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A discrete-time robust controller design method is proposed
for optimal tracking of future references in preview systems.
In the context of preview systems, it is supposed that future
values of the reference signal are available a number of time
steps ahead. The objective is to design a control algorithm
that minimizes a quadratic error between the reference and
the output of the system and at the same time achieves a good
level of the control signal. The proposed solution combines
a robust feedback controller with a feedforward anticipative
filter. The feedback controller’s purpose is to assure robust-
ness of the closed-loop system to model uncertainties. Any
robust control methodology can be used (such as µ-synthesis,
QFT, or CRONE control). The focus of this paper will be
on the design of the feedforward action in order to intro-
duce the anticipative effect with respect to known future val-
ues of the reference signal without hindering the robustness
achieved through the feedback controller. As such, the model
uncertainties are taken into account also in the design of the
feedforward anticipative filter. The proposed solution is val-
idated in simulation and on an experimental water tank level
control system.
Keywords: preview systems, robust control, feedforward fil-
ter, discrete-time systems, H2, H∞
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1 Introduction
In a number of automatic control applications (known

also as preview systems), future values of the reference sig-
nal are available in advance. Examples can be found in aero-
nautical systems (trajectory tracking of unmaned aerial ve-
hicles in [1]), autonomous vehicles (explicit path tracking
in [2]) or mobile robots [3]. In other applications, distur-
bance signals can also be known beforehand, such as in wa-
ter level control (for irrigation and drainage ducts in [4, 5]).
Therefore, it is of interest to propose appropriate control al-
gorithms that take into account this information.

The present paper is focused on the development of
discrete-time robust control methods with an anticipative ac-
tion. Throughout this paper, it is considered that future val-
ues of the reference signal are known a number of time steps
ahead. The objective of anticipation is that of designing con-
trol algorithms capable of minimizing a quadratic criterion
on the error between the plant output and the known future
reference. As such, the effect of anticipation is that the con-
trol input anticipates the future values of the reference signal
so that the plant output reacts to reference changes before
they occur.

The concept of anticipative control (known also as pre-
view control) was proposed initially in [6] and further devel-
oped in [7]. A complete review of anticipative control is pre-
sented in [8]. Recent research has focused on the design of
anticipative controllers in a H2 or H∞ framework ( [9–14]).



In [15], analytic solutions of operator Ricatti equations for
preview/delay MIMO systems in an optimal control context
are proposed. The focus is on the attenuation of disturbances
given noisy measurement signals. Other control techniques
have been used in combination with anticipative action such
as multi-model adaptive control [16], fuzzy control [17] and
sliding mode control [18].

Nevertheless, only a few number of research articles
have attempted to deal with the problem of robust anticipa-
tive control. In [19] an anticipative control problem is con-
sidered in the context of motion control of robots. The pro-
posed solution is also based on the H∞ design methodology.
Weighting norms are used to assure robustness of the feed-
back control law; however, uncertainties are not taken into
account in the design of the feedforward anticipative filter.
Furthermore, the anticipative feedforward part is designed
taking into account only the tracking error minimization.

A free-weighting matrices technique is used with Lya-
punov stability theory to derive robust anticipative con-
trollers in [8, 20]. Both reference anticipative tracking and
disturbance rejection are treated; however, an initial design
step involves a quadratic criterion which depends on weight-
ing matrices that can be chosen arbitrarily. The proposed
method is dependant on the choice of these weighting matri-
ces, which makes it difficult to interpret the obtained results.

In this paper, a new robust anticipative controller design
is proposed for preview systems. The robustness consider-
ations take into account both parametric uncertainties and
control effort limitations.

A two degrees of freedom feedforward-feedback control
schema represents the basis for the proposed controller. A
feedforward filter with anticipative behaviour is introduced
to take into account future values of the reference signal.
It is supposed that the time window of known future refer-
ence values is known. The preview window’s length of the
anticipative feedforward filter can be adjusted accordingly.
The feedforward part is obtained by solving a frequency do-
main optimisation problem with mixed H2 performance and
H∞ constraints for robustness. The interesting aspect of the
proposed approach is that the anticipative feedforward action
can be added on top of any robust feedback controller. The
presentation will be mainly focused on the feedforward part.
With respect to the feedback part, in this paper a CRONE
(french acronym for Commande Robuste d’Ordre Non En-
tier, which translates to Fractional Order Robust Control) ro-
bust controller is designed but it should be noted that any ro-
bust design methodology (such as µ-synthesis, QFT, etc.) can
be used instead. The CRONE methodology uses fractional
orders of integro-differentiator to make easier the design of
the robust controller. It does not require any overestimation
of the plant uncertainty model, so it is able to design a high
performing controller.

