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In this paper we question the status of TEGR, the Teleparallel Equivalent of General Relativity,
as a gauge theory of translations. We observe that TEGR (in its usual translation-gauge view) does
not seem to realize the generally admitted requirements for a gauge theory for some symmetry group
G: namely it does not present a mathematical structure underlying the theory which relates to a
principal G-bundle and the choice of a connection on it (the gauge field). We point out that, while it
is usually presented as absent, the gauging of the Lorentz symmetry is actually present in the theory,
and that the choice of an Erhesmann connection to describe the gauge field makes the translations
difficult to implement (mainly because there is in general no principal translation-bundle). We
finally propose to use the Cartan Geometry and the Cartan connection as an alternative approach,
naturally arising from the solution of the issues just mentioned, to obtain a more mathematically
sound framework for TEGR.
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I. INTRODUCTION

In the present paper we are interested in the formula-
tion of the Teleparallel Equivalent to General Relativity
(TEGR) as a gauge theory. Let us recall that TEGR is
a theory in which all the effects of gravity are encoded
in the torsion tensor, the curvature being equal to zero:
a feat achieved by choosing the Weitzenbock connection
instead of the Levi-Civita connection of General Relativ-
ity (GR) [1]. The dynamical equations for TEGR can be
obtained from its action as usual (without reference to
a gauge theory), thus displaying a classical equivalence
with GR thanks to the fact that the Einstein-Hilbert and
TEGR actions only differ by a boundary term [see for in-
stance 2]. A very important point is that TEGR is often
presented as the gauge theory of the translation group
[3], the main motivation for the gauge approach being ,
as for many other works [see 4, for a detailed account],
to describe gravity consistently with the three other fun-
damental forces of Nature which are mediated by gauge
fields related to fundamental symmetries, namely (at our
energy scale), U(1), SU(2) and SU(3) for the electromag-
netic, weak an strong interactions respectively. By con-
trast with gauge theories of particle physics, in which a
symmetry group acts in a purely internal way, the trans-
lation group, subgroup of Poincaré group and part of the
symmetries underlying gravity, acts directly on spacetime
and thus corresponds to an external symmetry. This as-
pect is reflected in the presence of the so-called soldering
property1, which requires adapting the structure of the
translations gauge theory to account for it. Indeed, such

1 A notion first formulated mathematically by C. Ehresmann in
the theory of connections [5], a first comprehensive exposition of
which can be found in Kobayashi [6].
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adjustment is far from trivial, it requires some adapta-
tion of the underlying mathematics and is also present in
the larger perspective of gauge theories of gravitation. In
the latter theories, different proposals for gauging Grav-
ity using different symmetry groups and connections have
been built without reaching a complete consensus on the
status of these proposals [see for instance 4, 7–12].

The purpose of the present work is twofold: first, we
will point out some difficulties in interpreting TEGR as a
gauge theory of translations alone from a mathematical
point of view, and connect these difficulties to the choice
of the gauge field as an Ehresmann type connection; sec-
ond, we will propose the introduction of another type
of connection, known as Cartan connection, to obtain a
consistent framework.

As physicists, we realize that the mathematical no-
tions involved in the treatment of the topics above could
be outside the common background in differential geom-
etry. We thus made our goal to keep a pedagogical view
throughout this work, especially when sharp distinctions
between related notions are required (in particular, the
distinction between the soldering and the canonical one-
forms).

The paper is organized as follows. We begin in Sec.
II with a review of the useful mathematical structures.
This section can be skipped at first reading by geomet-
rically informed readers. In Sec. III we motivate our
questioning about the usual formulation of TEGR as a
gauge theory of the translation group. Then, in Sec.
IV, we make a comparison between the usual translation
gauge theory, as exposed in [3], and a “naive” attempt to
gauge the translation group following the standard math-
ematical point of view of connections in a principal fiber
bundle, and conclude that the interpretation of the the-
ory described in [3] as a gauge theory of the translations
is difficult to defend. The role of connections is examined
in Sec. V in order to motivate the use of the Cartan con-
nection. The latter is introduced in Sec. VI, in particular
through its differences with the Ehresmann connection.
As a conclusion in Sec. VII we propose to use the Cartan
connection for TEGR and discuss its status as a gauge
theory compared to other works. Various technicalities
are described in Appendix A, and for definitions not ex-
plicitly stated we refer to [13–15].

II. SOME PRELIMINARY NOTIONS

Throughout the paper we denote by P (F,M, π) a fiber
bundle with total space P , typical fiber F , four dimen-
sional differentiable base manifold M and projection π.
Most of the time we will consider a principal G-bundle,
that is a bundle whose fibers are identical to the structure
group G of the bundle, which in turn is a Lie group [14].
In fact, in order to be principal, a fiber bundle has to be
defined along with an action of the group over the total
space [15, p. 50]. It can then be shown that equivalently
one can build a principal bundle from a Lie group G (the

fiber) and its transitions functions [15, prop. 5.2].
The geometrical framework of usual gauge theories of

particle physics or of Einstein-Cartan Theory (in terms
of tetrads, App. A 1), of which General Relativity is a
special case, is a principal bundle P (G,M, π) (see Fig.
1) with a connection one-form ωE taking values in the

G

xTxM

g

M

P (G,M, π)

FIG. 1. Generic Fiber Bundle structure

Lie algebra g of the group G. The g-valued one-form
ωE, the realization of a so-called Ehresmann connection,
allows us to define the notion of parallel transport and of
the curvature two-form (the latter therefore is a property
of the connection), reading:

Ω := dωE + ωE ∧ ωE. (1)

In gauge theories of particle physics, the group G is a
gauge group (U(1), SU(2), . . . ), and the connection and
its curvature are respectively the gauge potential and the
field strength of the theory. These are defined on the total
space P of the fiber bundle2, their corresponding quanti-
ties A,F on the base manifold M are obtained through
(the pullback of) a local section σ, which corresponds to
a choice of gauge. Explicitly : A = σ∗ωE, F = σ∗Ω.

