
HAL Id: hal-01915206
https://hal.science/hal-01915206

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traffic State Estimation Based on Eulerian and
Lagrangian observations in a Mesoscopic Modeling

Framework
Aurélien Duret, Yufei Yuan

To cite this version:
Aurélien Duret, Yufei Yuan. Traffic State Estimation Based on Eulerian and Lagrangian observations
in a Mesoscopic Modeling Framework. Transportation Research Part B: Methodological, 2017, 101,
pp51-71. �hal-01915206�

https://hal.science/hal-01915206
https://hal.archives-ouvertes.fr


Traffic State Estimation Based on Eulerian and

Lagrangian observations in a Mesoscopic Modeling

Framework
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Abstract

The paper proposes a model-based framework for estimating traffic states
from Eulerian (loop) and/or Lagrangian (probe) data. Lagrangian-Space for-
mulation of the LWR model adopted as the underlying traffic model provides
suitable properties for receiving both Eulerian and Lagrangian external infor-
mation. Three independent methods are proposed to address Eulerian data,
Lagrangian data and the combination of both, respectively. These methods
are defined in a consistent framework so as to be implemented simultaneously.
The proposed framework has been verified on the synthetic data derived from
the same underlying traffic flow model. Strength and weakness of both data
sources are discussed. Next, the proposed framework has been applied to a
freeway corridor. The validity has been tested using the data from a micro-
scopic simulator, and the performance is satisfactory even for low rate of
probe vehicles around 5%.
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1. Introduction1

1.1. State of the art2

Traffic state estimation (TSE) is crucial in real-time dynamic traffic ma-3

nagement and information applications. The essence of TSE is to reproduce4

traffic conditions based on available observation data. One class of available5

estimation methods does not make use of traffic flow dynamics, but relies6

on basic statistics and interpolation. These are referred to as data-driven7

methods. Another class of estimation methods relies on dynamic traffic flow8

models. These are referred to as model-based methods. The focus of this ar-9

ticle is on the latter because it potentially provides better results than the10

former class in non-recurrent situations (work zones, accidents, social events,11

etc.), regarding the monitoring-forecasting capabilities.12

Model-based TSE relies on two components : a model-based component13

and a data assimilation algorithm. The model-based component consists of14

two parts : (i) a dynamic traffic flow model to predict the evolution of the15

state variables ; and (ii) a set of observation equations relating sensor ob-16

servations to the system state. Thereafter, a data-assimilation technique is17

adopted to combine the model predictions with the sensor observations. For18

example, the Kalman filter (KF) [20, 3, 14] and it advanced relatives, such as19

Extended KF [29], Unscented KF [22], Ensemble KF [30] have been widely20

applied in the field of traffic state estimation.21

The same traffic flow model can be formulated in three two-dimensional22

coordinates regarding space x, time t and vehicle number n. Laval and Le-23

clercq [17] have presented three equivalent variational formulations of the24

first-order traffic flow models, namely N(x, t) model, X(t, n) model, T (n, x)25

model respectively, under the theory of Hamilton-Jacobi partial differential26

equations. Under such defined coordinate systems, sensor observations from27

road networks can be defined into two categories : (i) Eulerian sensing data28

- observations (e.g., aggregated speeds, flows) from spatially-fixed sensors29

(such as inductive loops, video sensors, and radar sensors) over a fixed re-30

port frequency, this type is dominating the information sources in the field31

of transportation research for decades ; and (ii) Lagrangian sensing data -32

information from probe samples at a fixed time interval (such as position33

and speed information of individual vehicles [14], and/or probe spacing and34

position information [25]), this class is becoming an increasingly popular35

source. In literature, most of TSE applications are based on the traditional36

space-time (Eulerian) formulation. Aggregated traffic quantities (e.g., flows,37
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densities or speeds [20, 3, 14, 29, 30]) are usually considered as system states,38

but no individual vehicle tracking is involved. The popularity of this formu-39

lation is due to the fact that incorporating Eulerian data is straightforward40

and intuitive. Recent studies have shown that a first-order (LWR) traffic flow41

model [19, 24] can be formulated and solved more efficiently and accurately42

in vehicle number-time (Lagrangian-time) coordinates [18]. And its related43

Lagrangian formulation of TSE enables more accurate and efficient applica-44

tion of data assimilation methods, due to the solution to the mode-switching45

problem (traffic information travels in one direction), less non-linearity of46

the system model, and the nature set of observation equations to deal with47

Lagrangian data [31, 32]. However, the computation cost depends on the48

discretized platoon size (set to 1 vehicle classically) and time grid (often set49

around 1 second), which might be time consuming. The vehicle number -50

space formulation inherits both the numerical benefits and modeling flexibi-51

lity of the other two formulations.52

Many previous studies have investigated the data assimilation problems53

on freeway networks with both Eulerian and Lagrangian observations under54

various modeling paradigms. Early studies in [3, 20] have applied the conser-55

vation law equations of traffic flow in Eulerian coordinates (LWR type [19, 24]56

and Payne’s type [23], respectively) as the underlying traffic systems, to as-57

similate both simulated fixed-detector data and probe-vehicle data. Falling58

in this modeling category, the applications in [30, 14] have also performed59

data assimilation with isolated Eulerian and Lagrangian data. Work et al.60

[30] use a speed-based conservation law equation, while Herrera and Bayen61

[14] use an extended LWR model in the Eulerian formulation. Alternatively,62

the variational (HJ-PDE) formulation can be used as an equivalence to des-63

cribe the same underlying traffic systems [2, 17]. This modeling approach is64

considered to be much simpler to compute and numerically more accurate65

under same conditions, compared with the conservation law approach. Ho-66

wever, only a few studies have applied such formulations for state estimation67

purposes. And the existing applications mainly adopt the aforementioned68

N(x, t) model, where it considers the evolution of cumulated vehicle counts.69

For example, Claudel and Bayen [5] have applied the Hamilton-Jacobi for-70

mulation and generalized Lax-Hopf formula [2] for data assimilation and re-71

conciliation utilizing loop and probe data ; Newell’s three-detector model [21]72

has also been extented for state estimation using heterogeneous data sources73

[4, 9] : loop detector data, Bluetooth travel time data and probe GPS data,74

respectively.75
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To the best of our knowledge, none of previous research has applied the76