The paper is organised as follows. Notations used
throughout the paper are introduced in Section 2. The ba-
sic principles of the proposed approach are introduced in
Section 3 and then further developed in Section 3.3. Sec-
tion 4 briefly recalls the design steps of a robust feedback
CRONE controller and evaluates the proposed anticipative
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Fig. 1. Feedforward–feedback control schema used for robust an-
ticipative control.

control method on an uncertain simulated system. A descrip-
tion of the experimental test bench used for validation and a
discussion of the experimental results obtained are presented
in Section 5. Section 6 concludes this paper.

2 Notations
In this paper, signals are denoted with lower-case letters

in the time domain and upper-case letters in the frequency
domain. Transfer functions or polynomials are also denoted
with upper-case letters. The unit delay operator q−1 is used
in the time domain, while z−1 is used in the frequency do-
main. The unit advance operator q is used in the feedforward
filters to represent the anticipative action. The sampling pe-
riod is denoted by Ts, while the sampling frequency is repre-
sented by fs.

As mentioned in the introduction, this paper deals with
the design of robust anticipative control algorithms for refer-
ence tracking in preview systems. A feedforward–feedback
discrete-time controller structure (see Fig. 1) represents the
basis of the proposed control law.

In Fig. 1, G(q−1) represents the true plant model with
uncertain parameters. It is supposed (without loss of gen-
erality) that the uncertainty intervals of the parameters are
known. The true plant model can be considered as belong-
ing to a set of models defined using the uncertainty intervals.
The objective of robustness can be redefined as robustness to
all the models in the model-set.

Gn(q−1) denotes a nominal model chosen from the
model-set. The following factorization is considered for the
nominal model

Gn(q−1) = Gh(q−1)Gl(q−1), (1)

where Gl includes the low frequency stable poles and min-
imum phase zeros of Gn. All the other poles and zeros of
Gn are included in Gh. The difference between low and high
frequency parts is based on the bandwidth of the system.

Gn(q−1) functions as a pre-filter in Fig. 1 (if Gn(q−1)≡
G(q−1) and dy(t) = du(t) = 0 then ε(t) = 0 and u(t) =
u f f (t)).

K(q−1) is the robust feedback controller. yd(t), u f f (t),
u f b(t), u(t), y(t), and d(t) represent, respectively, the refer-
ence input, the feedforward control, the feedback control, the
control input, the system output, and the disturbance signal.

In this paper, the anticipative action is introduced using
anticipative finite impulse response (FIR) filters defined as

X(q−1) = q−nX x−nX + . . .+ x0 +q1x1 + . . .+qmX xmX . (2)



In the previous equation, mX ·Ts determines the window of
future time samples. FIR filters are preferred due to their
inherent stability and ease of manipulation.

The anticipative action of the proposed controller with
respect to known future values of the reference yd(t) is intro-
duced through the anticipative FIR filter F(q−1) in Fig. 1.

Two closed-loop transfer functions in Fig. 1 are of in-
terest. Let us define the transfer function from reference to
system output, in the frequency-domain, as

Y (z−1)

Yd(z−1)
= Hyyd (z

−1) = G(z−1)F(z−1)
1+K(z−1)Gn(z−1)

1+K(z−1)G(z−1)
(3)

and the transfer function from reference to control input, also
in the frequency-domain, as

U(z−1)

Yd(z−1)
= Huyd (z

−1) = F(z−1)
1+K(z−1)Gn(z−1)

1+K(z−1)G(z−1)
, (4)

where Y (z−1), Yd(z−1) and U(z−1) are the Z-transforms of
y(t), yd(t) and u(t).

3 Proposed anticipative controller using feedforward
action
In this section, the proposed design of the anticipative

feedforward filter for preview systems is presented. The
method is first introduced considering the nominal model
Gn and also the true plant model G as known. In practice,
the true plant is not known. Subsection 3.2 shows how the
model-set described in Section 2 can be used to substitute the
true plant model in the optimisation problem while assuring
also the robustness of the obtained feedforward anticipative
filter to model uncertainties. Finally, a method for reducing
the number of parameters of the anticipative feedforward fil-
ter is explained in Subsection 3.3.

3.1 Design of the anticipative feedforward filter
Feedforward filter designs are usually based on some

type of inversion of a plant model; however, in real appli-
cations, plant models are uncertain and present also non-
invertible parts. In Section 2, the factorisation of the nom-
inal model Gn into the invertible Gl and non-invertible Gh
parts has been introduced. To easily introduce the invertible
part Gl and also an anticipative action, the feedforward filter
F(q−1) is factorised as:

F(q−1) = TF(q−1)F0(q−1). (5)

The F0 factor in F is used to compensate the low frequency
stable poles and minimum phase zeros of Gn. It is computed
as: F0(q−1) = G−1

l (q−1). From (3), it can be seen that if
|KG| � 1 and |KGn| � 1 then Hyyd tends to FG, which mo-
tivates the choice for F0. TF(q−1) is chosen as an anticipative

FIR filter:

TF(q−1) = tF−mq−m + . . .+ tF−1q−1 + tF0

+ tF1q+ . . .+ tFaqa. (6)

Due to TF(q−1), both past and future data are used when
filtering a signal through F(q−1). m represents the number of
data that have to be saved in the memory of the filter. a gives
the anticipation. A larger a means that information further in
the future is needed. While the choice of m is limited only
by the available memory, a has to be adjusted taking into
account the time window of available future reference values.
In practice, a and m have to be adjusted in accordance to the
desired dynamics of the controlled system and the desired
closed-loop response time.