In the Einstein-Cartan theory the bundle considered
corresponds to the orthonormal frame bundle, i.e. the
bundle of orthonormal frames3: each fiber above some
point x ∈M , of the base manifold is constituted by all or-
thonormal basis of the tangent space TxM . These fibers
are therefore isomorphic to the Lorentz group4, the iso-
morphism being realized by choosing a specific standard
frame e in a neighborhood of each point x and by identi-
fying the transformed frame e′ with the unique element of
the group g realizing the transformation from e to e′. The
presence of such isomorphism is a necessary condition in

2 they are often denoted by A ≡ ωE and F ≡ Ω.
3 Throughout the paper we assume the theory metric, the frames

are always orthonormalized with respect to this unspecified met-
ric, and so are the well known tetrads.

4 Since we are using orthonormal frames, the bundle used is a
restricted frame bundle in which the fiber is the Lorentz group
instead of the general linear group.
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order that the frame bundle be a principal fiber bun-
dle.The connection ωE is in this context called the spin
or Lorentz connection and we will denote it hereafter by
ωL. This Lorentz connection is related to the connection
coefficients Γρµν through its pullback along some (local)
section σ by [see for instance, 13, Sec. 15.6 and 19.2]:

(σ∗ωL)abµ = eaρ∂µe
ρ
b + eaρΓρµνe

ν
b = eaρ∇µe

ρ
b .

We will denote hereafter ωW the Lorentz connection cor-
responding to TEGR, i.e. the so-called Weitzenbock con-
nection, satisfying: (σ∗ωW )abµ = Λ(x)cb∂µΛac , where Λ in-
dicates a Local Lorentz transformation. Note that Gen-
eral Relativity is obtained choosing the usual Levi-Civita
connection.

Let us recall that, although the Cartan (tetrads) for-
malism uses a Lorentz connection in a principal fiber bun-
dle to describe GR, it cannot be considered a proper
gauge theory of gravity. This is because, while local
Lorentz invariance is described by the Lorentz connec-
tion, the so called diffeomorphism invariance of GR (the
invariance under R4 diffeomorphisms, in other words the
coordinate change invariance) is not encoded in that
Lorentz connection. Indeed, the description of diffeo-
morphism invariance is the main difficulty for gauge the-
ories of gravity, which, for the most part, differ by the
treatment of local Lorentz invariance and diffeomorphism
invariance.

It is worth noting that there is an important speci-
ficity in the choice of the frame bundle used in Tetrads
formulation of General Relativity or Einstein-Cartan the-
ory, compared to the principal bundles of gauge theories
of particle physics, which comes from a structural differ-
ence of the theory and leads to the definition of torsion. A
point p in the frame bundle is basically a point x = π(p)
on the base M together with a particular frame e of the
tangent space Tπ(p)M : p = (x, e). As a consequence, at
each point p wecan obtain the components of a vector of
Tπ(p)M in that specific frame e at p. This map is real-
ized by the canonical form θ (also named fundamental
or tautological), a one-form defined on the frame bundle
with values in R4 relating a vector of TpP to the com-
ponents of its horizontal part5 in the particular frame
e = {ea} : 〈 θa(x, e), v 〉 := (π∗v)a (see Fig. 2).

On the contrary, in the principal G-bundle of gauge
theories of particle physics the frame e is replaced by a
“generalized” frame which has nothing to do with the
frames of the tangent space Tπ(p)M (defined in the usual
way), so then there is no natural (canonical) correspon-
dence between the two sets of frames, although we can
illustrate their similarities as in Fig.3.

Therefore, when an Ehresmann connection ωE is de-
fined on the frame bundle6, the canonical form leads to

5 Here, “horizontal” means that θ(v) = 0 for v ∈ VerpP (the
tangent space of the fiber at p), no connection is defined yet.

6 When the considered bundle is the frame bundle the connection
is said to be linear [15] p. 119.
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FIG. 2. Frame Bundle structure and the canonical form
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FIG. 3. Frame Bundle structure (left), and a usual G-bundle
of particle physics (right)

the torsion Θ which is defined as its exterior covariant
derivative relative to ωE:

Θ := dθ + ωE ∧ θ, (2)

d being the exterior derivative on the frame bundle. The
torsion T on the base manifold is again obtained by (the
pullback of) a local section σ, corresponding to a frame
choice. Explicitly : T = σ∗Θ. Note finally that, since
choosing a section in the frame bundle corresponds to
choosing a frame field, one can show [see for instance 13,
Sec.21.7] that

σ∗θa = ea. (3)

