉b . (B.11)

This is essentially equivalent to Donsker’s theorem, and sufficient to establish (20). The

large L expansion up to order 1 in L is however needed in order to derive (21), (22).

One has

〈f(h0, . . . , hM)〉Ω ≃
〈

f(b(0), b(1/M), . . . , b(1)) (B.12)

×
(

1 +
−1−2ρ

6
M2

∑M
m=1(b(

m
M
)− b(m−1

M
))3

√

ρ(1− ρ)L
+

C(b(0), b(1/M), . . . , b(1))

L

)〉

b
.

The expansion up to first order in L of 〈1{n1=0}1{nL=1}f(h0, . . . , hM)〉Ω is also needed in

order to treat (77). The calculation is essentially the same except for a small modification

in the binomial coefficients counting the number of ways to place the particles in the

first and the last box:

〈1{n1=0}1{nL=1}f(h0, . . . , hM)〉Ω =
1

|Ω|
∑

ρ1,...,ρM∈M
L

[[0,L/M]]

ρ1+...+ρM=ρM

f(h0, . . . , hM) (B.13)

×
(

L/M − 1

Lρ1/M

)(

L/M − 1

LρM/M − 1

)M−1
∏

m=2

(

L/M

Lρm/M

)

. (B.14)

Using
(

L/M − 1

Lρ1/M

)

= (1− ρ1)

(

L/M

Lρ1/M

)

and

(

L/M − 1

LρM/M − 1

)

= ρM

(

L/M

LρM/M

)

, (B.15)

similar calculations as above lead to

〈1{n1=0}1{nL=1}f(h0, . . . , hM)〉Ω ≃ ρ(1− ρ)
〈

f(b(0), b(1/M), . . . , b(1)) (B.16)

×
(

1 +
−1−2ρ

6
M2

∑M
m=1(b(

m
M
)− b(m−1

M
))3 + (1− ρ)b(1− 1

M
) + ρMb( 1

M
)

√

ρ(1− ρ)L

+
C(b(0), b(1/M), . . . , b(1)) +M2b( 1

M
)b(1− 1

M
)

L

+
−1−2ρ

6
M3((1− ρ)b(1 − 1

M
) + ρb( 1

M
))
∑M

m=1(b(
m
M
)− b(m−1

M
))3

L

)〉

b
,

where C(b(0), b(1/M), . . . , b(1)) is the same as in (B.12).



Brownian bridges for late time asymptotics of KPZ fluctuations in finite volume 40

Appendix B.2. Dominant eigenvalue at large L in terms of Brownian bridges

We want to take the large L limit of (77) for fixed ρ and s with γ = s/
√

ρ(1− ρ)L.

Inserting the decomposition of the identity between the operators T (γ) and using (B.12),

(B.21) and

E0(γ)

eγ − 1
≃ ρ(1− ρ)

(

1− s

2
√

ρ(1− ρ)L
+

s2

12ρ(1−ρ)
+ e(s)

s

L

)

, (B.17)

we obtain at half filling ρ = 1/2 the relations (21) and

〈(b′n(0)− b′n(1)) e
−smax[b1−h0]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

〈e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn
= −s +O(sn) (B.18)

The derivatives b′n(0) and b′n(1) are understood as the limits b′n(0) = limM→∞Mbn(1/M),

b′n(1) = − limM→∞Mbn(1− 1/M). At arbitrary ρ, we obtain additionally

〈(b′n(0) + b′n(1))(
∫ 1

0
dx b′n(x)

3) e−smax[b1−h0]−s
∑n

j=2 max[bj−bj−1]〉b1,...,bn
〈e−smax[b1−h0]−s

∑n
j=2 max[bj−bj−1]〉b1,...,bn

= s2+O(sn) ,(B.19)

where the integral is understood as
∫ 1

0
dx b′n(x)

3 =
M→∞

M2
∑M

m=1(bn(
m
M
)− bn(

m−1
M

))3.

Appendix B.3. T (γ) between typical configurations

We consider two typical configurations C1 and C2 with respective associated density

profiles ρ+
√

ρ(1− ρ)σ1(x)/
√
L and ρ+

√

ρ(1− ρ)σ2(x)/
√
L. The fugacity γ is taken

equal to γ = s/
√

ρ(1− ρ)L, and we are interested in the large L limit of 〈C2|T (γ)|C1〉
with fixed ρ and s.

We partition again the system in M boxes of size L/M and introduce the box

variables hm,1 and hm,2 corresponding respectively to C1 and C2 as in (B.3). From (72),

one has at large M (with M ≪ L)

〈C2|T (γ)|C1〉 ≃ e
−s max

0≤m≤M
[hm,2−hm,1]

. (B.20)

Defining now the height profiles h1(x) and h2(x) from σ1 and σ2 as in (10), we finally

obtain

〈C2|T (γ)|C1〉 ≃
1≪M≪L

e
−s max

0≤x≤1
[h2(x)−h1(x)]

(B.21)
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