Let denote

θF = [tF−m , ..., tF−1 , tF0 , tF1 , ..., tFa ] (7)

the parameters vector of the unknown filter TF(q−1). In the
rest of this section, the problem of finding the optimal es-
timation θ̂F is considered. The notations TF(θ̂F ,q−1) and
F(θ̂F ,q−1) correspond to TF(q−1) and F(q−1) when θ̂F is
used.

The previously defined closed-loop transfer functions
(3) and (4) can be rewritten as:

Y (z−1)

Yd(z−1)
= Hyyd (θ̂F ,z−1)

= G(z−1)F(θ̂F ,z−1)
1+K(z−1)Gn(z−1)

1+K(z−1)G(z−1)
(8)

U(z−1)

Yd(z−1)
= Huyd (θ̂F ,z−1)

= F(θ̂F ,z−1)
1+K(z−1)Gn(z−1)

1+K(z−1)G(z−1)
(9)

Let εy(t) = yd(t)−y(t) = (1−Hyyd )yd(t) define the error be-
tween the system output and the reference signal. In order to
minimize the ∞–norm of εy(t), the following objective func-
tion is defined

JF(θ̂F) = sup
t
|εy(t)|= sup

t
|εy(t)|

= sup
t

∣∣(1−Hyyd (θ̂F)
)

yd(t)
∣∣ . (10)

For finite energy reference signals yd(t), a least upper
bound of the previous objective functions can be obtained by
using the H2 system norm1 (see [21]).

JF(θ̂F)≤
∥∥∥1−Hyyd (θ̂F ,e− j2π f/ fs)

∥∥∥
2
‖yd(t)‖2 (11)

1In the frequency domain, the q−1 operator becomes e− jωTs = e− j2π f/ fs .



Although it is supposed that a number of future samples of
the reference signal are known at each time, the type and
frequency content of the reference signal are supposed un-
known. The minimization of JF(θ̂F) is carried out for a given
yd . As such, we define the optimisation problem that needs
to be solved using only the H2 system norm from (11) (which
is equivalent with considering a normalization of JF(θ̂F) by
the norm ‖yd(t)‖2):

θ̂F = arg min
θF

∥∥∥1−Hyyd (θF ,e− j2π f/ fs)
∥∥∥

2
, (12a)

s.t. lim
q→1

TF(θ̂F ,q−1) = lim
q→1

Gh
−1(q−1) (12b)

and
∥∥∥Wuyd (e

− j2π f/ fs)Huyd (θ̂F ,e− j2π f/ fs)
∥∥∥

∞

≤ 1 (12c)

∀ f ∈
[

0,
fs

2

]

Two constraints are added to the optimisation problem
in (12). The first one, (12b), is introduced to ensure that the
steady state gain of FGn has unit value.

In the second one, (12c), the weighting function
Wuyd (q

−1) is used to introduce a frequency constraint on the
control input u f f . In practice, this is necessary in order to
limit the control action at frequencies where the plant model
has very low gain. In the example from Section 4, the control
effort frequency constraint is used to reduce the frequency
content of the control at high frequencies, where the plant
model has very low gain.

3.2 Robustness considerations in the design of the an-
ticipative feedforward filter

The closed-loop transfer functions Hyyd (θ̂F ,q−1) and
Huyd (θ̂F ,q−1) that appear in the optimisation problem (12)
need the true plant model G for their computation. As this is
not known exactly, it should be replaced by the models from
the model-set. As such, (8) and (9) become:

Hyyd (θ̂F ,q−1) =

{
Gk

1+KGn

1+KGk
F(θ̂F),

∀ Gk in the model-set} (13)

and

Huyd (θ̂F ,q−1) =

{
1+KGn

1+KGk
F(θ̂F),

∀ Gk in the model-set} . (14)

(13) and (14) define two sets of transfer functions
parametrized by the vector of parameters θ̂F . The optimiza-
tion problem (12) is redefined using (13) and (14) so that θ̂F
should satisfy the criterion and the constraints for all Hyyd

and Huyd in the given sets.
Remark: in practice, it is possible to select only a

smaller number of models from the model-set that contain

the necessary information about the variations of the true
plant for the design of the robust controller. The problem
of how these models have to be selected is not dealt with in
this paper. In Section 4, only the nominal model and two
other models from the model-set are used.