HJ-PDE formulation using the X(t, n) model or the T (n, x) model for traf-77

fic data assimilation. As discussed, in comparison to the X(t, n) model, the78

simulation efficiency of the T (n, x) model is independent on the discreti-79

zed platoon size (set to 1 vehicle classically) and the spatio-temporal grid.80

Meanwhile, observation data are located along the vehicle number - space81

grids. Hence it is more advanced and convenient for data assimilation. This82

article presents a complete TSE framework for assimilating both Eulerian83

and Lagrangian data under a vehicle number - space (Lagrangian-space :=84

L-S) formulation (namely, the T (n, x) model). It inherits the classic modeling85

approach that has been widely applied for the data assimilation problem in86

the field of traffic management as well as meteorology, oceanography, image87

processing, etc. [15, 16, 27]. This modeling paradigm consists of system equa-88

tions that capture the evolution of the state vector over time, and observation89

equations that capture the mapping of the state vector on the observations.90

1.2. Objectives and contributions91

This paper presents a generic data assimilation framework based on a92

mesoscopic-LWR model formulated in Lagrangian-space coordinates, using93

both Lagrangian and Eulerian observations. The term mesoscopic is in res-94

ponse to the two other counterparts, since the Lagrangian-time coordinates95

can apply in a microscopic simulation framework and the Eulerian coordi-96

nates can accommodate in a macroscopic one. In this work, the system model97

is the Lagrangian-space formulation of the LWR model. It individually repre-98

sents vehicles but only tracks their states at cell boundaries. We will develop99

algorithms and observation models to incorporate data from both Eulerian100

and Lagrangian sensors, as well as considering the observation noise in both101

data sources. And we do not apply specific data assimilation techniques (e.g.,102

KF-based approaches) ; instead we try to demonstrate the sequential data as-103

similation concepts via reasonable assumptions. The algorithms on how to104

estimate network traffic states under the proposed model-based framework105

from the two data sources will be the main contribution of this work.106

1.3. Contents of the paper107

This paper is organized as follows. Section 2 presents the underlying traf-108

fic dynamics, including its formulation, solutions and properties. Section 3109

describes the methodology of the proposed TSE framework, including how to110

assimilate Eulerian data, Lagrangian data, and the combination of the two111
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sources, respectively. Sections 4 and 5 illustrate the model validation and an112

application to a freeway corridor. Discussion and conclusions are drawn in113

Sections 6 and 7.114

2. LS-LWR model115

This section defines the underlying process model in the state estimation116

framework, where the model formulation, numerical solution and its proper-117

ties are discussed.118

2.1. Conservation law and variational theory119

This section first presents a mesoscopic formulation of the LWR model as120

the process model in the estimation framework. The LWR model is formula-121

ted in vehicle platoon and space (n, x) coordinates. The current mesoscopic122

formulation combines a vehicular description with macroscopic behavioral123

rules. It relaxes the temporal coordinate, and this entitles a transformation124

of a temporal progressing approach (e.g., in Eulerian or Lagrangian-time si-125

mulation framework) to an event-progressing approach (trigger event can be126

the change of time headway or pace, and/or a correction procedure based on127

an observation from fixed loops or probe vehicles).128

The formulation follows the principle of the Hamilton-Jacobi (HJ) theory,129

to find an expression of the LWR model in Lagrangian-space coordinates.130

This model is also referred to as the T -model.131

The LWR model can be described by a hyperbolic equation under the132

conservation law :133

∂xh− ∂N(1/V (h)) = 0 (1)

Here, h denotes the time headway. The inverse speed 1/v (or called pace)134

can be derived from the fundamental diagram 1/V (h).135

Previous authors have proposed to apply variational theory in Eulerian136

coordinates (x, t) [8] and Lagrangian coordinates (n, t) [18]. Here, we trans-137

pose the demonstration in Lagrangian-space coordinates (n, x), following the138

same rationale in [18]. The problem can be expressed as the Hamilton-Jacobi139

derived from the fundamental diagram :140

∂xT =
1

V (∂NT )
(2)

Here, the function 1/V represents the flux function of the problem.141
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Figure 1: Numerical solutions in Lagrangian-space coordinates

2.2. Numerical solutions in Lagrangian-space coordinates142

Here, a Godunov scheme [13] is applied to solve the conservation law143

equation (hyperbolic equation) above with an upwind method. This would144

preserve the numerical benefit of Lagrangian traffic flow models. Figure 1145

illustrates the mesoscopic numerical grid (see grey area) for the Godunov146

scheme. On the mesoscopic grid, the time headway is determined by :147

hx+∆x
n = hx

n +
∆x

∆n
.(

1

V (hx
n)
− 1

V (hx
n−1)

) (3)

