
Some Sharp Circular and Hyperbolic Bounds
of exp(x2) with Applications

Yogesh J. Bagul1, Christophe Chesneau2,
1Department of Mathematics, K. K. M. College Manwath,

Dist : Parbhani(M.S.) - 431505, India.
Email : yjbagul@gmail.com

2LMNO, University of Caen Normandie, France
Email : christophe.chesneau@unicaen.fr

Abstract. This article is devoted to obtain some sharp lower and upper
bounds for exp(x2) in the interval

(
−π

2
, π
2

)
. The bounds are of the type[

a+f(x)
a+1

]α
where f(x) is cosine or hyperbolic cosine. The results are then

used to obtain and refine some known Cusa-Huygens type inequalities. In
particular, new simple proof of Cusa-Huygens type inequalities is presented
as an application. For other interesting applications of the main results,
sharp bounds of the truncated Gaussian sine integral and error function are
established. They can be useful in probability theory.
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1 Introduction

The bounds of exponential function exp(x2) can be useful in many areas of
mathematics where it appears. Therefore it becomes very natural to find its
sharp bounds. Recently Chesneau [1, 2] gave tight lower bounds of exp(x2)
over the real line. For some other sharp bounds see [14, 15], where the bounds
are obtained in (0, 1) using circular and hyperbolic functions. This type of
bounds can in fact be obtained naturally in (0, π/2)(see [3]). Interested
readers are referred to [1, 2, 8, 10, 12] and the references therein. The goal
of this paper is to present more tight bounds for exp(x2) in the interval(
−π

2
, π
2

)
. For the applications, these bounds are then used to refine some

known Cusa-Huygens type inequalities and to exhibit new sharp bounds for
Gaussian type integrals, including the so called error function, opening new
perspectives in many applied areas, including statistics, probability, physics
and engineering.
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1.1 First Result

We state the first main result of this paper as follows:

Theorem 1. For x ∈
(
−π

2
, π
2

)
, we have(

1 + cosx

2

)a
6 exp(−x2) 6

(
1 + cosx

2

)b
(1.1)

and (
2 + cosx

3

)c
6 exp(−x2) 6

(
2 + cosx

3

)d
(1.2)

with the best possible constants a = 4, b = −(π/2)2
ln(1/2)

≈ 3.559707, c = −(π/2)2
ln(2/3)

≈
6.08536, d = 6 and the inequalities hold as equalities at x = 0.

Note: The right inequality in (1.2) has been proved in [17, Theorem 2].
In fact it holds for x ∈ (0,∞). However, it is not sharp for large values of x.
Again our proof will use different method.

Some graphical and numerical illustrations: The inequalities (1.1)
are illustrated in Figures 1 and 2. We see the sharpness of the obtained
bounds. After a graphical investigation, the inequalities (1.2) seem more
sharp; the curves of the functions of the bounds are almost visually con-
founded, even with a reasonable zoom. To illustrate this point, let us in-

vestigate the global L2 error : e(h) =
∫ π

2

−π
2
(exp(−x2)− h(x))2dx, where h(x)

denotes a function in the bounds (1.1) and (1.2). The results are set in Table
1. From this numerical point of view, we then see that the bounds in (1.2)
are sharper to those in (1.1).

Table 1: Global L2 errors e(h) for the functions h(x) in the bounds of (1.1)
and (1.2).

Inequality (1.1) Inequality (1.2)

h(x)
(
1+cosx

2

)a (
1+cosx

2

)b (
2+cosx

3

)c (
2+cosx

3

)d
e(h) ≈ 0.000629229 ≈ 0.001120559 ≈ 2.791112× 10−5 ≈ 4.605539× 10−6
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Figure 1: Graphs of the functions of the bounds (1.1) for x ∈ (−π
2
, π
2
).
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Figure 2: Graphs of the functions of the bounds (1.1) for x ∈ (0.5, 1).
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1.2 Second Result

The hyperbolic variants are given in the following theorem. The bounds of
exp(x2) given in (1.4) are very sharp. Moreover they are simple and better
than the corresponding bounds of exp(x2) given in [1, 2] as far as x is in(
−π

2
, π
2

)
.