3.3 Reduction of the number of parameters of the an-
ticipative feedforward filter

In certain cases, the sampling period Ts can be too small
with respect to the desired closed-loop response of the sys-
tem implying that TF(q−1) would have too many parameters.
It is possible to reduce its size by using a slower sampling
period for TF . Let p denote a sampling time multiplier, then
TF(q−1

p ) denotes the anticipative part of the feedforward fil-
ter that is sampled at p ·Ts seconds:

TF(q−1
p ) = tF−mq−mp

p + . . .+ tF−1q−1
p + tF0 + tF1qp

+ . . .+ tFaqap
p . (15)

In the previous equation, q−1
p defines a new delay operator

that introduces a time shift of p · Ts seconds. It can be ob-
served that using (15) a longer time span can be reached with
fewer parameters. Taking into account the sampling period
multiplier p, the sampling frequency for the TF(q−1

p ) filter in
(15) is fs

p . As such, q−1
p becomes in the frequency domain

e− j2πp f/ fs ( f ∈
[
0, fs

2p

]
).

The optimisation problem in (12) involves filters Hyyd

and Huyd . For p 6= 1, these transfer functions are not well
defined in the time-domain as they involve both q−1 and q−1

p
delay operators. Nevertheless, in the frequency domain one
can compute both the frequency response of the modified
TF(θ̂,q−1

p ) filter and that of the filters in q−1 that appear in
(8) and (9) :

H ′yyd
(q−1) = G(q−1)

1+K(q−1)Gn(q−1)

1+K(q−1)G(q−1)
(16)

H ′uyd
(q−1) =

1+K(q−1)Gn(q−1)

1+K(q−1)G(q−1)
(17)

for ∀ f ∈
[
0, fs

2p

]
. The optimisation problem becomes:

θ̂F = arg min
θF

∥∥∥1−H ′yyd
(e− j2π f/ fs)TF(θF ,e− j2πp f/ fs)

∥∥∥
2
,

(18a)

s.t. lim
qp→1

TF(θ̂F ,q−1
p ) = lim

q→1
Gh
−1(q−1) (18b)∥∥∥Wuyd (e

− j2π f/ fs)H ′uyd
(e− j2π f/ fs)TF(θ̂F ,e− j2πp f/ fs)

∥∥∥
∞

≤ 1

(18c)

∀ f ∈
[

0,
fs

2p

]



The schema for the feedforward–feedback controller with
sampling time multiplier p is shown in Fig. 2. As it can
be observed, the sampling period multiplication p is applied
only to the anticipative feedforward filter TF(q−1

p ). Both Gh

and G−1
l are implemented using Ts as sampling period which

allows to reduce the variations of ε(t) and therefore limit the
noise on the control.

+

+

+
-

+

+ +

+

sampling rate

change

Fig. 2. Sampling rate change in the implementation of the
feedforward–feedback controller.

Low-pass filter for attenuation of periodic control signal
effects

The introduction of a sampling rate multiplier p > 1 has
the effect of limiting the frequency band which is used for the
optimization problem to the interval

[
0, fs

2p

]
Hz. To elimi-

nate the undesired effects of aliasing from the TF(q−1
p ) above

fs
2p , a low–pass interpolating filter H f (q−1) with cut-off fre-

quency fs
2p is introduced with Ts sampling period as shown in

Fig. 3.

+

+

+
-

+

+ +

+

sampling rate

change

Fig. 3. Feedforward–feedback control schema used for robust an-
ticipative control with sampling rate change and low-pass filter.

The optimization problem (12) is modified to take into
account H f (q−1) (due to the fact that it introduces phase
changes below fs

2p ). Equations (16) and (17) are modified
as

H ′yyd
(q−1) = G(q−1)H f (q−1)

1+K(q−1)Gn(q−1)

1+K(q−1)G(q−1)
(19)

H ′uyd
(q−1) = H f (q−1)

1+K(q−1)Gn(q−1)

1+K(q−1)G(q−1)
(20)

Remark: for robustness considerations, the model-set
defined in Subsection 3.2 is used instead of G(q−1) to solve
the optimisation problem.

4 Simulation results
Simulation results on an academic example are pre-

sented in this section. First the uncertain parameters model
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Fig. 4. Nichols chart of the uncertain parameters model G(q−1).

that will be used is introduced. Then the design of a robust
feedback controller for the academic example based on the
CRONE methodology is detailed. Finally the obtained antic-
ipative feedforward–feedback controllers is evaluated.

4.1 Uncertain parameters model example
The discrete time plant model G(q−1) used for the de-

sign of the controllers and for simulations is obtained from
the continuous-time model using a zero-order hold (ZOH)
discretization with Ts = 0.05 sec of

G(s) =
k

s(1+ τs)
, (21)

where k ∈ [1,2] , τ ∈ [10,30] (sec) are the uncertain parame-
ters.

