

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/20855

To cite this version:

Durán Martínez, Freddy-Libardo and Julcour-Lebigue, Carine and Larachi, Faïçal and Alphonse, Pierre and Billet, Anne-Marie Development of a reactorheat exchanger of monolith type for three-phase hydrogenation reactions: proof of concept and modelling strategy. (2017) In: 10th International Symposium on Catalysis in Multiphase Reactors & 9th International Symposium on Multifunctional Reactors (CAMURE 10 & ISMR 9), 7 July 2017 - 10 July 2017 (Qingdao, China). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Development of a reactor-heat exchanger of monolith type for three-phase hydrogenation reactions: proof of concept and modelling strategy

F. L. Durán Martínez¹, <u>C. Julcour^{1,} F. Larachi², P. Alphonse³, A.M. Billet¹</u>

¹ Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France;

² Université Laval, Chemical Engineering Dpt, Québec, Canada;

³ CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.

International Symposiums on Catalysis in Multiphase Reactors and Multifunctional Reactors

Université de Toulouse

Motivation

Development of an innovative reactor for three-phase catalytic (fast, exothermic, selective ...) reactions

Drawbacks of conventional three-phase reactors: Fixed bed reactor Slurry reactor

- Liquid maldistribution (TBR)
- Partial catalyst wetting (TBR)
- Prone to hot spots and runaway (TBR)
- High resistances to mass transfer
- Limitations of use for viscous/foaming fluids
- Plugging, high △P for small beads

- Uneasy catalyst separation, attrition
- Lower productivity (low ε_{s} , high mixing)
- Promotion of homogeneous reactions
 High energy costs (mechanical stirring)
- High energy costs (mechanical stirring)

Université de Touloure

Suggested technical solution

Development of an innovative reactor inspired from monolith technology and equipped with *in situ* heat removal system HYDROMoRe project

Expected features:

- Low ΔP
- Low diffusional limitations (thin catalytic layer)
- Good G-L & L-S mass transfer (Taylor Flow)
- Plug flow in channels (**TF**, ↑ productivity & selectivity)
- High heat removal (metal conductivity)
- Fast draining in case of runaway

Catalytic channel walls: heat conductive scaffold

Development of an innovative reactor inspired from monolith technology and equipped with in situ heat removal system HYDROMoRe project

GC

Expected features:

- Low $\Delta \mathsf{P}$
- Low diffusional limitations (thin catalytic layer)
- Good G-L & L-S mass transfer (Taylor Flow)
- Plug flow in channels (**TF**, ↑ productivity & selectivity)
- High heat removal (metal conductivity)
- Fast draining in case of runaway

ssues:

- Technology:

- * Proof of concept? Manufacture by selective laser melting (Al alloy)
- * Catalyst coating & stability?
- * Even G & L distribution in the channels?
- Modelling:
 - * required degree of complexity for a sizing tool?
 - * relevant scales?

Τοται

Universite

Exp. & modelling strategy

FLUID DISTRIBUTION ZONE

Exp. characterization on cold mock-up (liquid collection & RTD)

Model validation

"Theoretical": absorption of O₂ in water (van Baten & Krishna, 2004)

	C _{in} ,N _{in}
	$N = \iint_{\Omega} -D\left(\frac{\partial c}{\partial z} \cdot n_z + \frac{\partial c}{\partial r} \cdot n_r\right) dS$ $[k_L a]_{abs} = \frac{N_{bubble}}{(c^* - c_{mean})} * \frac{1}{V_{UC}}$
	$c = c^*$
r=0	$L_{UC} = 40 \text{ mm}$ $\delta_{f} = 48 \mu \text{m}$ $U_{B} = 0.30 \text{ m/s}$ $\epsilon_{G} = 0.17$

 $k_L a = 0.08 \text{ s}^{-1}$ $k_L a = 0.11 \text{ s}^{-1}$ $L_{UC} = 13.3 \text{ mm}$ $k_{UC} = 40 \text{ mm}$

✓ higher k_La value by up to 35% in short UC

 \checkmark

Model validation

"Theoretical": absorption of O₂ in water (van Baten & Krishna, 2004)

Vandu et al. (2005) - CFD Yue et al. (2007) - exp Shao et al. (2010) - CFD

higher k₁ a value by up to 35% in short UC

✓ k₁a values in accordance with literature

VS.

Model validation

"Theoretical": absorption of O₂ in water (van Baten & Krishna, 2004)

✓ higher k_La value by up to 35% in short UC
 ✓ k_La values in accordance with literature
 ✓ overestimation by 15% from geometry simplification (Ca ~ 0.004)

Model validation

"Theoretical": absorption of O₂ in water (van Baten & Krishna, 2004)

- \checkmark higher k_La value by up to 35% in short UC
- \checkmark k_La values in accordance with literature $-\frac{2}{3}$
- ✓ overestimation by 15% from geometry simplification (Ca ~ 0.004)

Experimental: pinene hydrogenation 1.7% Pd/Al₂O₃

T = 100-160°C, P_{H2} = 10-20 bar

- Transient calculation No limitation by internal
- diffusion ($e_{wc} \sim 10 \ \mu m$)
- Isothermal cell
- Constant bubble shape & ε_G