Theorem 2. For x ∈
(
−π

2
, π
2

)
, we have(

1 + coshx

2

)α
6 exp(x2) 6

(
1 + coshx

2

)β
(1.3)

and (
2 + coshx

3

)θ
6 exp(x2) 6

(
2 + coshx

3

)γ
(1.4)

with the best possible constants α = 4, β = (π/2)2

ln[(1+cosh(π/2))/2]
≈ 4.38856, θ =

6, γ = (π/2)2

ln[(2+cosh(π/2))/3]
≈ 6.054932 and the inequalities hold as equalities at

x = 0.

Some graphical and numerical illustrations: The inequalities (1.3)
are illustrated in Figures 3 and 4, showing the sharpness of the obtained
bounds. After a graphical investigation, the inequalities (1.4) seem more
sharp. To illustrate this point, as the previous numerical study, let us consider

the global L2 error : e∗(h) =
∫ π

2

−π
2
(exp(x2) − h(x))2dx, where h(x) denotes

a function in the bounds of (1.3) and (1.4). The results are set in Table 2.
From this numerical point of view, we then see that the bounds in (1.4) are
sharper to those in (1.3).

Table 2: Global L2 errors e∗(h) for the functions h(x) in the bounds of (1.3)
and (1.4).

Inequality (1.3) Inequality (1.4)

h(x)
(

1+coshx
2

)α (
1+coshx

2

)β (
2+coshx

3

)θ (
2+coshx

3

)γ
e∗(h) ≈ 1.011738 ≈ 0.05904132 ≈ 0.01013854 ≈ 0.001456429
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Figure 3: Graphs of the functions of the bounds (1.3) for x ∈ (−π
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Figure 4: Graphs of the functions of the bounds (1.3) for x ∈ (0.5, 1).
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Note: It follows from Theorem 2 that, for x ∈
(
−π

2
, π
2

)
, we have(

2 + coshx

3

)−γ
6 exp(−x2) 6

(
2 + coshx

3

)−θ
. (1.5)

It is natural to address the following question : what are the best bounds
for exp(−x2) between those in (1.2) and (1.5) ? An element of answer can
be given numerically. By considering again the global L2 error : e(h) =∫ π

2

−π
2
(exp(−x2)−h(x))2dx, where h(x) denotes a function in the bounds (1.2)

and (1.5). The results are set in Table 4. From this numerical point of view,
we then see that the bounds in (1.5) are near twice sharper to those in (1.2).

Table 3: Global L2 errors e(h) for the functions h(x) in the bounds of (1.2)
and (1.5).

Inequality (1.2) Inequality (1.5)

h(x)
(
2+cosx

3

)c (
2+cosx

3

)d (
2+coshx

3

)−γ (
2+coshx

3

)−θ
e(h) ≈ 2.791112× 10−5 ≈ 4.605539× 10−6 ≈ 1.068113× 10−5 ≈ 2.338449× 10−6

2 Preliminaries and Lemmas

We now present two lemmas which will be useful for the proofs of our theo-
rems.

Lemma 1. The following inequalities hold:

sinx

x
>

1 + 2 cosx

2 + cosx
; x ∈ (0, π) (2.1)

and

x

sinhx
+ coshx > 2; x 6= 0. (2.2)

Proof: For (2.1), let f(x) = sinx (2+cosx)−x (1+2 cosx). Then simple
computation yields that

f ′(x) = −sin2x+ cos2x+ 2x sinx− 1 = 2x sinx− 2 sin2x

= 2 sinx (x− sinx) > 0
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in (0, π).
Hence, f(x) is strictly increasing in (0, π). Thus f(x) > f(0) for any x ∈
(0, π) implying that

sinx (2 + cosx) > x (1 + 2 cosx).

For (2.2), by symmetry of the function, we need to consider only positive
values of x.

Let, g(x) = 2 sinhx− sinhx coshx− x. Differentiation gives

g′(x) = 2 coshx− sinh2x− cosh2x− 1 = 2 coshx− 2 cosh2x

= 2 coshx (1− coshx) < 0.

Therefore g(x) is strictly decreasing in (0,∞). So, g(x) < 0 for every x ∈
(0,∞). That means x + sinhx coshx > 2 sinhx. This completes the proof.