The Nichols chart of the uncertain model G(q−1) is
given in Fig. 4.
Generally, the choice of the nominal model from the model

set is arbitrary. In this paper, the simulation and experimen-
tal examples use as nominal model the one that is the closest
to the geometric mean of the frequency gain responses of the
entire set. For this example, the nominal model is obtained
by discretisation for k =

√
1 ·2 and τ =

√
10 ·30 (sec)

Gn(q−1) =
1.02 ·10−4q−1 +1.019 ·10−4q−2

1−1.997q−1 +0.9971q−2 (22)

The two extreme models Gm and GM , for this example, are:

Gm(q−1) =
4.164 ·10−5 +4.4162 ·10−5q−1

1−1.998q−1 +0.9983q−2 (23)

GM(q−1) =
2.496 ·10−4 +2.492 ·10−4q−1

1−1.995q−1 +0.995q−2 (24)



4.2 Design of the robust feedback controller using
CRONE methodology

+

+

+

-

+

+

Fig. 5. Feedback schema used in CRONE controller design.

The objective of the CRONE methodology is to ro-
bustify the closed-loop dynamic performance through a ro-
bust stability degree (robust resonant peak) and performance.
The theoretical background for designing a third generation
CRONE controller [22] for the given uncertain parameters
plant is presented in this section; however, the computa-
tion of the controller’s parameters is done using the CRONE
Toolbox [23].

Let us define the following sensitivity functions based
on the schema in Fig. 5:

• Output sensitivity function

Y (z−1)

Dy(z−1)
= S(z−1) =

1
1+G(z−1)K(z−1)

. (25)

• Complementary sensitivity function

Y (z−1)

Yd(z−1)
= T (z−1) =

G(z−1)K(z−1)

1+G(z−1)K(z−1)
. (26)

In the previous equations, G(q−1) can be any model from the
model-set. It is possible to define Sn(q−1) and Tn(q−1) if the
nominal model Gn(q−1) is used instead. For all other closed-
loop sensitivity functions in Fig. 5, a composed notation is
used (for example, KSn(q−1) denotes K(q−1)Sn(q−1)).

An aspect of CRONE design is that either continuous or
pseudo-continuous transfer functions are used. As the objec-
tive is to find a discrete robust controller, the ZOH discretized
plant model-set will be transferred to the pseudo-continuous
space using the W bilinear variable change.

q−1 =
1−w
1+w

.

At the end, the inverse variable change will be used to get the
discrete-time controller. Let us introduce the nominal open-
loop transfer function

βn(w) = Gn(w)K(w) =C0βl(w)βm(w)βh(w)(1−w) , (27)

βl(w) =
(v0

w
+1
)nl

, βh(w) =
1(

w
v1
+1
)nh

, (28)

βm(w)=
(

1+w/v1

1+w/v0

)a0

ℜi


(

α0
1+ w

v1

1+ w
v0

)ibq0

−q0sign(bq0 )

(29)
with

α0 =

√√√√√√1+
(

vr
v0

)2

1+
(

vr
v1

)2 . (30)

w and v denote, respectively, the operational variable in the
pseudo-continuous time domain and the pseudo frequency.

Similarly to the continuous-time domain, w = jv. v is
related to the frequency ω in continuous-time through v =
tan(ωTs

2 ).

• (1−w) takes into account the right half plane zero of
Gn(w) in order to ensure the stability of the KS(w) trans-
fer function.
• nl = 3 to ensure accuracy specifications at low fre-

quencies (reducing the magnitude of the transfer GS(w)
(however, a single integrator will be used for the rational
controller).
• nh = 2 to limit the high frequency control effort

(biproper transfer function KS(w)).
• a0 and b0 are the real and imaginary parts of the frac-

tional order a0 + ib0 of band-limited integrator. v0 and
v1 are their corner frequencies. The imaginary order bq0

and the positive integer order q0 are determined to en-
sure the same open-loop phase slope as the slope en-
sured by an initial imaginary order b0 which may have
to be limited for closed-loop stability reasons [24]. For
large values of b0, bq0 is very close to b0/q0.
• From given values of the other parameters, a0, bq0 , q0,

and C0 are deduced in order to ensure a resonant fre-
quency vr and a desired resonant peak Mrd of |Tn( jv)|.
vr and Mrd are used to tune the bandwidth and the damp-
ing of the nominal closed-loop transfer function Tn(w).

The parameters of βn are optimized together to stabilize
the nominal closed-loop and to minimize the resonant peak
variations of T (w) at the time of the plant perturbation. The
objective function to be minimized is defined by:

JK = sup
v,G
|T ( jv)|−Mrd . (31)

Only 5 parameters of βn need to be optimized: the v0 and
v1 corner frequencies, the resonant frequency vr, the reso-
nant peak Mrd , Yr = |βn( jvr)|. Setting the Mrd desired reso-
nant peak for |Tn( jv)| makes the Nichols plot of βn( jv) tan-
gent to the Mrd Nichols M-contour. The minimization of JK
optimizes the tangency direction in order to place the per-
turbed open-loop frequency response β( jv) away from the
(−π, 0dB) critical point.

