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The ability to detect important nodes in temporal networks has been investigated lately. This has been a challenge on both the theoretical aspects as well as computational ones. In this study we propose and evaluate different strategies to detect nodes that have high temporal closeness.

Introduction and definitions

Evaluating the importance of nodes in complex networks has been an interesting question for a long time. Several measures of importance have been introduced, such as degree, closeness or betweenness centrality. As complex networks have grown in size, approximation methods have been introduced. One of the first method to approximate centrality was introduced in [START_REF] Eppstein | Fast approximation of centrality[END_REF]. They consider k source nodes selected randomly, from which they compute the shortest-paths with all other nodes of the network. Since then, several methods have been proposed to help selecting the source nodes [START_REF] Brandes | Centrality estimation in large networks[END_REF] or the target nodes [START_REF] Maiya | Online sampling of high centrality individuals in social networks[END_REF] in order to reduce the computation required to estimate the closeness and betweenness centrality Those studies all consider a single and static network. However, most of real application involve networks whose structure evolves with time. This led the community to propose adaptation of centrality metrics to assess the importance of nodes through time [START_REF] Magnien | Time evolution of the importance of nodes in dynamic networks[END_REF][START_REF] Takaguchi | Coverage centralities for temporal networks[END_REF]. This temporal dimension makes the computation more demanding, making methods for approximating centrality metrics even more essential. In this study, we study how structural properties of dynamic networks can be exploited to detect nodes that have a high temporal closeness centrality [START_REF] Magnien | Time evolution of the importance of nodes in dynamic networks[END_REF]. More precisely, let G = (V, E) be a dynamic network composed of a set V of nodes and a set E of temporal links of the form (u, v, t) where u, v ∈ V and t is a timestamp. A temporal path from u to v starting at time t s is given by a sequence of links (u, v 0 , t 0 ), (v 0 , v 1 , t 1 ), . . . , (v k-1 , v, t k ) such that t 0 > t s and, for all i, i = 0..k -1, t i < t i+1 . 1

Such a path is a shortest path if it has the least duration (t k -t s ) among all paths from u to v starting at time t s . The (temporal) distance from u to v at time t s is then the duration of such a shortest path (denoted d ts (u, v)) 1 . Following the classical definition of the closeness of a node in a static network, the temporal closeness of a node u at time t is defined by:

C t (u) = v =u 1 d t (u, v)
It measures the importance of node u at time t in the dynamic network. In order to assess what nodes are important at time t, one can rank the nodes according to their temporal closeness at time t and consider for instance the top 25% rankings. This enables in turn to compute for each node u its total duration spent in the top 25% rankings (denoted by Dur top (u)). It measures the global importance of node u in G. The purpose of the present study is to propose strategies to detect which nodes are globally important without relying on the exact computation of the temporal closeness of all nodes at all time instant.

Strategies and results

In order to detect globally important nodes, we propose to first compute global properties of the nodes that can easily be extracted either from the aggregated graph

G A = (V, E A ) (with E A = {(u, v)|∃t, (u, v, t) ∈ E})
or from an analysis of the temporal activity. For every node u, we compute its closeness centrality CC(u), its degree centrality DC(u) and its number of links N L(u) -all computed on G A -as well as its duration of activity DU (u)2 and its average inter-contact duration time LD(u) 3 . Then we propose: Parameter based strategy (P 1 /P 2 ): we consider the rankings given by mixing the importance measured by P 1 and P 2 defined by: R(u) = α × rank(P 1 (u)) + (1 -α) × rank(P 2 (u)) with α ∈ [0 : 1]4 and where rank(P ) is the rank provided by property P . Parameterless strategy (P S): we only take into account the number of links and the duration of activity: R(u) = rank(N L(u) × DU (u)). In order to assess the relevance of each strategy (and for any α), we compute the number of nodes correctly detected as important5 in the top k nodes (for k ∈ [1..n]) and denote this vector as the hit rate vector. The hit rate vector of a perfect strategy would then be equal to [1, 2, .., n]. From these vectors we can compute the distance between any strategy and the perfect strategy and normalize it by the worse case strategy. Formally, we define the score of a strategy by: score(S) = 1 -

distance(perf ect_strategy,S) distance(perf ect_strategy,worse_case)

Figure 1 shows the scores for all the strategies (with different values for α) when applied on nine datasets whose characteristics are provided in Table 1. We observe that in most cases N L/DU ,DU/LD and P S score higher than other combinations as well as any pure static centralities. They are much closer to a perfect strategy or ground truth than any 

Conclusions

In this study we proposed different strategies that rely on global characteristics of nodes to detect nodes with high temporal closeness centrality. In most cases, three strategies present the best results. They all take into account temporal properties of the nodes.

This work is a first step to adapt recent technics [START_REF] Eppstein | Fast approximation of centrality[END_REF][START_REF] Brandes | Centrality estimation in large networks[END_REF][START_REF] Maiya | Online sampling of high centrality individuals in social networks[END_REF] to approximate the importance of nodes in dynamics networks.

  Score for each strategy on the nine datasets other strategies. In addition, we can observe that datasets of same nature lead to similar α value for the best strategies.

	Datasets				Type						#Nodes	#Edges		Duration	Ref
	Enron					Email					151		47 088		3 years	[10]
	Radoslaw				Email					168		82 876		9 months	[9]
	DNC					Email					1891		39 264		2.6 years	[1]
	HashTags				Social Network		3 048		100 429		22 days	-
	Facebook				Social Network		8 977		66 153		1 year		[12]
	Article Tags			Social Network		2902		571 877		10 years	-
	Reality Mining		Movement			96			1 M			9 month	[5]
	Taxi Rome			Movement			158		241 736		1 day		[3]
	Primary				Movement			242		125 773		1.5 days	[2]
				TAB. 1: Dataset, Type, Number of nodes, Number of links, Duration
		1								1									1					
		0.8								0.8									0.8					
		0.6								0.6									0.6					
	Score																							
		0.4								0.4									0.4					
			CL/NL		DC/LD																			
		0.2	CC/DU		NL/DU					0.2									0.2					
			CC/LD		NL/LD																			
		0	0 CC/DU DC/NL	0.2	0.4 DU/LD PS		0.6	0.8 Enron	1	0	0	0.2	0.4		0.6	0.8 Radoslaw	1	0	0	0.2	0.4		0.6	0.8	DNC	1
		1								1									1					
		0.8								0.8									0.8					
		0.6								0.6									0.6					
	Score																							
		0.4								0.4									0.4					
		0.2								0.2									0.2					
		0	0	0.2	0.4		0.6	0.8 HashTags	1	0	0	0.2	0.4		0.6	0.8 Facebook	1	0	0	0.2	0.4		0.6	0.8 Articles	1
		1								1									1					
		0.8								0.8									0.8					
	Score	0.6								0.6									0.6					
		0.4								0.4									0.4					
		0.2								0.2									0.2					
		0	0	0.2	0.4	alpha	0.6 Reality Mining 0.8	1	0	0	0.2	0.4	alpha	0.6	0.8	Taxi	1	0	0	0.2	0.4	alpha	0.6	Primary 0.8	1
						FIG. 1:																

dt s (u, v) = ∞ if there is no path between u and v.

the difference between that last and the first activity.

the average time between two consecutive links involving u.

note that α = 1 implies that only P1 is considered.

we consider the exact computation of the temporal closeness as the ground truth.
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