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Motivation

Drawbacks of conventional three-phase reactors:
Fixed bed reactor Slurry reactor

- Liquid maldistribution (TBR)
- Partial catalyst wetting (TBR)
- Prone to hot spots and runaway (TBR)
- High resistances to mass transfer
- Limitations of use for viscous/foaming fluids
- Plugging, high P for small beads

- Uneasy catalyst separation, attrition
- Lower productivity (low S, high mixing )
- Promotion of homogeneous reactions
- High energy costs (mechanical stirring)
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Development of an innovative reactor for three-phase catalytic
(fast, exothermic, selective …) reactions
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Suggested technical solution

Expected features:
- Low P

- Low diffusional limitations (thin catalytic layer)
- Good G-L & L-S mass transfer (Taylor Flow)
- Plug flow in channels (TF,  productivity & selectivity)
- High heat removal (metal conductivity)
- Fast draining in case of runawayCatalytic channel walls:

heat conductive scaffold

catalytic channel

cooling channel
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HYDROMoRe project

Development of an innovative reactor inspired from monolith
technology and equipped with in situ heat removal system



Suggested technical solution

Issues:
- Technology:

* Proof of concept?
* Catalyst coating & stability?
* Even G & L distribution in the channels?

- Modelling:
* required degree of complexity for a sizing tool?
* relevant scales?

Expected features:
- Low P

- Low diffusional limitations (thin catalytic layer)
- Good G-L & L-S mass transfer (Taylor Flow)
- Plug flow in channels (TF,  productivity & selectivity)
- High heat removal (metal conductivity)
- Fast draining in case of runaway

Catalytic channel walls:
heat conductive scaffold
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Manufacture by selective laser melting (Al alloy) 
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HYDROMoRe project

Development of an innovative reactor inspired from monolith
technology and equipped with in situ heat removal system



FLUID DISTRIBUTION ZONE

MIXING ZONE

Exp. & modelling strategy

Exp. characterization on cold mock-up
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(liquid collection & RTD)



CHANNEL ASSEMBLY:
Heat exchange by conduction 
through metal scaffold

Exp. & modelling strategy
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Modeling of T profile over monolith cross-section 

433,6 K

433 K

qcat = 40 kW/m2 Tcool = 433 K
Insulated walls

Efficient heat removal: single channel as relevant scale 

Twall

L G
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Exp. & modelling strategy
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SINGLE CHANNEL
Hydrodynamic regime?
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Exp. & modelling strategy
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SINGLE CHANNEL
Hydrodynamic regime?

Taylor regime
(fully developed flow)

BUBBLE

RB
dc

f

Complex interplay in between mass transfer, 
local hydrodynamics & catalytic reaction

w
al
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-UB

uout,Cout,Nout

uin,Cin,Nin

p

z

-n·N = -Kc·c

G-L interface

Periodic Unit Cell
(“in” = “out”)

free-slip
c = c*

CFD modelling
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Model validation
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 higher kLa value by up to 35% in short UC   

Theoretical: absorption of O2 in water
(van Baten & Krishna, 2004)
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LUC = 40 mm
f = 48 µm
UB = 0.30 m/s
G = 0.17
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Model validation
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Theoretical: absorption of O2 in water
(van Baten & Krishna, 2004)
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 kLa values in accordance with literature

 higher kLa value by up to 35% in short UC   

= − . + .   

[ ] =
( ∗ − )

∗
1



Model validation
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vs.

Theoretical: absorption of O2 in water
(van Baten & Krishna, 2004)
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 kLa values in accordance with literature

 higher kLa value by up to 35% in short UC   

 overestimation by 15% from geometry 
simplification (Ca  0.004)

Two-phase calculation, 
with interface location 
determined by moving 
mesh method 

UB



Model validation
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Theoretical: absorption of O2 in water
(van Baten & Krishna, 2004)

Experimental: pinene hydrogenation 

• Transient calculation
• No limitation by internal 

diffusion (ewc 10 µm)
• Isothermal cell
• Constant bubble shape & G

Analysis by on-line 
NIR & GC/FID

Intrinsic kinetics from autoclave exp

Analysis by on-line 
NIR & GC/FID

2 in series 
coated tubes
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 kLa values in accordance with literature

 higher kLa value by up to 35% in short UC   

 overestimation by 15% from geometry 
simplification (Ca  0.004)

