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Introduction

The history of cryptography can be split into two eras: the classical era and
the modern era. The turning point between the two occurred when asymetric
cryptography was introduced. These new algorithms were revolutionary be-
cause they represented the first viable cryptographic schemes where security
was based on the theory of numbers; it was the first to enable secure commu-
nication between two parties without a shared secret. Cryptography went from
being about securely transporting messages around the world to being able to
have provably secure communication between any two parties without worry-
ing about someone listening in on the key exchange. The founding idea is that
the key you use to encrypt your data can be made public while the key that is
used to decrypt your data can be kept private. What you need for an asymetric
cryptographic system to work is a set of algorithms that is easy to process in one
direction, but difficult to undo. The first, and still most widely used, algorithm
introduced was RSA. Its security relies on the fact that multiplying two prime
numbers is easy, but factoring the product into its two component primes is dif-
ficult. After RSA, researchers explored other mathematics-based cryptographic
solutions looking for other algorithms beyond factoring that serve asymetric
schemes. Elliptic curve cryptography was then proposed.
What is an elliptic curve? And how can it be deployed to build an asymetric
cryptographic algorithm ?
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Chapter 1

Elliptic curves

The mathematical objects of ECC are -of course- elliptic curves. For crypto-
graphic purposes we are mainly interested in curves over finite fields but we
will study elliptic curves over an arbitrary field K because most of the theory is
not harder to study in a general setting - it might even become clearer.

1.1 Weistrass equations

An elliptic curve over a a field K is a pair (E,O), where E is a cubic equation in
the projective geometry and O ∈ E a point of the curve called the base point, on
the line at∞ (in projective geometry two parallel lines meet in a point at∞).

(E) : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ + a6Z
3 (1.1.1)

HereO = [0, 1, 0] is the base point and a1, ..., a6 ∈ K and X, Y, Z are the homoge-
nous coordinates in the projective geometry.
To ease notations we generally write Weistrass equations for our elliptic curve
using non-homogenous coordinate (affine geometry) x = X/Z and y = Y/Z,

(E) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1.2)

Considering K = R, figure (1.1) gives examples of plots in the affine plane of
(E) with given values a1, ..., a6 ∈ R.

Question: Elliptic curves do not resemble ellipses in any way. So why are they
called "elliptic" ?
Answer: They are solutions to elliptic functions used to find an ellipse’s arc
length.

Definition: For a field K with multiplicative identity 1K and addition iden-
tity 0K, the field characteristic p = char(K) satisfies: 1K + 1K + ...+ 1K︸ ︷︷ ︸

p times

= 0K.
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Figure 1.1: Graph of curves y2 = x3 − x and y2 = x3 − x+ 1

The equation of (E) can be simplified over K, by the following subsitutions.
If the field characteristic char(K) 6= 2, we substitute:

y 7→ y − a1
2
x− a3

2

We have then:

(y − a1
2
x− a3

2
)2 + a1x(y − a1

2
x− a3

2
) + a3(y −

a1
2
x− a3

2
) = x3 + a2x

2 + a4x+ a6

y2 +
a21
4
x2 +

a23
4
− a1xy − a3y +

a1a3
2
x+ a1xy −

a21
2
x2 − a1a3

2
x+ a3y −

a1a3
2
x− a23

2
= x3 + a2x

2 + a4x+ a6

y2 = x3 +
(
a2 + a21/4

)︸ ︷︷ ︸
a′2

x2 + (a4 + a1a3/2)︸ ︷︷ ︸
a′4

x+
(
a6 + a23/4

)︸ ︷︷ ︸
a′6

If further char(K) 6= 2, 3 the substitution

x 7→ x− a′2
3

eliminates the x2 term, yielding the simpler equation

y2 = (x− a2/3)3 + a′2 (x− a′2/3)
2

+ a′4 (x− a′2/3) + a′6

y2 = x3 − a′32
27
− a′2x2 − a′2x2 + a′2x

2 +
a′32
9
− 2

3
a′22 x+ a′4x−

a′2a
′
4

3
+ a′6

y2 = x3 +
(
a′4 − a′22 /3

)︸ ︷︷ ︸
a4”

x+
(
a′6 + 2a′32 /27− a′2a′4/3

)︸ ︷︷ ︸
a6”

The properties of a field K with char(K = 2) is of interest in cryptography as
we will see later. With the substitution

x 7→ a21x+ a3/a1

y 7→ a31y + (a21a4 + a23)/a
3
1
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we get(
a31y + (a21a4 + a23)/a