12

Intrinsic kinetics from autoclave exp

α-pinene hydrogenation: kinetic study

Stirred autoclave reactor: • Controlled T and atmosphere (p_{H2}) Gas auto-dispersing stirrer (1200 rpm) with gas ballast & addition funnel • Continuous recording of H₂ consumption Data Data (initial hydrogenation rate $R_{0 H2}$) acquisition acquisition cooling Gas catalytic platelet outlet Sampling (5-20 mg of coating) valve platelet clamping screw Pressure Gas support or **powder** (5-50 mg) regulator inlet Gas reservoir Oven H₃C Gas inducing stirrer β-pinene Filter cis-pinane Cooling coil CH ΤΟΤΑΙ CITS trans-pinane o-pinene Analysis of liquid samples: GC/FID (α - and β -pinene, cis- and trans-pinane) CAMURE-10 & ISMR-9, July 7th-10th, 2017, Qingdao, China

α-pinene hydrogenation: kinetic study

Experimental database:

T = 100-160°C, p_{H2} = 10-30 bar, C_P = 1.5-6 mol/L, 50 mL liquid, 25 mg cata (d_{43} = 30 µm) \rightarrow **18 experiments**

Reaction selectivity:

< 5% of β -pinene, cis-pinane selectivity: 60-70% Evolution with T & p_{H2} in accordance with literature trends

Apparent reaction orders:

α-pinene hydrogenation: kinetic study

Selected model:

Results:

Model discrimination & parameter estimation based on R_{0,H2} then complete kinetic curves

$$R_{H2} = \frac{kK_{H_2}K_P P_{H_2}C_P}{(1 + \sqrt{K_{H_2}P_{H_2}} + K_P C_P)^3}$$

(dissociative adsorption of H_{2} , surface reaction as rate-determining step)

Mean $R^2 = 0.94$

Parameter	Value	Unit	RSD	
k _o	3.9E+10	mol.s ⁻¹ .kg ⁻¹ _{cat}	18%	Mean $R^2 = 0.9$
К _{Р.0}	3.5E-03	L/mol	37%	
К _{Н2.0}	4.2E-06	bar ⁻¹	12%	(E_{a})
E	54.4	kJ/mol	1%	$k(T) = k_0 e^{\left(-\frac{u}{RT}\right)}$
$\Delta H_{ad.P}$	-12.5	kJ/mol	10%	$\left(-\frac{\Delta H_{ad,i}}{DT}\right)$
$\Delta H_{ad,H2}$	-19.6	kJ/mol	4%	$K_i(T) = K_{i,0}e^{(RT)}$

α-pinene hydrogenation: catalytic capillary reactor

CFD model:

UNIVERSITÉ

Individual mass transfer coefficients in agreement with literature, except k_{LS} for α -pinene (resistance underestimated by tested correlations)

1D heterogeneous model:

Plug flow model accounting for external mass transfer resistances

Similar behavior of CFD & 1D models with adequate mass transfer coefficients

α-pinene hydrogenation: catalytic capillary reactor

CFD model:

RIMAI

UNIVERSITÉ

Individual mass transfer coefficients in agreement with literature, except k_{LS} for α -pinene (resistance underestimated by tested correlations)

1D heterogeneous model:

Plug flow model accounting for external mass transfer resistances

Similar behavior of CFD & 1D models with adequate mass transfer coefficients

but too optimistic predictions *vs.* measured conversion

- Taylor regime? (effect of wall rugosity?)
- Overestimated k_La value? (c_G constant, arbitrary L_{UC})
- Impact of catalyst deactivation?
- Distinct activity of washcoat & powder?

ΤΟΤΑΙ

CINIS

Université de Toulouse

α-pinene hydrogenation: catalytic monolith reactor

Sizing tool:

- Representation of several channels through 1D model
- H₂ consumption accounted for
- Simulation for a given liquid maldistribution (from exp. data)

Simplified liquid distribution: 5 channel groups (C1 – C5)

Maldistribution \approx homogeneous case probably due to a near zero-order kinetics with respect to α -pinene

Conclusions & perspectives

 Modelling strategy for a heat exchanger-monolith reactor Integrative approach, from local scale (periodic unit cell) towards macroscale (1D plug flow model) → sizing reactor tool

To be further considered: discrepancies with experiments in catalytic tubes

• Other perspectives of HYDROMoRe project

Local concentration field of dissolved O₂ by PLIF-I in glass capillary tube and DNS (A. Billet, E. Cid, B. Lalanne)

Multi-channel hydrodynamic probing (A. Billet, A. Devatine, H. Chaumat, I. Coghe, C. Julcour)

Other project partners (LCA, LISBP) & students (*A. Duda*, *P. Saint- Martory*, *V. de* Souza Godim de Oliveira, L.S. Garcia Landois Fernandez, C. Leleu), for their valuable contribution;

Our technical staff: J. Labadie, J.L. Labat, B. Boyer & I. Coghe, for designing & setting up the reactor pilots

Τοται

Pr. David Fletcher for useful discussion on the Unit Cell model

hank you for your kind attention!