The CFL condition that guarantees the convergence of the Godunov scheme148

[6] is :149

∆n ≥ maxh

∣∣∣∣∂h(
1

V
)

∣∣∣∣∆x (4)

Alternatively, the problem can also be expressed in terms of T (n, x) consi-150

dering the ’passage time’ flux that crosses the boundary of the cell n, regarded151

as a variational formulation of the T -model :152

T (n, x)− T (n, 0)

∆x
=

1

V (T (n,x)−T (0,x)
∆n

)
(5)

In this expression, V depends on the fundamental diagram. Here, we consider153

a triangular fundamental with three parameters : the free-flow speed vm,154
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Figure 2: Fundamental diagrams in two coordinate systems

the maximum wave speed w and the jam density kx. Figure 2 represents155

the resulting fundamental diagram in Eulerian coordinates (left side) and in156

Lagrangian-space coordinates (right side). It can be expressed by :157

1

V (h)
= max(

1

vm
,−kx(

1

wkx
− h)) (6)

The numerical solution to the problem is simplified as [17] :158

T (n, x) = max(T (n, 0) +
x

vm
, T (0, x +

n

kx
) +

n

w.kx
) (7)

Finally, the origin n = 0, x = 0 could be shifted to n−∆n, x−∆x and we159

find :160

T (n, x) = max(T d, T s), (8)
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where T d = T (n, x−∆x)+ ∆x
vm

and T s = T (n−∆n, x− ∆n
kx

)+ ∆n
w.kx

represents161

the demand and the supply term, respectively. The demand term defines162

the arrival time of a vehicle from upstream in non-constrained (free-flowing)163

conditions. The resulting passage time of a vehicle is at least equal to its ar-164

rival time but could be delayed due to the downstream conditions. Thus, the165

supply time provides such information in constrained (congested) conditions.166

This numerical solution indicates traffic flow is divided into vehicle pla-167

toons of certain size ∆n, and road stretch is discretized into spatial cells of168

certain length ∆x. Note that, the cell length ∆x in the simulation is not169

necessarily to be equal. The state in this formulation is the passage time170

T (n, x) of vehicle platoons at cell boundaries. This state is always determi-171

ned by the maximum of two uncorrelated terms : the demand (arrival) time172

and the supply time. For an elaborate description we refer to [17].173

2.3. Properties174

The current mesoscopic formulation is based on the notions from the175

variational theory. It can incorporate the numerical benefits and modeling176

flexibility of both Eulerian and Lagrangian-time models. Simultaneously, this177

formulation allows state distinction on both cell class and vehicle class, com-178

bining a vehicular description with macroscopic behavioral rules. It indivi-179

dually represents vehicles (platoons) but only tracks their passage times at180

cell boundaries. Therefore, travel times can be easily derived from the model,181

which is more convenient compared to other (e.g., Eulerian or Lagrangian)182

formulations of state estimation. This discrete model evolves state by state,183

with only one expression to consider all traffic conditions. Hence, it does not184

require memory and it is more flexible and time-efficient for data assimilation185

(no complex matrix inversion and multiplication). Moreover, the numerical186

scheme allows for long cells and cell boundaries can be located at network187

discontinuities only (merges, diverges, and lane-drops). In this way, the spa-188

tial discontinuities can address easily. The computation cost depends on the189

number of cell boundaries (x-dimension) in the network and the number of190

vehicles (n-dimension) to propagate during the simulation. Therefore, this191

would improve computational efficiency for large scale applications.192

More importantly, this mesoscopic scheme is particularly convenient for193

data assimilation. In reality, the flow characteristics are mostly observed at194

fixed points (e.g., spatial fixed loop data) or along vehicle trajectories (e.g.,195

vehicle-number fixed probe data). As discussed in literature that the Eulerian196

formulation is suitable for incorporating loop data and the Lagrangian-time197
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formulation is suitable for probe data assimilation, the Lagrangian-space for-198

mulation is considered to be well-compatible for assimilating both types of199

observations. Because these observations are located on cell boundaries of200

the mesoscopic grid, which makes any traffic state estimation method conve-201

nient with this approach/formulation. This formulation can be easily coupled202

with any data assimilation techniques to perform state estimation. Due to203

the nature of the mesoscopic system model, the TSE might be not restricted204

to discretized mesoscopic x− n grids. If we know any two boundaries in the205

network and an observation at a certain location or of a certain vehicle, we206

can generalize TSE for this specific assimilation problem.207

3. Data assimilation methodology208

Traffic flow prediction is an initial/boundary value problem, where a traf-209

fic model forecasts the evolution of traffic states on the network given ini-210

tial/boundary states. Such data assimilation model-based approaches have211

been developed and widely applied in other fields, notably for atmospheric212

modeling and forecast [11, 27]. Because predictions become more accurate213

when uncertainties of initial values are reduced, the data assimilation pro-214

blem first combines observed data and the ”first guess” provided by the model215

to estimate the mostly possible initial states at observation locations, also216

called analysis states. When the model is updated accordingly, it becomes217

ready to forecast the evolution of the system. [15] presents the typical data218

assimilation framework for atmospheric modeling (see chapter 5), where a219

sequential loop is run every time new data are observed. The composition of220

the loop returns an overarching theory of sequential data assimilation with221

four fundamental steps :222

— Step 1 : the transformation operation makes observed data and model223

predictions comparable224

— Step 2 : the global analysis provides the analysis states225

— Step 3 : the model is updated accordingly226

— Step 4 : the model forecasts the system evolution, by propagating227

information from data rich to data poor areas.228

In the paper, methods for estimating traffic states based on loop and229

probe data are presented in sections 3.1 and 3.2, respectively. Then a method230

that combines both data sources is presented in section 3.3.231

Three definitions with respect to different traffic states are given in the232

following :233
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— an observation (o-) state is a traffic state measured by a sensor234