The role of Eq. (3) is to show that the canonical
form θ realizes the so-called “soldering” between the
base manifold and the fibers. It is important though to
distinguish the canonical form θ from the soldering form
θ̃ which is a different mathematical object (see appendix
A 3). Basically, the soldering for a principal bundle
identifies each tangent space TxM of the base manifold
at x with a corresponding space Tσ(x)V , tangent to
a fiber of an associated vector bundle – that is, in
short, a bundle in which the principal bundle fiber G
is replaced by a representation of G on a vector space
V (see appendix A 4) – along a global section σ, as
discussed in appendix A 3. In the case of the frame
bundle formulation of GR or Einstein-Cartan theory,
the tangent bundle TM is itself an associated vector
bundle, and as such, the tangent space to a fiber of the
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associated vector bundle and the tangent space of the
base manifold of the principal bundle’s base are the
same, and the soldering form is from this point of view
the identity7as we illustrate in Fig.4. It is worth noting
there that the solder and canonical forms are distinct
and that the principal bundle soldering, effected through
the isomorphism ξ, uses the composition of the two, by
which we can henceforth understand that, since here the
soldering form is the identity, the canonical form realizes
the soldering.

III. SOME QUESTIONS ABOUT THE USUAL
TRANSLATION GAUGE FORMULATION

It is often claimed that TEGR can be formulated as
a gauge theory for the translation group. Neverthe-
less, as noted by Aldrovandi and Pereira [3, p.41], since
“The gauge bundle will then present the soldering prop-
erty . . .Teleparallelism will be necessarily a non-standard
gauge theory”. In the present section we do not enter
in the mathematical details of the gauge formulation of
TEGR but, closely following [3], in which this gauge ap-
proach is comprehensively described, we point out some
of these “non-standard” aspects which, in our opinion,
raise questions about the interpretation of TEGR as a
gauge theory of the translation group. Although we fol-
low the presentation of [3], we prefer to use the language
of differential geometry, which from our point of view al-
lows us to express our arguments in a more concise way.

Similarly to other gauge theories, in TEGR the ef-
fects of the local symmetry (gauge) group, the transla-
tion group, are implemented through the gauge potential
denoted B from here on. The field strength of B, here-

after denoted by
•
T , is given in Eq. (4.52) of [3]. Using

the definition of exterior derivative and wedge product it
reads

•
T = dB + ωL ∧B, (4)

ωL being the Lorentz connection for the theory. That
expression is recognized as being equal to the torsion of
the connection ωL.

In Ref.[3] we find another expression for
•
T that con-

nects it to tetrads (Eq. 4.62)

•
T = dh+ ωL ∧ h, (5)

where h is a, possibly nonholonomic, tetrad. Moreover,
the two expressions (4) and (5) are linked by a relation
between B and h [3, Eq.4.47]

h = e+B, (6)

7 Hence the name “tautological form” for the canonical form θ.

where e is a tetrad satisfying the so–called Maurer–
Cartan formula: de+ ωL ∧ e = 0.

Interpreting the field strength
•
T as curvature of the

gauge field B is definitely non–standard for gauge the-
ories. In fact, comparing (4) and (2) we note that the

field strength
•
T matches the general definition of tor-

sion of the Lorentz connection ωL, provided B plays the
role of a tetrad, and the geometrical structure describ-
ing the theory includes the frame bundle on which ωL is
defined. Let us stress the fact that the point of this “non-
standardness” is not to make the curvature of B equal
to the torsion of ωL, but rather, in order to ensure this
equality, to make B, which as a gauge field of the trans-
lation group is a connection one form (up to a pull back)
in the translation-bundle (whatever it may be), also be
a tetrad in the frame bundle.

What we just described exemplifies well the kind of
difficulties we wish to point out. We stress out that [3]
uses mostly the tensorial formalism, and in particular
the “dual” definition of the field strength, given by the
commutator of the covariant derivatives related to the

gauge field:
•
Tµν = [hµ, hν ], the tetrad h being there,

as a differential operator, the covariant derivative. As a
consequence, the non–standard use of the objects seen
above appears more natural.

Finally, another question raised by the translation
gauge approach is that: whilst here the Lorentz group is
described as left ungauged, the expression of the covari-
ant derivative h is the same as that appearing in theories
obtained from a very different geometrical structure in
which the whole Poincaré group is taken as the gauge
group , thus including the Lorentz local symmetry. For
instance in Eq. (72) of Tresguerres’s work [9].

We conclude from the above remarks that the link
between the physical quantities and their mathematical
counterpart is at least puzzling. For instance, one may
ask if, in the “non-standard” translation gauge approach,
the field strength must always be described by the cur-
vature of some connection? On the other hand, what is
the meaning of gauging two different groups, with two
different (connections) gauge fields, leading to the same
covariant derivative (the tetrad h)?

IV. A CONVENTIONAL GAUGING OF THE
TRANSLATION GROUP

We now compare the standard objects (connection,
curvature, . . . ) and their physical counterparts (gauge
field, field strength, . . . ) that appear in the mathemati-
cal framework of principal fiber bundles used to describe
gauge theories [see for instance Ch. 21 of 13], with the
“non-standard” translation gauge approach described in
[3], and discussed above. To make the comparison ex-
plicit, we build a “naive” translation gauge theory fol-
lowing the general framework applied to the translation
group. As a word of caution, we stress out that this the-
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FIG. 4. The solder form θ̃ in the frame bundle LM is the identity between the base’s tangent planes and the vertical spaces of
the associated vector bundle, the tangent bundle, which is again the tangent plane. Note that the solder form is a map between
bundles (TM → V er(P ) = TM here).