For the closed-loop performance requirement, a nonlin-
ear minimization (using Matlab fmincon function) of JK is



carried out thanks to 5 sets of frequency-domain inequality
constraints:

inf
G
|T ( jv)| ≥ Tl(v), sup

G
|T ( jv)| ≤ Tu(v), (32a)

sup
G
|S( jv)| ≤ Su(v), (32b)

sup
G
|KS( jv)| ≤ KSu(v), (32c)

sup
G
|GS( jv)| ≤ GSu(v). (32d)

As the perturbations of G are taken into account without
any overestimation (a set of LTI models), a non-conservative
(highly efficient) robust controller can be designed. This
modelling implies that a non-linear optimization method
must be used to find the optimal values of the high-level de-
scriptive parameters of fractional open-loop transfer function
βn(w).

• Tl(v) is defined by−1 dB up to v = 0.05 for fast conver-
gence and a good-enough bandwidth. Similarly, Tu(v) is
defined by +1 dB up to v = 0.05 for fast convergence.
From 0.05, Tu is defined by 4.5 dB to avoid obtaining a
very low stability degree.

• Su(v) has a +20 dB/dec slope at low frequency to de-
sensitize the closed-loop system with respect to plant
uncertainties and a value of 6 dB at high frequency to
obtain a modulus margin greater than 0.5.

• KSu(v) has a value of 86 dB (20000 gain) to limit the
high frequency amplification of the measurement noise
on the control input.

• GSu(v) is defined by a −40 dB gain to ensure good re-
jection of input disturbances.

One obtains the following values for the optimal pa-
rameters: v0 = 0.00505,v1 = 3, vr = 0.1372, Mrd = 1.74 dB
and Yr = 5.23 dB. The deduced parameters are: a0 = 1.240,
b0 = 0.325, bq0 = 0.325, q0 = 1, and C0 = 27.1628. The
value of the objective function JK = 0.92101 dB.

The constraints used for the sensitivity functions (see
(32)) are given in Fig. 6 together with the obtained results.
The maximum (minimum) response is obtained considering
at each frequency the highest (lowest) value over the entire
model-set.

The Nichols chart of the obtained rational open-loop is
compared to the fractional one in Fig. 7. Note that only 1
integrator is arbitrary used for the rational controller (2 in-
tegrators in the rational open-loop with respect to 3 for the
fractional one).

Once βn(w) has been optimized, the controller is ob-
tained from

K(w) = G−1
n (w)βn(w). (33)

As βn(w) is a fractional transfer function, an integer con-
troller is obtained by identifying the ideal frequency response

10
-2

10
0

10
2

-20

-10

0

10

M
ag

n
it

u
d
e 

(d
B

)

T Fract.

T
m

T
n

T
M

bounds

bounds

10
-4

10
-2

10
0

10
2

-50

-40

-30

-20

-10

0

10

M
ag

n
it

u
d
e 

(d
B

)

S Fract.

S
m

S
n

S
M

bounds

10
-2

10
0

10
2

Pseudo-frequency

0

20

40

60

80

M
ag

n
it

u
d
e 

(d
B

)

KS Fract.

KS
m

KS
n

KS
M

bounds

10
-3

10
-2

10
-1

10
0

10
1

10
2

Pseudo-frequency

-80

-70

-60

-50

-40

M
ag

n
it

u
d
e 

(d
B

)

GS Fract.

GS
m

GS
n

GS
M

bounds

Fig. 6. Sensitivity functions templates and obtained results: sub-
scripts denote the nominal response (n), the highest response (M),
and the minimum response (m)
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solid lines. Responses of the augmented uncertainty domains en-
close the nominal ones

K( jv) by a low-order transfer function

KR(w) =
KN(w)
KD(w)

, (34)

where KN(w) and KD(w) are polynomials of integer degrees
nKN and nKD . Whatever the complexity of the control prob-
lem, the method presented in [22, Chapter 3] (see also [23])
— optimization of the zeros and poles of a given rational
transfer function — enables small enough values of nKN and
nKD to be used. For this example, nKN = nKD = 3. The
discrete-time controller is obtained using the inverse of the
bilinear variable change w = 1−q−1

1+q−1 .



The rational discrete-time controller is obtained as

K(q−1) =
3126−8314q−1 +7297q−2−2108q−3

1−1.223q−1−0.284q−2 +0.5075q−3 (35)
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Fig. 8. Evaluation of the rational CRONE controller.

Closed-loop time responses are compared in Fig. 8(a).
The control input is shown Fig. 8(b). Note that, during this
simulation no saturation effects have been considered and no
noise/disturbance have been added.