— a background (b-) state is a state forecasted by a traffic flow model235

— an analysis (a-) state is the result of an analysis procedure (or algo-236

rithm) that provides the most likely state regarding o- and b-states237

3.1. TSE based on loop data238

3.1.1. Reminder on the existing methodology239

A data assimilation method using sole loop data first proposed in [12],240

has been validated on synthetic scenarios and tested on a large-scale network.241

Here the basic concepts are reviewed and the reader is referred to the paper242

for more details.243

It requires the numerical scheme to be set as follows : ∆n to 1 and cells244

boundaries at each loop location. It considers flow and speed time series245

collected by loop sensors at locations {Xloop} with a given frequency ∆T .246

Then it is implemented as a sequential procedure, for which each sequence247

is divided into 4 successive steps (see Figure 3).248

— Step 1 : the o-state and b-state are collected and transformed249

— Step 2 : a Global Analysis is performed to (a-) state250

— Step 3 : the state of the model is updated accordingly, by adjusting251

arrival and supply times at cells boundaries252

— Step4 : the model is run to provide a background state for the next253

sequence254

As mentioned by the authors in [12], the update of the model has to255

be implemented so that the CFL stability condition is respected [6]. The256

solution proposed is a parsimonious adjustment of the demand and/or the257

supply terms at cell boundaries.258

3.1.2. Focus on step 3 : Update of arrival and supply times at cell boundaries259

The a-state proposed by the Global Analysis consists of a regime ra and a260

headway ha, at observation location and over the period P . 8 (23) situations261

can be met (see Table 1) and the model needs to be updated accordingly.262

The update consists of (i) adding, deleting, advancing or delaying vehicles263

at the cell boundaries and (ii) then updating the passing times of vehicles264

accordingly. In this paper, the update is identical to the one presented in [12]265

except that the passing times are managed slightly differently to be better266

suited for combining with the assimilation of probe data (see the next sec-267

tion) while keeping the same performance.268

269
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Figure 3: TSE based on loop data : methodology

Table 1: Summary of the 8 states combinations of a-state and b-state, source [12]

rb = 0 rb = 1
ra = 0 ha > hb

............(1) ha > hb
............(5)

ha ≤ hb
............(2) ha ≤ hb

............(6)

ra = 1 ha > hb
............(7) ha > hb

............(3)

ha ≤ hb
............(8) ha ≤ hb

............(4)

To do so the passing times are not updated directly. The method updates
the demand and the supply terms at cell boundaries over the period P
If the analysis regime is free-flowing (combination 3, 4, and 7 in Table 1) :{

T s(n,X) = −∞
T d(n,X) = T (n− 1, X) + ha

(9)

270

271

If the analysis regime is congested (combination 1, 2 and 6 in Table 1) :{
T s(n,X) = T (n− 1, X) + ha

T d(n,X) = −∞
(10)
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Note that combinations 5 and 8 in Table 1 correspond to errors on both272

the local demand and supply. No update is required and the problem has to273

be addressed at global level (demand, model parameters, etc.).274

3.2. TSE based on probe data275

The data assimilation framework presented above is limited to Eulerian276

(loop) data while nowadays increasing amount of traffic data are collected277

by Lagrangian (probe) sensors. Thus a TSE estimator based on Lagrangian278

observations becomes essential for real applications. Probe sensors collect279

positions of equipped vehicles at a given time frequency. They are usually280

processed for providing aggregated indicators, for instance the mean speed281

per link. However, most of the wealth of probe data is lost during the aggre-282

gating process.283

In this paper, the TSE estimator enables to assimilate positions and times284

without any aggregation process, which allow for using most of the details of285

probe data. The method is divided into 4 steps (see Figure 4).286

— Step 1 : the o-state and the b-state are collected and transformed287

— Step 2 : Global Analysis, which consists of estimating the n-index of288

probe vehicles289

— Step 3 : the model is updated accordingly, which consists of adjusting290

arrival and supply times at cell boundaries of the model291

— Step 4 : the model is run over the next sequence to provide a new292

background293

The two following sections elaborate steps 2 and 3, which are the keys to294

successfully update traffic states.295

3.2.1. Focus on step 2 : Estimating the n-index of probe vehicles296

Let us consider the probe vehicle p that provides a set Sp of observed time-297

positions denoted {top,i, xo
p,i}, i ∈ Sp. Simultaneously the model provides a298

background state T b(n, x) at cell boundaries, from which analogous function299

N b(t, x) can be easily defined (T is a monotonically increasing function)300

upstream (x = xup) and downstream (x = xdown) probe positions. N b(t, xup)301

and N b(t, xdown) can then be considered for estimating local n-index of the302

probe based on variational principles applied for the three-detector problem303

[7, 8, 21] as illustrated in Figure 5.304

nlocal
p,i = min

(
N b

up,u, N
b
down,w + kx.(xdown − xo

p,i)
)