General G = T4 TEGR from Ref. [3]

P (G,M, π) PT (T4,M, π) TM

(x, f) ({xµ}, {vαg }) ({xµ}, {xa})
ω = ωIEI ωT = ωaTPa

Ω = dω ΩT = dωT

+ω ∧ ω +ωT ∧ ωT

σ vg(x) {xa(x)}
A = σ∗ω AT = ωT (vg) B

F = σ∗Ω FT = dAT

•
T = dB + ωL ∧B

TABLE I. Comparison of fiber bundle/gauge theory objects.
The first column contains the main elements in a general fiber
bundle approach. In the second column the gauge group is
specified to translations (T4). The last column shows the
equivalent objects for the “non-standard” approach of [3].

ory does not pretend to describe a viable gauge theory
of translations, in particular because, as we will see, the
translations bundle cannot in general be principal. In-
deed, this is merely an exercise allowing us to pinpoint
where the standard treatment and the works in Ref. [3]
diverge, to explain why, and how, in our point of view,
the latter theory status as a gauge theory of translation
is difficult to defend.

Table I displays the general mathematical ingredients
of the models in the cases of a general fiber bundle the-
ory, its specifications to the hypothetic principal trans-
lation group bundle (whatever it may be), and (if any)
the equivalent objects in the “non-standard” translation
gauge approach of [3]. In the first line we have the spec-
ifications of the corresponding fiber bundle. The fiber

bundle of [3] is identified, following the authors, as the
tangent bundle. The local trivializations, in the general
case (x, f), are presented in the second line. The trans-
lation group case can be paralleled to the frame bundle
identification between a frame and a Lorentz group ele-
ment, by identifying a translation g with the correspond-
ing vector vg in R4. For the authors in [3], this corre-
sponds to tangent plane coordinates xa. The connections
ω and their associated curvature Ω are presented for the
general case, with Lie algebra basis {EI} and, for the
T4 case, with the abelian translation algebra basis {Pa}.
The section σ is a vector field vg(x) for T4, while as in [3]
it is given (in components) by xa(xµ). The connection’s
curvature on the spacetime (base) is noted F , given by
the curvature Ω’s pullback along σ, and reduces to dAT

for our “naive” translation theory since the translation
group is abelian, while the “non-conventional” approach
uses Eq. (4). We thus see that, apart from a change in
notation and the use of the definition of curvature in the
total space not presented in [3], the differences between
the “naive” and the usual theories are on the nature of
the bundle of translations itself [identified with TM in

3], and the expression of the field strength (
•
T vs FT ).

These two points deserve a deeper comment based on
some important mathematical details [see 13–15].

The usual mathematical description of a gauge the-
ory of translations would adopt a principal fiber bundle.
That entails the bundle should employ the translations
group in two roles: as structure group and as (being iso-
morphic to) fibers. Now, the tangent bundle without
additional specification is a vector bundle whose struc-
ture group is, for a n-dimensional real base manifold,
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GL(n,R), the general linear group8. However, the linear
group GL(n,R) does not even contain the group Tn of
n-dimensional translations. In addition, as a vector bun-
dle, each fiber of TM is the vector space Rn, which is
also, as a manifold, the translation group Tn. However,
in order to identify the translation group with the fiber
in the principal translations bundle one would first have
to exhibit a right action of that group on the total space,
an action which is not defined in the tangent bundle and
in any case would not use the structure group GL(n,R).

One could ask if there is a possibility to associate in a
natural way a principal bundle with the tangent bundle.
The answer is yes but it turns out that this bundle is pre-
cisely the frame bundle, and no translations are present
there. Indeed, the problem of defining an action on the
whole manifold forbids the tangent bundle, viewed as a
translation-bundle - that is, whose fibers are the trans-
lation group - to be principal. This is because, if one
considers an arbitrary vector of Rn, viewed as the (mani-
fold of the) translations group, one must define its action
on the total space of TM , viewed as the bundle of trans-
lations. To this end, one has to specify how to identify
Rn to each tangent space Tx of TM , that is to specify a
frame for each Tx. Put in another way we need a field
of frame on the whole base manifold, which is precisely a
global section of the frame bundle. Now, there is a the-
orem which states that a principal bundle (as the frame
bundle) admitting a global section is trivial [see for in-
stance, 13, Sec. 20.1]. Thus, the bundle of translations
is principal if and only if the associated frame bundle is
trivial. Note that, this argument says at once that the
tangent bundle is not in general a principal Tn-bundle
and that the hypothetic principal T4-bundle is not de-
fined in general.

Let us now consider the other main “non–
standardness”, namely the expression for the curvature
that in [3] contains an additional term ωL ∧ B with
respect to the “naive” version. We first note that
the latter, built by gauging translations alone, cannot
account for the local Lorentz invariance and thus fails
to properly describe gravity. Therefore a heuristic
way to implement local Lorentz invariance would be
to use a minimal coupling procedure, leading to the
replacement of the exterior derivative d by its Lorentz
covariant counterpart (D := d + ωL∧) in the expres-
sion for the curvature, eventually giving precisely the
“non-standard” approach expression (4). Indeed, this
would be coherent with the view adopted in [3] in which
one considers B as the gauge field for the translations
while the local Lorentz invariance is related to the
non-holonomic frames. Moreover, this approach points
towards the interpretation of the “dual” role of the field
B as a tetrad, which in this view is somehow forced by
the expression of the torsion (2), related to the canonical

8 We consider the general n-dimensional case in the present para-
graph.

form through (3). The only concern with this heuristic
view is that the introduction of a covariant derivative
corresponds, on mathematical grounds, to gauging the
Lorentz symmetry.