From Fig. 8, it can be seen that the output tracks the ref-
erence signal for the three particular models of the plant and
the control effort is an alternating signal with a higher am-
plitude. Also, the obtained results show that the synthesized
controller is robust to the plant perturbation.

4.3 Evaluation of the proposed anticipative approach
The approach presented in Section 3 is validated on

the same simulation example given in Subsection 4.1. The
CRONE feedback controller presented in Subsection 4.2 is
used.

The reference yd(t) is step function with unit amplitude.

The first results shown hereafter correspond to a 64 pa-
rameters TF(q−1) filter with an anticipation order of 32 (1.6
sec). The sampling time multiplier is chosen p = 1. The
expressions of Gh and G−1

l are given, respectively, by

Gh(q−1) = 0.000102q−1 +0.0001019q−2 (36)

G−1
l (q−1) = 1−1.997q−1 +0.9971q−2 (37)

The weighting function Wuyd (q
−1) is a frequency constraint

on the transfer from reference to control input. For an am-
plitude reference equal to 1, we accept a control inputs level
lower than 80. Then, the expression used in the optimisation
problem is given in continuous-time by the following equa-
tion:

W−1
uyd

(s) =
80

s
20 +1

(38)

The discretization is done using the Tustin transformation.
This results in a control input level limitation at 80 times

the reference amplitude. The amplitude frequency response
of this weighting function can be seen in Fig. 9. As men-
tioned in Subsection 3.1, F0(q−1) = G−1

l (q−1). The coeffi-
cients of the TF(q−1) filter are found by solving the linear
optimization problem (12). This has been done by using the
Yalmip toolbox for Matlab together with the MOSEK solver.

The anticipative FIR filter TF(q−1) is obtained as

TF(q−1) = 0.2308q−31 + ...+202.6q−1

+227.6+246.8q+ ...+4.484q32 (39)
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In all of the following figures, the subscript n in the la-
bel represents the result obtained with the nominal model



Gn(q−1). The subscripts m and M represent minimum (m)
and maximum (M) responses, respectively. From Fig. 9, it
can be seen that the weighting constraint on the control sig-
nal is satisfied for reference tracking.
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Fig. 10. Evaluation of the feedforward + feedback control schema
(p = 1).

From Fig. 9 it can be seen that the constraint on the con-
trol signal is satisfied. Step response and control input are
shown in Figs. 10(a) and 10(b), respectively. The obtained
results show that the anticipative effect with respect to known
future values of the reference signal is validated. The control
input is lower if compared to the control input obtained us-
ing only the feedback controller. The obtained control input
level is, also, lower than 80 for different model-set which
explains that the fixed constraint is respected. Furthermore,
this approach is robust with respect to the uncertainty of the
system.

The reduction of the number of coefficients is also
tested. A sampling time multiplier p = 8 is used here so
that the number of coefficients of filter TF(q−1

8 ) becomes 8.
A fourth-order low-pass interpolating filter with cut-off fre-
quency equal to 1 Hz is used in order to avoid the important
variations of u f f (see Section 3.3). The expression of this

filter is given by the following equation

H f (q−1)=
10−4(4+16q−1 +25q−2 +16q−3 +4q−4)

1−3.18q−1 +3.86q−2−2.11q−3 +0.44q−4

The anticipative filter TF(q−1
8 ) is obtained as

TF(q−1
8 ) = 103.7q−3

8 +140.7q−2
8 +538.5q−1

8 +615

+1556q8 +1236q2
8 +479.1q3

8 +236q4
8

Remark that the unit delay operator’s sampling period
for TF(q−1

8 ) is p ·Ts.
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Fig. 11. Sensitivity functions from reference to control input using
the nominal Gn (labelled Huydn) and the two extremum Gm (labelled
Huydm) and GM (labelled HuydM) plant models (p = 8)

The control input sensitivity functions are shown in
Fig. 11. The step response and the control input are given
in Figs. 12(a) and 12(b), respectively.

The obtained results show that the constraint on the con-
trol signal is satisfied. Also, the output tracks well the ref-
erence and the control effort anticipates the reference varia-
tion. This control effort is, also, lower than 80 for different
model-set. Furthermore, the robustness with respect to the
uncertainty of the system the robustness is achieved.

5 Experimental test bench
In this section, we apply the proposed anticipative feed-

forward design methods on an experimental water tank level
control test bench. This experimental test bench is described
in Subsection 5.1. The obtained experimental results for
the anticipative feedforward–feedback controllers using a
CRONE feedback controller presented in [25] are discussed
in Subsection 5.2.
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Fig. 12. Evaluation of the feedforward + feedback control schema
(p = 8).

5.1 Description of the water tank test bench
The water level control part of a Festo didactic test

bench has been used for the experimental validation. A
schematic representation is given in Fig. 13. Sensor S101
provides the measure of the output to be controller. Pump
P101 is used to adjust the filling of tank T102. The valve

P101

T102

S101

V102

V110

Fig. 13. Schema of the water level control test bench.