(11)
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Figure 4: TSE based on probe data : methodology

where305 
N b

up,u = N b

(
top,i −

xo
p,i − xup

u
, xup

)
N b

down,w = N b

(
top,i −

xdown − xo
p,i

w
, xdown

)306

Equation 11 provides the n−index estimated locally (for a single time-
position). At this stage, local n−index estimation could be flawed by four
sources of errors : errors on the model parameters, errors on the boundary
conditions, non-FIFO traffic conditions or occurrence of a traffic incident.
Local errors on the estimated n−index may induce global inconsistencies on
the resulting arrival/supply times. To tackle this problem, a global optimiza-
tion is developed and it consists of two steps. The first step aims at building
the variational proximity matrix, which returns the variational cost (in veh.)
between each of the time-space observations from probes (with respect to
the variational principles [8]). Based on that, the second step calculates the
optimal n−index, denoted n∗. The optimal solution minimizes the entropy of
the system [1, 28] while keeping a constant n−index along probe trajectories.
The optimization procedure searches in the range of all possible n−indices,
and this search range is defined by the minimum and maximum values from
the variational principles and the range of local n−index estimation. The
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Figure 5: n-index estimation

entropy is defined according to [26] :

E(n∗
p) =

∑
i

n∗
p,i

nlocal
p,i

.ln(
n∗
p,i

nlocal
p,i

) (12)

The final solution consists of the triplets {n∗
p, x

o
p, t

o
p}, where n∗

p is the307

optimal n−index, and top and xo
p are the observed time and position of the308

probe p.309

3.2.2. Focus on step 3 : Update of arrival and supply times at cell boundaries310

Once a−states are known, probe trajectories are considered as internal311

cell boundary conditions that are transformed into demand or supply condi-312

tions at neighboring cell boundaries. Here, we present the update of the313

arrival and the supply times at a cell boundary over a period P , considering314

that a set of probe vehicles has been analyzed.315

Downstream : update of arrival times. The downstream cell boundary is in-316

fluenced by probe vehicles located in a time window with a length P and317

that moves with a free-flowing wave speed u, see Figure 6.318

Within the influencing area, each probe vehicle provides information on its319

upcoming arrival times. When probe vehicles travel through a cell, successive320

14
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x − space

t − time

P

u

Figure 6: Oblique window for updating the demand term at the downstream cell boundary

time-positions provide feasible arrival times at the downstream cell boundary.321

For each probe vehicle, only the latest triplet {na
p, x

o
p,i, t

o
p,i} is considered for322

updating the arrival time at the cell downstream, as illustrated in Figure 7.323

taa,na
p

= top,i +
xdown − xo

p,i

u
(13)

Upstream : update of supply times. The upstream cell boundary is influenced324

by probe vehicles located in a time window with a length P and that moves325

with a maximum jam speed w, see Figure 8.326

For each probe vehicle, triplets {na
p,i, x

o
p,i, t

o
p,i} are considered as internal327

boundary conditions to revise supply times at the cell boundary upstream.328

Within the influencing area, the updated supply times respect as illustrated329

in Figure 9 :330

tas,na
p+(xo

p,i−xup).kx = top,i +
xo
p,i − xup

w
,∀i ∈ Sp (14)

CFL condition The data assimilation process is sequential with time331

steps based on data time frequency ∆T . The CFL stability condition has to332

be respected during the sequential update of the traffic model. It requires333
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Figure 9: Update of the supply times at the upstream cell boundary

that each cell boundary has to be updated over a time period ∆TU , which334

is bounded as a wave cannot travel through a whole cell during this time335

period. Consequently, if ∆T ≥ ∆TU then the updating process must proceed336

step by step (as described in the previous section) with a maximum time337

step ∆TU .338

3.3. Assimilating both loop and probe data339

Loop and probe data provide information of different nature, it is there-340

fore impossible to fuse the two data sources to perform a one-shot assimilation341

process. Reviewing their respective actions, the two TSE estimators act in a342

complementary manner. On one hand, TSE based on loop data allows for an343

adjustment of the flow by adding - deleting - advancing - delaying vehicles at344

loop sensors locations. From a physical point of view, it acts as a ’flow regu-345

lator’ at cell boundaries. On the other hand, the TSE based on probe data346

adjusts arrival and supply times at cell boundaries considering probe trajec-347

tories as internal cell-boundary conditions. From a physical point of view, it348

acts as a ’travel time regulator’ along cells travelled by probe vehicles.349

To make the best potential use of both data, we propose first to estimate350

trafic states from loop data at loop sensors locations and then to estimate351

traffic states from probe data everywhere else. The main reason for this se-352
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quence is the following : TSE based on loop data improves the flow estimation353

at cell boundaries and therefore enhance the TSE based on probe data along354

cells. It results in a 7 steps methodology illustrated on Figure 10 :355

— Step 1 : collection and transformation of the loop data and the model356

background states357

— Step 2 : Global Analysis, which consists of estimating headway-regime358

pairs (a-states) at each loop location359

— Step 3 : the model is updated accordingly (see section 3.1). At this360

stage, the updated model provides the best possible estimated traffic361

states at cell boundaries. This version of the model is considered as a362

new model background to be combined with probe data363

— Step 4 : collection and transformation of the probe data and the (up-364

dated) model background365

— Step 5 : Global Analysis, which consists of estimation the n-index of366

probes along cells367

— Step 6 : update of the model accordingly, by revising arrival and supply368

times at every cell boundaries, except those already updated during369

the step 3.370

— Step 7 : run the model over the next sequence371

Here again, this sequence has to be implemented respecting CFL stability372

condition mentioned in section 3.2.2.373

4. Model validation374

This section aims to analyze and validate the performance of the TSE375

methodology with loop sensors and probe sensors (separately and jointly).376

4.1. Experimental validation setup377

The ground truth is emulated based on a microscopic LWR model (Ne-378

well’s car-following model [21], equivalent to the LWR model at a macroscopic379

scale). The model has been run on a homogeneous road stretch (L = 2000m,380

single lane) with a demand-supply scenario so that a congestion propagates381

through the network, see vehicle trajectories in Figure 11. A loop sensor lo-382

cated in the middle of the network (x = 1000m) collects flows and speeds383

with an aggregation period of 1-minute. Moreover, 10% of the vehicles are384

considered as probe sensors for which time-position information is reported385

at every 30s.386
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Figure 10: TSE based on loop and probe data : methodology
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Figure 11: Observational model