The discussion above allows us to clarify the doubts
raised at the end of the previous section about the fact
that the theory of translations presented by Aldrovandi
and Pereira in [3] and the gauge theory of Poincaré sym-
metries proposed by Tresguerres in [9] lead to the same
expression for the covariant derivative. Indeed, what is
happening is that in [3] the Lorentz symmetry is im-
plicitly gauged. The fact that the Lorentz connection
is introduced in order to take into account the most gen-
eral orthonormal frames (including non-holonomic ones),
does not allow us to ignore its mathematical nature,
namely, a connection in the orthonormal frames bundle.
From this point of view, the heuristic introduction of
the Lorentz covariant derivative (the replacement of d by
d + ωL∧) in the previous paragraph to account for local
Lorentz invariance in a gauge theory of translations is
somehow reminiscent of the use of the composite connec-
tion in Tresguerres works [9].

To summarize, although the “non-standard” gauge
theory described in [3] reproduces TEGR, in our opinion
it is difficult to consider it a gauge theory of the transla-
tion group. Our view is mainly motivated by the fact that
the bundle of translations, whatever it may be, cannot
be identified, as a principal T4-bundle, with the tangent
bundle. In addition, the claim that the Lorentz symme-
try is left ungauged seems, on mathematical grounds, at
odds with the definition of a covariant derivative that
includes a term for a Lorentz connection. In our view,
the usual “non-standard” gauge theory of translations
presented as TEGR is the Einstein-Cartan (tetrad) for-
mulation of gravity, which takes place in the principal
orthonormal frame bundle, with the Lorentz connection
chosen to be the Weitzenbock connection; the transla-
tional part, which does not arise from a gauge in the
Einstein-Cartan formulation, is given there by the canon-
ical form θ, viewed as the translational (part of the) con-
nection whose pullback on the base manifold through Eq.
(3) is the gauge field B.

V. SOME COMMENTS ABOUT THE
CONNECTIONS

The commonly accepted mathematical framework for
gauge theories is that of principal bundles in which local
gauge symmetries correspond to connections. In the case
of gravitation, the local symmetries are

1. the local Lorentz invariance. and

2. the invariance under the local (R4) diffeomorphism,
which corresponds to local translational invariance.

As already mentioned in Sec. II, to account for these dif-
feomorphisms from a gauge perspective is a central dif-
ficulty of gauge theory of gravity, and translates into an
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equally difficult choice of the connection. The present
paper being devoted to the gauge version of TEGR, we
do not aim to discuss general gauge theories of gravity.
We nevertheless comment about the connections with the
aim to motivate our proposal to use the Cartan connec-
tion in next section.

On one hand, as shown in Sec. IV, [3]’s exposition
of a “non-standard” gauging of translations does not fit
well in the principal fiber bundle mathematical frame-
work that should describe a translations gauge theory, as
there

1. translations are not properly taken into account as
a connection in a principal bundle,

2. the Lorentz symmetry is implicitly gauged.

On the other hand, a more straightforward approach in
which only a gauge field for the translations would be
considered fails because

1. the local Lorentz invariance is not satisfied by a
translational field alone

2. a fiber bundle for the translations moreover fails to
be principal except if it is trivial.

It thus seems that the two invariances, local Lorentz
and local translations (R4 diffeomorphisms) should be
considered together in a connection allowing TEGR to
be accounted for as a gauge theory. Since the force field
strength for TEGR, i.e. the bundle’s curvature (up to a
pullback), is the torsion, such a connection would have
to yield torsion as its curvature. Moreover, being that
TEGR lives in manifolds with no curvature, a corre-
sponding Weitzenbock connection should be the choice
for its Lorentz connection. One can propose a simple
ansatz for a connection, say ω, satisfying the properties
just discussed. It can be written as (omitting all indices
to keep matter simple)

ω = ωL + θT ,

where ωL is a Lorentz connection and θT embodies the
translational part. The corresponding curvature then
reads

Ω := dω + ω ∧ ω = ΩωL
+ ΘωL

+ θT ∧ ωL, (7)

where ΩωL
:= dωL+ωL∧ωL and ΘωL

:= dθT +ωL∧θT , are
respectively the curvature and the torsion of the Lorentz
connection. Note that the term θT ∧ θT is zero since the
group of translations is abelian.

The curvature of the connection ω, as shown in Eq.
(7), reduces to the torsion of the Lorentz connection if

1. ωL = ωW , the Weitzenbock connection,

2. the last term θT ∧ ωL vanishes.

Note that the same is true for the curvature on the base
manifold by pulling back (7) along some local section.

Now, since an Ehresmann connection on a principal
G-bundle, takes it values in the Lie algebra of the whole
group G, it is difficult to see how to make the cross term
θT ∧ ωL vanish. For instance, the gauge theory of the
Poincaré group using a composite connection proposed
in [9] leads to a connection on the base manifold which
is the sum of a Lorentz and a translational part [see Eq.
(70) of 9], but the cross term forbids identification of that
connection’s curvature with the torsion of the Lorentz
connection.

A (perhaps?) more natural way to implement trans-
lations would point to the use of an affine connection
(see appendix A 5). However the affine connection us-
ing Lorentz and translations is not the simple sum of
the Lorentz and translations connections and neither is
its curvature yielding the sum of Lorentz curvature and
torsion directly [15, Sec.3.3 p125].