LUC = 40 mm
f = 48 µm
UB = 0.30 m/s
G = 0.17

LUC = 16 mm
f = 30 µm
UB = 0.14 m/s
G = 0.77

H2 / pinene
O2 / water T = 100-160°C, PH2 = 10-20 bar

1.7% Pd/Al2O3

 2 mm
L 20 cm



Analysis of liquid samples: GC/FID (-and -pinene, cis- and trans-pinane)

1.6 mm stainless
steel beads
1.6 mm stainless
steel beads

with gas ballast & addition funnel
• Controlled T and atmosphere (pH2) 
• Gas auto-dispersing stirrer (1200 rpm) 
• Continuous recording of H2 consumption
(initial hydrogenation rate R0,H2)

catalytic platelet
(5-20 mg of coating)

or powder (5-50 mg)

Stirred autoclave reactor:
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-pinene hydrogenation:
kinetic study
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Experimental database:

Reaction selectivity: < 5% of -pinene, cis-pinane selectivity: 60-70%
Evolution with T & pH2 in accordance with literature trends

T = 100-160°C, pH2 = 10-30 bar, CP = 1.5-6 mol/L,
50 mL liquid, 25 mg cata (d43 = 30 µm)  18 experiments

 between 0 and 1 (lower for P than for H2)

 41 3 kJ/mol
 close to the value of Il’ina et coll., 2000 (Pd/C)

PH2 = 30 bar

T = 413 KT = 413 K

Apparent reaction orders:

Apparent activation energy:

-pinene hydrogenation:
kinetic study

Hydrogen Pinene
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Selected model:

Results:

2 =
(1 + + )

(dissociative adsorption of H2, 
surface reaction as rate-determining step)

Parameter Value Unit RSD
k0 3.9E+10 mol.s-1.kg-1

cat 18%
KP,0 3.5E-03 L/mol 37%
KH2,0 4.2E-06 bar-1 12%
Ea 54.4 kJ/mol 1%
ΔHad,P -12.5 kJ/mol 10%
ΔHad,H2 -19.6 kJ/mol 4%

=  

= ,
 ,

Mean R2 = 0.94

 Good prediction for exp. 
with pure pinene

140°C, 20 bar
R2 = 0.994

Model discrimination & parameter estimation 
based on R0,H2 then complete kinetic curves 
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-pinene hydrogenation:
kinetic study

15



Similar behavior of CFD & 1D models
with adequate mass transfer coefficients

Plug flow model accounting for external mass 
transfer resistances

BUBBLE

RB
dc

f

Individual mass transfer coefficients in agreement 
with literature, except kLS for -pinene
(resistance underestimated by tested correlations)

-pinene hydrogenation:
catalytic capillary reactor
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1D heterogeneous model:

CFD model:
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163°C, 21 bar



Similar behavior of CFD & 1D models
with adequate mass transfer coefficients

but too optimistic predictions vs. 
measured conversion

Plug flow model accounting for external mass 
transfer resistances

BUBBLE

RB
dc

f

Individual mass transfer coefficients in agreement 
with literature, except kLS for -pinene
(resistance underestimated by tested correlations)

-pinene hydrogenation:
catalytic capillary reactor
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1D heterogeneous model:

CFD model:

• Taylor regime? (effect of wall rugosity?)
• Overestimated kLa value? (G constant, arbitrary LUC) 
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163°C, 21 bar

• Impact of catalyst deactivation? 
• Distinct activity of washcoat & powder?
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-pinene hydrogenation:
catalytic monolith reactor

Sizing tool:
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• Representation of several channels through  
1D model

• H2 consumption accounted for

• Simulation for a given liquid maldistribution 
(from exp. data)

Simplified liquid distribution: 
5 channel groups (C1 – C5)

Maldistribution ≈ homogeneous case 
probably due to a near zero-order 
kinetics with respect to-pinene



• Modelling strategy for a heat exchanger-monolith reactor

• Other perspectives of HYDROMoRe project

Integrative approach, from local scale (periodic unit cell) towards macroscale
(1D plug flow model)  sizing reactor tool 

Multi-channel hydrodynamic probing

Local concentration field of dissolved O2
by PLIF-I in glass capillary tube and DNS

Selective hydrogenation 
of edible oil

in heat exchanger-reactor

To be further considered: discrepancies with experiments in catalytic tubes
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Conclusions & perspectives

(A. Billet, A. Devatine,  H. Chaumat, I. Coghe, C. Julcour)

(A. Billet, E. Cid, B. Lalanne)

(P . Albrand, A. Billet, C. Julcour, F. Larachi)
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