The traffic flow model is a LS-LWR model. The network is composed387

of 2 cells of 1000m in length, upstream and downstream of the loop sensor388

location (namely the upstream and the downstream cells). The demand-389

supply scenario has also been predefined with an approximative demand and390

a high supply so that traffic conditions are always free-flowing on the network.391

4.2. TSE based on loop observation model392

Figure 12 provides the estimated traffic states considering data from the393

loop sensor. In this figure, traffic states have been rearranged to provide394

travel times over the two cells. The red line provides the reference (ground395

truth) travel times and the blue line returns the reconstructed travel times.396

Upstream cell. Until the time t = 2000s, the traffic conditions are free-397

flowing. Between the time period t = 2200s and t = 2800s, a congestion398

propagates through the upstream cell. The estimated traffic states comply399

with the observed travel times, which validates the ability of the TSE esti-400

mator to adjust the network supply at the loop sensor location.401

Downstream cell. Downstream the loop sensor, the estimated traffic states402

are free-flowing until the end of the simulation, whereas the ground truth403

indicate that a congestion occurs. Indeed, the loop sensor data only indicate404
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Figure 12: Travel time estimation from loop data assimilation
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a reduced congested flow at the cell boundary, however the traffic model is405

unable to propagate such information toward the downstream direction but406

only upstream direction.407

In summary, when a congestion occurs, loop sensors can estimate tra-408

vel times providing that congestion states have passed over the loops. The409

result shows that travel times might be underestimated over the network le-410

vel. And this underestimation will become significant when traffic congestion411

is triggered far downstream the loop sensor. We conclude that for opera-412

tional purposes loop sensors have to be located as close as the triggering413

location of a jam/bottleneck to provide accurate estimation. In addition, the414

complementary information from downstream loop sensors can improve the415

performance of data assimilation.416

4.3. TSE based on probe observation model417

Figure 13 provides the estimated traffic states considering probe data418

only. The performance of TSE based on sole probe data provides similar per-419

formance over the two cells. It is noteworthy that TSE is very responsive420

as the congestion phenomenon occurs, mainly due to the probe data with421

a homogeneous coverage of the network both in time and space. It should422

also be noted that travel times are underestimated in this validation scenario423

due to the experimental setup. The traffic model considers a low demand424

versus high supply scenario. Information from probes allows for an adjust-425

ment of the supply times at the intercell boundary, but it does not rectify426

the underestimated flow demand (from downstream) and thus underestimate427

travel times. Note that the result depends on the experimental setup as travel428

times will become overestimated if the demand from the upstream boundary429

is overestimated.430

We conclude that for operational purposes, the knowledge of the demand431

at any point of the network is decisive and critical when probe data are432

used for estimating traffic states. The estimation can be enhanced with an433

accurate prior estimation of the demand ; or combining probe data with loop434

data, as proposed in section 3.3.435

4.4. TSE based on loop and probe observation model436

Figure 14 provides the estimated traffic states considering both loop and437

probe data. The results show the travel time estimation here outperforms438

and cumulates the benefits mentioned for loop and probe observation model439

considered separately.440
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Figure 13: Travel time estimation from probe data assimilation
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Figure 14: Travel time estimation from loop and probe data assimilation
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Upstream cell. The performance are identical to the those provided by the441

loop observation model. The travel time is properly estimated and fit the442

ground truth travel time.443

Downstream cell. The performance is slightly enhanced compared to the re-444

sults obtained with probe observations only. It confirms that both observa-445

tions are very complementary when assimilated in the framework proposed446

in the paper.447

Table 2 provides three Measurements of Effectiveness (MoEs) that have448

been calculated over the congested period = [30 - 45]min : root mean square449

error (RMSE) , mean absolute percentage error (MAPE) and mean percen-450

tage error (MPE). All the MoEs globally confirm the previous comments.451

Table 2: Scenario with a homogeneous stretch of road
model model + loop model + probe model + (loop and probe)

RMSE (s) 229 58 28 28
MAPE (%) 34 25 12 11
MPE (%) -34 -25 -12 -11

5. Application to a freeway corridor452

The previous section demonstrates the exactness of the estimator when453

applying to a network with FIFO conditions and homogeneous driving be-454

havior. These assumptions are restrictive and not reflective of reality. This455

section aims at evaluating the performance of the estimator considering a456

multi-lane corridor with on- and off-ramps, with a relaxed FIFO assumption457

and distributed driving behavior.458

5.1. Preparation of the observational model459

Ground truth data have been emulated based on a microscopic traffic460

simulator (FOSIM [10]). This simulator is developed at the Delft University of461

Technology, specially designed for the detailed analysis in freeway networks.462

All the parameters in terms of driving behaviors have been calibrated and463

validated based on data from Dutch freeways. A three-lane freeway with464

one on-ramp and one off-ramp is designed, as illustrated in Figure 15 (the465

first 500 m as the warming-up section in Simulation, the last 1000m as the466

cooling-down section).467
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Figure 15: Networks