Lastly, the Cartan connection, which is not of Ehres-
mann type, reduces exactly to take the form of the con-
nection ω. In the following section therefore, we will
describe the main features of this connection and then
use it to obtain TEGR.

VI. APPROACHING TEGR WITH THE
CARTAN CONNECTION

The Cartan connection appears in the context of Car-
tan geometry which can be seen as a generalization of
Riemannian geometry in which the tangent space is re-
placed by a tangent homogeneous (i.e., maximally sym-
metric) space. This geometry and the properties of the
Cartan connection, in relation with gravity theories, are
summarized in a comprehensive way by Wise [10] and
Catren [8]. A detailed mathematical reference is given
by Sharpe [16], see also [17] for a summary and a com-
parison with other mathematical approaches.

As in the case of usual gauge theories of particle
physics or of the Einstein-Cartan theory, the geometri-
cal framework of Cartan geometry is a principal bun-
dle P (H,M, π) with a connection ωC . However, there
are three important differences with respect to the usual
case:

1. The fiber is here a (topologically closed) subgroup
H of a larger Lie group G,

2. The connection is a Cartan connection ωC which
takes its values in the algebra g ⊃ h of G.

3. The connection ωC is, at each point p of P , a linear
isomorphism between the tangent space TpP and
the Lie algebra g. This property requires that G
has the same dimension as the tangent space TpP .

These properties are specific to the Cartan geometry, in
particular (2)-(3) distinguish the Cartan connection from
Ehresmann’s, which by contrast takes its values in the Lie
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algebra of the group H (the fiber) and does not satisfy
a property like (3). As a consequence of the above prop-
erties, the tangent space of the base manifold M can
be locally identified with the tangent space g/h of the
homogeneous space9 G/H. Indeed, the third condition
precisely states that the principal bundle P (H,M, π) is
soldered to the base M .

For a (3+1)-dimensional manifold there are only three
possible homogeneous spaces: the (Anti)-de Sitter spaces
and the Minkowski space. Each one being also a group
of symmetry: SO0(2, 3), SO0(1, 4) for Anti-de Sitter and
de Sitter spaces respectively and the Poincaré group for
the Minkowski space. The corresponding Cartan geome-
tries have the property of being reductive; the definition
of this property can be found in [16, p197], along with
its differences with the notion of reductive algebra. From
our perspective it is sufficient to say that, for a reductive
Cartan geometry, the Cartan connection takes the form

ωC = ω + θ, (8)

where ω is an Ehresmann connection h-valued one-form,
on the principal fiber bundle P (H,M, π), and θ a g/h-
valued one-form on P . Moreover, the definition of the re-
ductive geometry, which relies on the existence of an iso-
morphism between adjoint representations of the struc-
ture group H (an Ad(H)-invariant decomposition of g,
namely: g ' h ⊕ g/h), ensures that the two parts (ω
and θ) of the Cartan connection ωC remain separated
under a gauge transformation (a change of local section
in P (H,M, π)).

For what may concern us, the main implication of the
(Ad(H)-invariant) decomposition of the Lie algebra g is
that it allows us to split any g-valued form defined on P .
In particular the curvature two-form ΩC of the Cartan
connection ωC which reads

ΩC := dωC + ωC ∧ ωC = Ωω + Θω, (9)

were Ωω and Θω stand respectively for the curvature
and the torsion of the Lorentz (Ehresmann) connection
ω. An explicit calculation, using the fundamental repre-
sentation of g, is given by Wise [10] for the three (tan-
gent) homogeneous spaces: Anti-de Sitter, de Sitter and
Minkowski. For the Minkowski case one obtains, by
choosing the Weitzenbock connection ω = ωW , the ex-
pected result :

ΩC = ΘωW
.

Introducing the reductive Cartan geometry thus solves
the problem stated in the previous section: it accounts

9 Note that both G/H, with H a closed subgroup of G, being an
homogeneous space, and the fact that g/h can be identified with
its tangent space are known results of differential geometry of
Lie groups (see for instance [13] p. 294 for the former statement,
and [16] p. 163, for the latter).

properly for both Lorentz and translational symmetries
through a connection whose curvature is the torsion.
Moreover, the specific case of reductive Cartan geome-
tries allows us to retrieve the framework of the orthonor-
mal frame bundle: as shown in [16], for a reductive geom-
etry the first part ω of the Cartan connection is precisely
an Erhesmann connection and the second part θ realizes
the soldering (see appendix A 3); in addition, the bundle
P (H,M, π) is necessarily a reduction from the GL(R)
frame bundle on M to the subgroup H leading thus to
the orhonormal frame bundle for H = SO0(1, 3).

VII. CONCLUSION

The results of the previous sections lead us to propose
to view TEGR in the context of reductive Cartan ge-
ometries. The main reason is that, in our opinion, such
geometries provide a more consistent framework than the
usual translation-gauge theory. Precisely, we argued in
Sec. III and IV that

1. the conventional approach makes use of a transla-
tional gauge field which does not appear, on math-
ematical grounds, as a connection in a principal
”translation-bundle”

2. moreover such a bundle could only be defined for
spacetimes with trivial frame bundles, and finally

3. local Lorentz symmetry, taken into account in order
to implement covariance properties, appears as a
gauge field since it is a connection in the principal
bundle of orthonormal frames.

Clearly, the Cartan connection corresponding to the
Poincaré symmetry does not share these drawbacks and,
in the case of the Weitzenbock connection of TEGR, has
torsion for curvature. In addition, the frame bundle sol-
dering to the base manifold, recognized as a source of
difficulties in the gauge theoretical context, is a ”built-
in” property for Cartan geometries.