V110 is partially open throughout the experiments presented
in this section.

The dynamic behavior of the water level in the tank is
nonlinear as it depends on the water level. It is also uncer-
tain as the valve V102 can be used in three positions: wide
open, partially open and closed. For controller design, an
identification of the test bench has been performed. A total
of 18 first order continuous-time linear models have been ob-
tained: 6 operating points for each one of the 3 positions of
the V102 valve. Each operating point corresponds to a cer-
tain level of water in tank T102, going from 3 to 9 litres. The
static gain and the time constant for the various first order
plant models vary in the intervals: k ∈ (0.118,1.7) (L/V) and
τ ∈ (19.61,205.8) (sec).

An average nominal model is defined:

Gn(s) =
0.332

1+52.3169s
. (40)

5.2 Experimental results
For this example, a third generation CRONE controller

has been designed in [25] using the CRONE Toolbox [23].
Moreover, an anti-windup mechanism is added to the con-
troller in order to deal with the problem of actuator saturation
that persists. This anti-windup mechanism is based on an in-
ner loop that feedbacks the integral part of the controller [26].

An anticipative feedforward filter with 80 parameters
has been computed. The anticipation introduced corresponds
to a duration of 40 sec (order 40, sampling time Ts = 1 sec,
m = 39 and a = 40). In all of the following figures, the
subscript n represents the result obtained with the nominal
model Gn. The subscripts m and M denote the results for
two other models from model set.

The discrete-time nominal model is obtained from (40)
(z-transform and ZOH):

Gn(q−1) =
0.006286q−1

1−0.9811q−1 . (41)

The polynomials Ghand G−1
l are given by

Gh(q−1) = 0.006286q−1 (42)

G−1
l (q−1) = 1−0.9811q−1 (43)

The anticipative FIR filters TF(q−1) is obtained by solving
the linear optimization problem (12)

TF(q−1) = 0.457q−39 + ...+3.342+ ...+0.4716q40 (44)

As mentioned in Section 3.1, F0(q−1) = G−1
l (q−1). A

constraint of 6 dB defining W−1
uyd

has been imposed to the
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control input sensitivity function above 0.1 rad/s. From Fig.
14 it can be seen that this constraint is globally satisfied for
the three particular models of the plant.

First the V102 valve is considered wide open. Experi-
mental results are shown in Fig.15. Two step changes in the
reference signal are tested. The first one is from 2 to 2.5 litres
and the second from 2.5 to 3 litres. Good tracking results can
be observed even in the presence of control input saturation
(see Fig. 15): anticipative and robust control of the volume.
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Fig. 15. Experimental results for the V102 manual valve wide open:
control signal (upper plot), reference and output signals (lower plot).

In a second experiment, the V102 valve is considered
partially open (Fig. 16). Thus it is possible to track greater
water volume reference signals. As such, in this experiment
the reference varies from 2 to 4.5 litres by steps of 0.5 litres.
As can be observed in Fig. 16, the output tracks the reference
signal efficiently.

Finally, the V102 manual valve is completely closed.
This allows to fill the water tank up to 8 litres. As before,
step changes of 0.5 litres tests have been done; however, only
two of the step variations from 6 to 6.5 litres and from 6.5 to
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Fig. 16. Experimental results for the V102 manual valve partially
open: control signal (upper plot), reference and output signals (lower
plot).

7 litres are shown in Fig. 17.
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Fig. 17. Experimental results for the V102 manual valve completely
closed: control signal (upper plot), reference and output signals
(lower plot).

These experimental results show the robustness capabil-
ities of the proposed approach. Despite significant changes
in the plant frequency response for the various operation
points and apertures of the V102 valve, and also the satu-
ration of the control signal, the output of the system is effi-
ciently tracking the desired reference trajectory.

Lastly, the anticipative effect of the feedforward filter is
also noticeable in all experimental results. As expected, a
40 sec anticipation in introduced.

6 Conclusion
In this paper, a controller design method for robust

tracking of future reference signals in the context of pre-
view systems has been presented. The proposed solution



is based on a feedback-feedforward two degrees of freedom
controller. The feedforward part uses an anticipative filter
which is design in the frequency domain using a mix of H2
performance and H∞ constraints to ensure tracking of future
references. Furthermore, robustness with respect with uncer-
tain parameters is considered in the design of the proposed
controller. Then, the reduction of the number of parameters
of the anticipative filter by using a slower sampling period
for this anticipative FIR filter is treated. This new approach
is validated on a simulated example and on an experimental
water tank level control test bench. The obtained results val-
idate the robustness of the proposed approach with respect to
plant uncertainties.

In future works, this new approach will be extended
to the case of rejection of future known disturbances and
multiple-input multiple-output preview systems.
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