Note: For hyperbolic version of (2.1) one can see [13, Remark 1].

Lemma 2. (The L’Hospital’s monotonicity rule [9]) : Let f, g : [p, q]→ R be
two continuous functions which are derivable on (p, q) and g′(x) 6= 0 for any
x ∈ (p, q). If f ′/g′ is increasing (or decreasing) on (p, q), then the functions
f(x)−f(p)
g(x)−g(p) and f(x)−f(q)

g(x)−g(q) are also increasing (or decreasing) on (p, q). If f ′/g′ is
strictly monotone, then the monotonicity in the conclusion is also strict.

3 Proofs of the Theorems

In this section we prove our main results.
Proof of Theorem 1: Clearly for x = 0 equalities hold. We need to

consider only positive values of x in (−π/2, π/2) as bounds and exp(−x2)
are even functions.

For (1.1) as a > −x2
ln( 1+cosx

2 )
> b,

let f(x) = −x2
ln( 1+cosx

2 )
= f1(x)

f2(x)

where f1(x) = −x2 and f2(x) = ln
(
1+cosx

2

)
with f1(0) = f2(0) = 0. By

differentiating

f ′1(x)

f ′2(x)
= 2x (1+cosx)

sinx
= 2 x

sinx
(1 + cosx) = 2F (x)
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where F (x) = x
sinx

(1 + cosx). By differentiation

F ′(x) = −x+
(sinx− x cosx)

sin2x
(1 + cosx)

=
1

sin2x

[
−x sin2x+ sinx+ sinx cosx− x cosx− x cos2x

]
=

1

sin2x
[−x (1 + cosx) + sinx (1 + cosx)]

=
1

sin2x
[(1 + cosx)(sinx− x)] < 0,

since sinx−x < 0 in (0, π/2). Therefore F (x) is strictly decreasing in (0, π/2)
and so is f(x) by Lemma 2. Consequently, a = f(0+) = 4 by L’Hospital’s

rule and b = f(π/2) = −(π/2)2
ln(1/2)

≈ 3.559707.

Similarly for (1.2) as c > −x2
ln( 2+cosx

3 )
> d,

let g(x) = −x2
ln( 2+cosx

3 )
= g1(x)

g2(x)

where g1(x) = −x2 and g2(x) = ln
(
2+cosx

3

)
with g1(0) = g2(0) = 0.

Then
g′1(x)

g′2(x)
= 2x (2+cosx)

sinx
= 2G(x)

where G(x) = x
sinx

(2 + cosx). Differentiation gives

G′(x) = −x+
(sinx− x cosx)(2 + cosx)

sin2x

=
1

sin2x
[sinx (2 + cosx)− x (1 + 2 cosx)] > 0,

by virtue of Lemma 1 i.e. (2.1). Now g(x) is strictly increasing in (0, π/2) by

Lemma 2. Thus, c = g(π/2) = −(π/2)2
ln(2/3)

≈ 6.08536 and d = g(0+) = 6. This
completes the proof.

Remark 1. For x ∈ (−ε, ε] where ε ∈ (0, π), we can actually see that, the
inequalities in Theorem 1 hold with the best possible constants a = 4, b =
−ε2

ln( 1+cosε
2 )

, c = −ε2
ln( 2+cosε

3 )
and d = 6.

Proof of Theorem 2: Equalities hold for x = 0. As in the proof of
Theorem 1, we need to consider only positive values of x in (−π/2, π/2).

For (1.3), let f(x) = x2

ln( 1+coshx
2 )

= f1(x)
f2(x)
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where f1(x) = x2 and f2(x) = ln
(
1+coshx

2

)
with f1(0) = 0 = f2(0). Differen-

tiating

f ′1(x)

f ′2(x)
= 2x (1+coshx)

sinhx
= f3(x)

f4(x)

where f3(x) = 2x(1 + coshx) and f4(x) = sinhx with f3(0) = f4(0) = 0.
Differentiation yields

f ′3(x)

f ′4(x)
= 2

[
x sinhx+ 1 + coshx

coshx

]
= 2 [x tanhx+ sechx+ 1]

= 2F (x)

where F (x) = x tanhx+ sechx+ 1. By differentiating

F ′(x) = x sech2x+ tanhx− sechx tanhx

= tanhx sechx
[ x

sinhx
+ coshx− 1

]
> 0,

since x
sinhx

+ coshx > 2 by (2.2) of Lemma 1. Therefore F (x) is strictly
increasing, which implies that f(x) is also strictly increasing by Lemma 2.