On the other hand, the question about promoting
TEGR to a legitimate gauge theory by building it with
a Cartan connection is still open. Indeed, the structure
of the reductive Cartan geometries differs from that of
the usual gauge theories mainly because the connection
does not only relate to the symmetry group (here the
Lorentz group) of the principal bundle on which it is
defined (here the orthonormal bundle of frames): the
connection, in fact, takes its value in a larger lie alge-
bra (here the Poincaré algebra). This peculiarity could
be considered as the ”non-standardness” inherited from
the soldering property as mentioned in [3]. More im-
portantly, although this Cartan version of TEGR cannot
be considered as a Poincaré Gauge Theory (PGT)10, the

10 It could be part of a new class of ”Cartan-Poincaré- Gauge The-
ory” (CPGT) and termed ”Weitzenbock-CPGT”.



9

whole Poincaré symmetry is required. This point should
be compared to the work of [18], which adopts a very
different approach, but still reaches the conclusion that
TEGR cannot be obtained without the whole Poincaré
symmetry.
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Appendix A: Definitions of, and comments on, some
mathematical structures

1. Tetrads

We will take the definition of Nakahara’s Book [14]
(Sec. 7.8.1) that is : the tetrads (vierbein) are the coeffi-
cients of the (field of) basis vectors {ea} non-coordinates,
orthonormalized and preserving orientation. We have
gµνe

µ
ae
ν
b = ηab, gµν = eaµe

b
νηab.

2. Comment on Ehresmann connection

An Ehresmann connection on a principal G-bundle ba-
sically provides a G-invariant splitting of the tangent
space TpP into a vertical VerpP and a horizontal HorpP
part by defining (uniquely) the horizontal vectors as
those which belong to its kernel. Although always pos-
sible, the tangent space TpP splitting into a vertical and
a horizontal part is not unique. While the vertical part
is always uniquely defined – the vertical vectors belong
to the kernel of π∗, the horizontal part can be, in gen-
eral, any complementary space of VerpP in TpP . In this
sense, both verticality and horizontality are always de-
fined. In addition there is a linear isomorphism between
VerpP and the Lie algebra g (see for instance [13] p. 560)
and between HorpP and Tπ(p)M through π∗ (see for in-
stance [19] p. 255). The Ehresmann connection specifies
a unique horizontality which in turn is used to define the
parallel transport of various tensorial objects.

Since a vector of TpP can be split in a unique way into
a horizontal and a vertical part, there is a map which
projects the vector along HorpP to VerpP ' g, that is a
g-valued one-form. Then, the definition of an Erhesmann
connection on a principalG-bundle is often made through
that connection one-form ωE whose kernel specifies the
horizontal vectors of TP . This definition of horizontality
has to be consistent with the group action. A formal
definition, together with a comparison with the Cartan
connection, is detailed in [10].

3. Solder form

Let P (G,M,F, π) be a fiber bundle where M is the
base manifold, G the (Lie) structure group, F the fiber,
P the total space, and π the projection from P onto M .
The definition of the solder form can be found in the
original work of Kobayashi [6]. Using the definition of
the vertical bundle – that is, the subbundle Ver(P ) of
TP defined as the disjoint union of the vertical spaces
VerpP for each p in P – the definition given in [6] reads:

The bundle P (G,M,F, π) is soldered to
M , if the following conditions are satisfied.

1. G is transitive on F .

2. dimF = dimM .

3. P (G,M,F, π) admits a section σ which will be
identified with M .

4. There exists a linear isomorphism of vector
bundles θ̃ : TM −→ σ∗Ver(P ) from the
tangent bundle of M to the pullback of the
vertical bundle of P along the section σ.

This last condition can be interpreted as saying that θ̃
determines a linear isomorphism

θ̃x : TxM −→ Vσ(x)P

from the tangent space of M at x to the (vertical) tan-
gent space of the fiber at the point σ(x). This general
definition is pictured in Fig. 5.

θ̃

P (G,M,F, π)

TxM

Fx

x

f = σ(x)

M

u = (x, σ(x))

V erσ(x) (P )

FIG. 5. The solder form renders each tangent of the bundle
base isomorphic to the corresponding vertical tangent space

along the (global) section σ. In a rigorous way, θ̃, the solder
form, is the bundle map between TM and σ∗Ver(P ).

The above general definition of soldering does not ap-
ply as is to principal bundles. Its application to a princi-
pal fiber bundle requires the use of an intermediate asso-
ciated vector bundle discussed in appendix A 4, as shown
in Fig.6 since a global section in a principal bundle would
otherwise render it trivial. There, the soldering of the
principal bundle is realised through the isomorphism ξ
between a horizontal and the associated vector bundle’s



10

P (G,M, π)

G

x

g = σP (x)

M

p = (x, g)

Horp(P )
Vx

x

v = σ(x)

M

P ×ρ V

u = (x, σ(x))

V erσ(x) (P ×ρ V )

θ̃ Θ

TxM

ξ = θ̃ ◦ Θ

FIG. 6. The solder form renders a tangent of the principal bundle base isomorphic to the vertical of an associated vector
bundle. For a principal bundle, soldering is realised through isomorphism ξ between one principal bundle’s horizontal and the
associated bundle’s vertical at the corresponding section. This is made possible through the isomorphism Θ that always exists
between the tangent to the base and any horizontal.

vertical tangent, effected thanks to the isomorphism Θ
between any horizontal of the principal bundle and the
tangent to the base. In the case of the Frame bundle,
as seen in Sec. II, the function of the isomorphism Θ is
played by the canonical form θ.

