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Abstract

The ability to detect important nodes in temporal networks has been investi-
gated lately. This has been a challenge on both the theoretical aspects as well as
computational ones. In this study we propose and evaluate different strategies to
detect nodes that have high temporal closeness.
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1 Introduction and definitions
Evaluating the importance of nodes in complex networks has been an interesting question
for a long time. Several measures of importance have been introduced, such as degree,
closeness or betweenness centrality. As complex networks have grown in size, approxima-
tion methods have been introduced. One of the first method to approximate centrality
was introduced in [6]. They consider k source nodes selected randomly, from which they
compute the shortest-paths with all other nodes of the network. Since then, several meth-
ods have been proposed to help selecting the source nodes [4] or the target nodes [8]
in order to reduce the computation required to estimate the closeness and betweenness
centrality Those studies all consider a single and static network. However, most of real
application involve networks whose structure evolves with time. This led the community
to propose adaptation of centrality metrics to assess the importance of nodes through
time [7, 11]. This temporal dimension makes the computation more demanding, making
methods for approximating centrality metrics even more essential. In this study, we study
how structural properties of dynamic networks can be exploited to detect nodes that have
a high temporal closeness centrality [7].
More precisely, let G = (V,E) be a dynamic network composed of a set V of nodes
and a set E of temporal links of the form (u, v, t) where u, v ∈ V and t is a times-
tamp. A temporal path from u to v starting at time ts is given by a sequence of links
(u, v0, t0), (v0, v1, t1), . . . , (vk−1, v, tk) such that t0 > ts and, for all i, i = 0..k−1, ti < ti+1.1



Such a path is a shortest path if it has the least duration (tk − ts) among all paths from
u to v starting at time ts. The (temporal) distance from u to v at time ts is then the
duration of such a shortest path (denoted dts(u, v))1. Following the classical definition of
the closeness of a node in a static network, the temporal closeness of a node u at time t
is defined by:

Ct(u) =
∑
v 6=u

1
dt(u, v)

It measures the importance of node u at time t in the dynamic network. In order to assess
what nodes are important at time t, one can rank the nodes according to their temporal
closeness at time t and consider for instance the top 25% rankings. This enables in turn
to compute for each node u its total duration spent in the top 25% rankings (denoted by
Durtop(u)). It measures the global importance of node u in G. The purpose of the present
study is to propose strategies to detect which nodes are globally important without relying
on the exact computation of the temporal closeness of all nodes at all time instant.

2 Strategies and results

In order to detect globally important nodes, we propose to first compute global properties
of the nodes that can easily be extracted either from the aggregated graph GA = (V,EA)
(with EA = {(u, v)|∃t, (u, v, t) ∈ E}) or from an analysis of the temporal activity. For
every node u, we compute its closeness centrality CC(u), its degree centrality DC(u) and
its number of links NL(u) – all computed on GA – as well as its duration of activity
DU(u)2 and its average inter-contact duration time LD(u)3. Then we propose:
Parameter based strategy (P1/P2): we consider the rankings given by mixing the
importance measured by P1 and P2 defined by: R(u) = α × rank(P1(u)) + (1 − α) ×
rank(P2(u)) with α ∈ [0 : 1]4 and where rank(P ) is the rank provided by property P .
Parameterless strategy (PS): we only take into account the number of links and the
duration of activity: R(u) = rank(NL(u)×DU(u)).
In order to assess the relevance of each strategy (and for any α), we compute the number
of nodes correctly detected as important5 in the top k nodes (for k ∈ [1..n]) and denote
this vector as the hit rate vector. The hit rate vector of a perfect strategy would then be
equal to [1, 2, .., n]. From these vectors we can compute the distance between any strategy
and the perfect strategy and normalize it by the worse case strategy. Formally, we define
the score of a strategy by: score(S) = 1− distance(perfect_strategy,S)

distance(perfect_strategy,worse_case)
Figure 1 shows the scores for all the strategies (with different values for α) when applied
on nine datasets whose characteristics are provided in Table 1. We observe that in most
cases NL/DU ,DU/LD and PS score higher than other combinations as well as any pure
static centralities. They are much closer to a perfect strategy or ground truth than any

1dts (u, v) = ∞ if there is no path between u and v.
2the difference between that last and the first activity.
3the average time between two consecutive links involving u.
4note that α = 1 implies that only P1 is considered.
5we consider the exact computation of the temporal closeness as the ground truth.



Datasets Type #Nodes #Edges Duration Ref
Enron Email 151 47 088 3 years [10]
Radoslaw Email 168 82 876 9 months [9]
DNC Email 1891 39 264 2.6 years [1]
HashTags Social Network 3 048 100 429 22 days -
Facebook Social Network 8 977 66 153 1 year [12]
Article Tags Social Network 2902 571 877 10 years -
Reality Mining Movement 96 1 M 9 month [5]
Taxi Rome Movement 158 241 736 1 day [3]
Primary Movement 242 125 773 1.5 days [2]

TAB. 1: Dataset, Type, Number of nodes, Number of links, Duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Enron

S
c
o

re

CL/NL

CC/DU

CC/LD

DC/NL

CC/DU

DC/LD

NL/DU

NL/LD

DU/LD

PS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Radoslaw
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

DNC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

HashTags

S
c
o

re

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Facebook
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Articles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reality Mining

S
c
o

re

alpha 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Taxi

alpha 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Primary

alpha 

FIG. 1: Score for each strategy on the nine datasets

other strategies. In addition, we can observe that datasets of same nature lead to similar
α value for the best strategies.

3 Conclusions
In this study we proposed different strategies that rely on global characteristics of nodes
to detect nodes with high temporal closeness centrality. In most cases, three strategies
present the best results. They all take into account temporal properties of the nodes.



This work is a first step to adapt recent technics [6, 4, 8] to approximate the importance
of nodes in dynamics networks.
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