Thus, α = f(0+) = 4 and β = f(π/2) = (π/2)2

ln[ 1+cosh(π/2)2 ]
≈ 4.38856.

To prove (1.4), let g(x) = x2

ln( 2+coshx
3 )

= g1(x)
g2(x)

where g1(x) = x2 and g2(x) = ln
(
2+coshx

3

)
with g1(0) = g2(0) = 0. Differen-

tiation gives

g′1(x)

g′2(x)
= 2x (2+coshx)

sinhx
= g3(x)

g4(x)

where g3(x) = 2x (2 + coshx) and g4(x) = sinhx with g3(0) = g4(0) = 0.
Therefore

g′3(x)

g′4(x)
= 2

[
x sinhx+ 2 + coshx

coshx

]
= 2G(x)

where G(x) = x tanhx+ 2 sechx+ 1. By differentiation, we get

G′(x) = x sech2x+ tanhx− 2 sechx tanhx

= tanhx sechx
[ x

sinhx
+ coshx− 2

]
> 0,

due to second inequality (2.2) of Lemma 1. So G(x) is strictly increasing
and hence g(x) in (0, π/2) by Lemma 2. Therefore, θ = g(0+) = 6 and

γ = g(π/2) = (π/2)2

ln[ 2+cosh(π/2)3 ]
≈ 6.054932. This proves Theorem 2.
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Remark 2. For x ∈ (−ε, ε) where ε > 0, it’s easy to see that, the inequalities
in Theorem 2 hold with the best possible constants α = 4, β = ε2

ln( 1+coshε
2 )

, γ =

ε2

ln( 2+coshε
3 )

, θ = 6.

4 Some Applications

Three applications of Theorems 1 and 2 are presented below.

4.1 Application 1: On Cusa-Huygens Type Inequali-
ties

The famous Cusa-Huygen’s inequality [4, 5, 6, 7, 11] is known as

sinx

x
<

2 + cosx

3
; 0 < x <

π

2
(4.1)

and its hyperbolic version, sometimes called hyperbolic Cusa-Huygen’s in-
equality [7] is stated as follows:

sinhx

x
<

2 + coshx

3
; x 6= 0. (4.2)

Some researchers have tried to obtain extended sharp versions of the inequal-
ities (4.1) and (4.2) in recent years. In [6, 11] the following inequalities have
been established:(

2 + cosx

3

)λ
<
sinx

x
<

2 + cosx

3
; x ∈

(
0,
π

2

)
(4.3)

with the best possible constants λ ≈ 1.11374 and 1.
The authors of [6, 11] proved double inequality (4.3) in a complex way. In
2013, a simple proof of it was claimed by Sun and Zhu [18]; but later it was
found that the proof was logically incorrect [16]. We present here very simple
and lucid proof of (4.3).

Simple Proof of Inequality (4.3): Using [14, Theorem 2] and [3,
Proposition 3], we have

exp(−kx2) < sinx
x

< exp(−x2/6) ;x ∈ (0, π/2)

where k = −ln(2/π)
(π/2)2

. From this we can write(
sinx

x

)6

< exp(−x2) <
(
sinx

x

)1/k

;x ∈ (0, π/2) (4.4)

where k = −4ln(2/π)
π2 . From (1.2) and (4.4) it is clear that
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(
2+cosx

3

)λ
< sinx

x
< 2+cosx

3

where λ = kc = −4ln(2/π)
π2 . −π

2

4ln(2/3)
= ln(2/π)

ln(2/3)
≈ 1.11374. Moreover, λ and 1

are the best possible constants, because k and c are. The proof of (4.3) is
complete.