In the case of Cartan reductive geometry, soldering
takes a specific form due to the various isomorphisms in
which the g/h part of the splitting, related to the trans-
lational part θ of the connection, g ' h ⊕ g/h of g as
Ad(H)-module, is involved (see Fig. 7). Indeed, the
soldering can further be particularized, through the pre-
cising of these isomorphisms [see, in particular, 8].

4. Associated (vector) bundle.

We first follow here [15, p.54-55] and then make some
remarks.

The idea is to build a fiber bundle in which the fiber G
of the original principal G-bundle is replaced by a mani-
fold F on which the group G acts on the left. To this end,
one defines a right action of the group G on the product
space P × F as follow: a g ∈ G maps (p, f) ∈ P × F
to (pg, g−1f) ∈ P × F . The set of the orbits (that is
the equivalence classes) corresponding to this action is
denoted P ×G F and is the total space of the associated
bundle. At first, P ×G F is just a set, the structure of
a fiber bundle is obtained as follow. One considers the
mapping: (p, f) ∈ P × F 7→ π(p) = x ∈ M . It induces a
projection π̂ from P ×G F onto the base M . The fiber of
P×GF over x ∈M is π̂−1(x). Now, in a neighborhood U
of x, π−1(U) ∼ U ×G the action of G on π−1(U)×F is:
(x, g′, f) 7→ (x, g′g, g−1f) with (x, g′, f) ∈ U ×G×F and

g ∈ G. The isomorphism π−1(U) ∼ U × G induces an
isomorphism π̂−1(U) ∼ U × F . Then, one can introduce
a differentiable structure to ensure that π̂ is a differen-
tiable mapping from P ×GF to the base M . This in turn
ensures that P ×G F is a fiber bundle with base M , fiber
F , and structure group G.

When F is a k dimensional vector space V on which G
acts on the left through a representation ρ, one obtains
an associated vector bundle denoted by its total space
P×ρV , the right action on P×V is, in that case, (p, v) 7→
(pg, ρ(g−1)v). We now restrict to this case.

The first remark is to recall that this rather compli-
cated procedure is done to obtain a fiber bundle in which
the fiber of the principal bundle is replaced by a vector
space V , all other data (in particular transition func-
tions) remain unchanged. It should be noted that the
right action defined on P × V is different from the usual
left action ρ(g)v. One can be puzzled by the fact that
although the total space P ×ρ F is made of orbits, the
fiber is the vector space V . Indeed, there is an identifi-
cation there: following Fecko [13, Sec. 2.4.1] there is a
non-canonical isomorphism between π̂−1(x) and V , given
by v 7→ [p, v] for an arbitrary but fixed p. Since the right
action on the product space P × V moves both v and p
the fact that p is held fixed allows us to distinguish be-
tween two elements u, v of V belonging to the same orbit
through G, that is u = ρ(g−1)v (see Fig. 8). Accord-
ingly, a linear structure on each fiber is provided through
π̂−1(x) by [p, v]+λ[p, u] := [p, v+λu]. Different choices of
p do not change the result (they correspond to chooseing
another line parallel to the V axis on Fig. 8).
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SO0(1, 3)

x

e

p = (x, e)

θ

LM

m

x
M

LM×Ad(H)m

θ̃

M

ξ = θ̃ ◦ θ = Id

V erp(LM) ' h

TxM ' Tx(G/H) ' m

T c
xM ' G/H

Horp(LM) ' m

V er (LM×Ad(H) mm) '

FIG. 7. The solder form θ̃ in the frame bundle LM within Cartan geometry is the identity between the base’s tangent planes
and the vertical spaces of the associated vector bundle. Here the Cartan geometry is assumed to be reductive, so that one has
the Ad(H)-invariant splitting of the Lie algebra g ≡ Lie(G) = h⊕m with h = Lie(H) = h and m = g/h.

p

v u = ρ(g−1)v

[p, v] [p, u]

pg
[pg, ρ(g−1)v]

π−1(x)

V

FIG. 8. Linear structure in P ×ρ V .

5. On the affine connection

In the search for a correct geometrical description of a
translation gauge theory, the affine group presents a nat-
ural way to combine the translation of diffeomorphisms
with the linear group of all possible frame transforma-
tions, which can be restricted to the Lorentz group. From
[15, p136], the affine frame bundle AM can be built with
an affine connection ω̃ and the homomorphism

γ : GL(n;R)→ A(n;R)

a 7→

(
a 0n
0 1

)

from the frame bundle LM , and such that

γ∗ω̃ = ω + φ

where ω is the connection on LM and φ is an Rn valued
connection 1-form. Defining as usual the curvature of
some connection ω with the Cartan structure equation:

Ωω := Dωω := dω + ω ∧ ω,

Dω being the covariant derivative associated to the con-
nection ω, one obtains the relation

γ∗Ω̃ = Ω +Dωφ. (A1)

Noticing the formal identity between the covariant
derivative of φ and Eq. (2), we obtain precisely the
sum of curvature and torsion required to obtain the field
strength for a TEGR translation-bundle

γ∗Ω̃ = ΩL + Θ. (A2)

However, since it is not a curvature per se, the field
strength interpretation of the affine curvature pullback
is problematic.
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