A demand-supply scenario has been built in such a way that a congestion468

is onset at the on-ramp. The model has been run twice : scenario 1 provides469

traffic with only passenger cars whereas scenario 2 considers a mixed traffic,470

with 90% cars, 10% trucks. The resulting time-space diagrams and travel471

times for the seed 1 are illustrated in Figure 16.472

Based on FOSIM simulation results, Eulerian and Lagrangian observation473

models have been built. First, loop sensors have been located on the main474

road : loop 1 - 100m after the entrance of the network, and loop 2 - 100m475

upstream of on-ramp. Second, 10% equipped probe vehicles return their exact476

positions every 20s.477

5.2. Preparation of the traffic model478

The traffic model is the mesoscopic LWR model applied on a network479

with 7 cells : five cells for the main road (numbered from 1 to 5), one cell 6480

for the off-ramp and one cell 7 for the on-ramp. Cell boundaries 1-2 and 3-4481

are located at loop sensor locations. Boundary conditions (demand-supply)482

are supposed to be known approximatively and parameters of the mesoscopic483

LWR have been set with the following default values : u = 110 km/h, w = 18484

km/h and kx = 150 veh/km/lane. Results obtained from the underlying485
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(a) time-space diagram (b) time-space diagram

(c) travel times (d) travel times

Figure 16: FOSIM observation models, seed 1 : cars only (a and c) and mixed traffic (b
and d)
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traffic model (without data assimilation) indicate that the corridor is free-486

flowing, with travel times stabilized around 3 mins (175s).487

5.3. Results with different observation models488

Three observation models have been tested : ’loop only’, ’probe only’,489

and ’combined loop and probe’. Travel time estimation based on the three490

observation models are illustrated in Figure 17, ground truth (in red) and491

default model travel times (in black) are also displayed.492

During the free-flowing period, travel times are properly estimated re-493

gardless of observation models or traffic composition. However, significant494

differences are observed when a congestion occurs. The results analysis only495

focuses on the period t = [20− 45]min when the congestion is onset.496

497

TSE based on the loop observation model underestimates travel times498

during the congestion period, regardless of traffic composition. This can be499

caused by an underestimation of the upstream demand and/or an overestima-500

tion of the supply. Loop 1 located at the entrance of the network is supposed501

to update the demand according to the ground truth, so the overestimation502

of the supply is the cause : loop 2 is located 100 meters upstream the head503

of the congestion, which cannot detect immediately after its onset.504

505

TSE based on the probe observation model presents a better performance.506

However, it tends to overestimate travel times. It can be caused by a poor507

prior estimation of demand, which skews the n-index estimation of probe508

vehicle and leads to poor estimation of arrival/supply times. It can also be509

caused by poorly calibrated traffic parameters in the traffic model and/or non510

FIFO observations, which is confirmed in Figure 17(b) that shows the overes-511

timation is enhanced for a mixed traffic (ranging from t = [30− 40]min). By512

analyzing FOSIM trajectories, it is observed that during congestion trucks513

are stuck on the right-most lane (over congested) while most of the cars tra-514

vel faster on left-most lanes. The FIFO assumption is not fulfilled and the515

consequence on the performance of TSE can be explained as follows. When516

a probe vehicle (for instance a truck) returns its position, arrival and supply517

times are estimated in the (FIFO) mesoscopic model thereof. We conclude518

that when the characteristics of probe vehicles are distant from the mean519

traffic stream, this induces bias in traffic state estimation which tends to520

overestimate travel times.521
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(a) Cars only, seed 1

(b) Mixed traffic, seed 1

Figure 17: Comparison of estimated travel times
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As expected, TSE combining loop and probe observations outperforms522

the estimations considering loop and probe separately. The increase of travel523

times is detected immediately after the onset of congestion and the estimated524

travel times dynamically correspond to the ground truth.525

526

Tables 3 and 4 provide three MoEs that have been calculated over the527

period t = [20 − 45]min : RMSE, MAPE and MPE. All the MoEs globally528

confirm the previous comments. In both scenarios, the estimation results with529

both data sources possess limited improvement compared to the probe-only530

cases. This can be explained by the fact that the demand input in the probe-531

only case well represents the actual demand so that the contribution from532

the loop data for flow correction is marginal. If the input demand contains533

noise, the improvement by assimilating additional loop data would be larger.534

Table 3: Scenario with cars only - performance of the different observational models (10
replications)

model model + loop model + probe model + (loop and probe)
RMSE (s) 72 57 25 25
MAPE (%) 24 20 9 8
MPE (%) -24 -19 0.65 0.43

Table 4: Scenario with cars and trucks - performance of the different observational models
(10 replications)

model model + loop model + probe model + (loop and probe)
RMSE (s) 234 117 112 109
MAPE (%) 50 27 20 19
MPE (%) -50 -27 8 14

5.4. Sensitivity to the penetration rate of probe vehicles535

We expect that the performance of the data assimilation process can536

be improved when the amount of available data increase (n-, x- and t- fre-537

quency) and data are disaggregated. Here, we investigate the sensitivity of538

the proposed framework regarding the penetration rates of probe vehicles.539

The sensitivity has been tested on the scenario with cars only, with various540

penetration rates range from 0% to 10%. Figure 18 illustrates the sensiti-541

vity of the method regarding the penetration rates of probe vehicles (over542
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Figure 18: Travel time estimation for different probe penetration rates (10 replications)