Sándor [11] proved that the best positive constants m and n such that(
1 + coshx

2

)m
<
sinhx

x
<

(
1 + coshx

2

)n
; x > 0 (4.5)

are 2/3 and 1 respectively.
In the following corollary, we refine right inequality of (4.5) in the interval
(0, π/2).

Corollary 1. For x ∈ (0, π/2) one has

sinhx

x
<

(
1 + coshx

2

)µ
(4.6)

where µ = π2

24ln[ 1+cosh(π/2)2 ]
≈ 0.731427 is the best possible constant.

Proof: Using [14, Theorem 3], [3] we can actually see that

e−x
2/6 < x

sinhx
for x ∈ (0, π

2
)

which implies (
sinhx

x

)6

< exp(x2); x ∈
(

0,
π

2

)
(4.7)

Now (1.3) and (4.7) give us

sinhx
x

<
(
1+coshx

2

)µ
where µ = β

6
= π2

24ln[ 1+cosh(π/2)2 ]
≈ 0.731427 is the best possible constant.

Other useful applications of (1.1) and (1.2) include the sharp bounds of
Gaussian type integrals, with simple analytical expressions. Both of them
are described below.
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4.2 Application 2: Simple Bounds for a Truncated
Sine Gaussian Integral

In Corollary 2, we determine simple bounds for the truncated Gaussian sine
integral defined by

∫ y
0
sinx exp(−x2)dx. This function has some connection

with the Dawson type integrals.

Corollary 2. For y ∈ (0, π/2), it is true that

3

c+ 1

[
1−

(
2 + cosy

3

)c+1
]
6
∫ y

0

sinx exp(−x2)dx

6
3

d+ 1

[
1−

(
2 + cosy

3

)d+1
]
.

with the best possible constants c ≈ 6.08536 and d = 6.

Proof: By utilizing (1.2), we can write∫ y

0

sinx

(
2 + cosx

3

)c
dx 6

∫ y

0

sinx exp(−x2)dx 6
∫ y

0

sinx

(
2 + cosx

3

)d
dx.

By remarking that
∫ y
0
sinx

(
2+cosx

3

)c
dx = 3

c+1

[
1−

(
2+cosy

3

)c+1
]
, with the

same for d in place of c, we end the assertion.

4.3 Application 3: Simple Bounds for the Error Func-
tion erf

For the last application, we consider the well known error function defined
by

erf(y) =
2√
π

∫ y

0

exp(−x2)dx.

For this function also we give sharp explicit bounds in Corollary 3.

Corollary 3. For y ∈ (0, π/2), it holds that

(6cos3y + 32cos2y + 81cosy + 160) siny + 105y

384
6

√
π erf(y)

2
6

(40cosy + 576) sin5y − (3730cosy + 14720) sin3y + (37965cosy + 87360) siny + 49635y

174960
(4.8)
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Proof: Using (1.1) and (1.2), we have(
1 + cosx

2

)4

6 exp(−x2) 6
(

2 + cosx

3

)6

.

Therefore∫ y

0

(
1 + cosx

2

)4

dx 6

√
π erf(y)

2
6
∫ y

0

(
2 + cosx

3

)6

dx.

Using the expansions : (1 + cosx)4 = 1
8
(56cosx + 28cos(2x) + 8cos(3x) +

cos(4x) + 35) and (2 + cosx)6 = 1
32

(10224cosx+ 4815cos(2x) + 1400cos(3x) +
246cos(4x) + 24cos(5x) + cos(6x) + 6618) and by integration, we obtain re-
quired result.

Some graphical and numerical illustrations: The sharpness of the
bounds in (4.8) are illustrated in Figures 5 and 6. Let us now investigate

the global L2 error : eo(h) =
∫ π

2

0

(√
π erf(x)

2
− h(x)

)2
dx, where h(x) denotes

a function in the bounds of (4.8). The results are set in Table 4. We see that
the error is negligible, attesting the interest of our findings.

Table 4: Global L2 errors eo(h) for the functions h(x) in the bounds of (4.8)
; Boundinf is for the lower bound and Boundsup is for the upper bound.

h(x) Boundinf Boundsup

eo(h) ≈ 6.930623× 10−5 ≈ 2.314179× 10−7
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Figure 5: Graphs of the functions of the bounds (4.8) for x ∈ (0, π
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