10 replications). The estimation performance regarding MoEs is depicted in543

Figure 19.544

The performance of the TSE is improved with only one percent of the545

observed probe vehicles. We also observe that the performance becomes mar-546

ginal as the percentage of probe vehicle exceeds 6%. It can be interpreted547

as follow : the gain for data assimilation is marginal and the remaining im-548

provement needs to be found elsewhere, for instance, with the three other549

aspects : First, the model relies on assumptions and limitations (triangu-550

lar fundamental diagram, FIFO traffic stream, etc.). Second, the definition551

of the demand on the network, which determines the traffic volumes that552

highly impacts the performance of the n-index estimation. And last but not553

least, the calibration of the model. We recall that the model has been poorly554

calibrated (default parameters) to emphasize the benefit of data assimilation555

procedure. Substantial gain is expected with a proper calibration procedure556

during the preparation of the model. We conclude that low penetration rates,557

around 5%, are sufficient for a realistic traffic state estimation.558
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Figure 19: MoEs for different probe penetration rates (10 replications)
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6. Discussion559

Based on the previous results, we conclude that Eulerian observations can560

update arrival and supply times, by adjusting the demand (flow) via adding or561

deleting vehicles locally. However, since loop sensors are spatially fixed, they562

only catch supply information as information propagates upstream. Hence,563

travel time estimation might be inconsistent (see section 4.2, the case of the564

downstream cell). It is therefore critical to locate loop sensors at the spots565

of a jam and a bottleneck to provide accurate estimation.566

In contrast, Lagrangian observations spread over the network in space567

and time. Given a reasonable resolution (above 10%), they can update both568

arrival times and supply times without any latency. However, two limitations569

exist in this method. First, the n-index estimation relies on the assumption570

of the FIFO condition, which is unrealistic. This might lead to poor esti-571

mation of travel times when probe information deviates from the average572

traffic conditions (see section 5.3). Second, the demand/flow at cell bounda-573

ries cannot be adjusted. A prior estimation of the demand will improve the574

performance of TSE with probe data (see section 4.2).575

The combination of the two data sources compensates the limitations of576

each other. The experiment results demonstrate that TSE with data combi-577

nation outperforms the estimation with a single source.578

7. Conclusion579

7.1. Main findings580

A TSE estimator based Eulerian observations combined with a mesosco-581

pic LWR model has been proposed and validated in [12]. This paper com-582

plements the methodology with Lagrangian observations. Now both Eulerian583

and Lagrangian observations can be used for TSE in a unique framework.584

Eulerian observations provide comprehensive observations in time and585

vehicle for a discrete set of locations in the network. At those locations,586

model states are successfully revised, which provide good performance when587

observations are located near the head of congestion. The update acts as a588

’flow regulator’ at cell boundaries by adding, deleting, advancing or delaying589

vehicles.590

Lagrangian observations provide a homogeneous coverage of the network591

in time and space for a discrete set of (probe) vehicles. Probe vehicles allow592

for an revision of demand-supply times at neighboring cell boundary of the593

33



network. The update acts as a cell ’travel time regulator’ that yields good594

results under the condition that the demand on the network is known. Note595

that the n-index values of probe vehicles are critical and essential in the596

proposed approach. The calculation of this variable is application-specific597

(under FIFO or non-FIFO condition) regarding estimation performance, and598

it is subjective for further investigation.599

In the TSE framework with data combination as proposed in section600

3.3, Eulerian and Lagrangian observations become highly complementary.601

Eulerian observations successfully update traffic states (especially the flow)602

at loop locations of the network while Lagrangian observations successfully603

update cell travel times along the network. The estimation outperforms the604

scenarios considering loop and probe observations separately.605

The methodology has been verified on the synthetic data derived from the606

same underlying traffic flow model. Meanwhile, the proposed TSE framework607

has been applied to a freeway corridor with a relaxed FIFO condition and608

distributed driving behavior. The validity has been tested using the data609

from a microscopic simulator, and the performance is satisfactory even for610

low rate of probe vehicles around 5%. With increasing estimation accuracy611

and computational efficiency, the proposed TSE framework will be beneficial612

for decision support traffic management.613

7.2. Further research614

The robustness of data assimilation methodology is demonstrated in the615

paper. However, we propose here some avenues to improve the present me-616

thodology. On the model side, assumptions are to be relaxed to enhance the617

model and its ability to reproduce well-documented traffic flow phenomenons618

(non-FIFO condition, multi-class traffic, capacity drop). On the observation619

side, the exponential growth data sources (e.g. bluetooth - mobile - infor-620

mation from connected vehicles) will provide massive additional Lagrangian621

and Eulerian information, which can be assimilated based on the proposed622

framework providing their reliability and the proposition of adequate trans-623

formation operators.624

The data assimilation framework represents a solid base for on-line estima-625

ting the reliability of both, again, traffic model and observed data. On the626

model side, during the assimilation procedure, the discrepancy between the627

background states from the model and the analysis states can be analyzed628

for detecting incident on road networks and adjusting the model (demand,629

parameters) accordingly. On the observed data side, the discrepancy between630
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the observed states and the analysis states can be help for estimating the ob-631

servation reliability or detecting a problem with the data collection system.632

And finally, we should recall that data assimilation has two main objectives :633

to provide a continuous estimation of traffic states at the present time based634

on discrete and aggregate observations ; and to propose the most possible635

short term evolution of traffic states. The present paper is mainly focused on636

the first item. Its capability to provide robust short term forecasts should be637

explored, for instance, by implementing the proposed framework on a real638

large-scale network.639
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