3
1

)2
+ a1

(
a21x+ a3/a1

) (
a31y + (a21a4 + a23)/a

3
1

)
+ a3

(
a31y + (a21a4 + a23)/a

3
1

)
=
(
a21x+ a3/a1

)3
+ a2

(
a21x+ a3/a1

)2
+ a4

(
a21x+ a3/a1

)
+ a6

Keeping in mind that 2ai = 0∀ai ∈ K because char(K) = 2 we find

y2 + xy = x3 +
(
a1a3 + a21 + a2

)
a−31︸ ︷︷ ︸

a′2

x2

+

(
a41a

2
4 + a43
a61

+
a21a4 + a23

a21
+
a3(a

2
1a4 + a23)

a21
+
a2a

2
3

a21
+
a4a3
a1

+ a6

)
︸ ︷︷ ︸

a′6

Let us remind the Weistrass short forms of elliptic curves we have found:

char(K) Weistrass Short Form
6= 2, 3 y2 = x3 + ax+ b
2 y2 + xy = x3 + ax2 + b

Table 1.1: Weistrass short forms for elliptic curves

Note that, in case char(K) = 2 and a1 = 0, we can find another short form
y2 + ay = x3 + bx+ c with the substitution x 7→ x+ a2.
Fields with char 3 are not of interest in ECC and thus there is no need to find
short forms in this case.

Definition:
A curve f(x, y) is singular in a point P (xP , yP ) if df(xP ,yP )

dx
= df(xP ,yP )

dy
= 0

Our curves have to be non-singular (we will see why later). Rather than
studying the singularity of elliptic curves in a general setting, we take a look at
our short forms from Table 1.1.
When char(K) 6= 2, 3 we have

(E1) : y2 = x3 + ax+ b (1.1.3)

The curve is singular in a point P (xP , yP ) if

dE1(xP , yP )

dx
= 3x2P + a = 0

dE1(xP , yP )

dy
= 2yP = 0
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substituing in (1.1.3)

0 = (
−a
3

)
3
2 + a(

−a
3

)
1
2 + b

b2 = (
−a
3

)3 − a3

3
+

2a3

9

b2 =
−4a3

27

So our curve of equation (1.1.3) is non-singular if 4a3 + 27b2 6= 0.
When char(K) = 2 we have

(E2) : y2 + xy = x3 + ax2 + b (1.1.4)

The curve is singular in a point P (xP , yP ) if

dE2(xP , yP )

dx
= yP − 3x2P − 2axP = yP + x2P = 0

dE2(xP , yP )

dy
= 2yP + xP = xP = 0

substituing in (1.1.4)
b = 0

So our curve of equation (1.1.4) is non-singular if b 6= 0.

NB: Note that we can actually find a general condition to define non-singular
elliptic curves by computing the discriminat ∆ of (1.1.2) and solving the equa-
tion ∆ = 0, where

∆ = −(a21 + 4a2)
2(a21a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a24)− 8(2a4 + a1a3)

3 − 27(2a4 + a1a3)
2

+ 9(a21 + 4a2)(2a4 + a1a3)(a23 + 4a6)

The calculus is tedious and it is easier to understand the singularities of the
curves the way we did.

1.2 Elliptic curve isomorphims

In the sequel, we only consider elliptic curves defined over fields K of charac-
teristic char(K) 6= 2, 3 or char(K) = 2. Let E and E ′ be two Weistrass elliptic
curves of equations

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

E ′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

Theorem 1. E and E ′ are K-isomorphic if and only if there exists u ∈ K∗ and
r, s, t ∈ K such that the change of variables

(x, y)← (u2x+ r, u3y + u2sx+ t) (1.2.1)
6



transforms equation E into equation E ′. Furthermore,
ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2
u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2

(1.2.2)

Proof. A sketch of the proof is as follows:
Let (x, y) ∈ E, (x′, y′) ∈ E ′ and

f(x) = x3 + a2x
2 + (a4 − a1y)x+ (a6 − y2 − a3y)

g(y) = y2 + (a3 + a1x)y − (x+ a2x+ a4x+ a6)

Evaluating f and g in the point at infinity O gives

f(O) = −y2 − a3y + a6

g(O) = −x3 − a2x2 − a4x− a6
Thus, x and x′ have poles of order 2 atO, so both {1, x} and {1, x′}′ are bases

of the vector space L(2(O)). Therefore, ∃u1, r ∈ K such that x = u1x
′ + r. By

analogous reasoning in L(3(O)), since y and y′ have poles of order 3 at O, we
prove ∃u2, s, t ∈ K such that y = sx+ u2y

′ + t.

Corollary 1.1. If char(K) 6= 2, 3, the elliptic curves equations are reduced to the
short form

E : y2 = x3 + ax+ b

E ′ : y2 = x3 + a′x+ b′

where a1 = a2 = a3 = 0, a4 = a and a6 = b.
E and E ′ are K-isomorphic if ∃u ∈ K∗ such that u4a′ = a and u6b′ = b. Further-
more, we have

φ : E → E ′

(x, y)→ (u−2x, u−3y)

Proof. From equation 1.2.2, we obtain r = s = t = 0 and so u4a′ = a and u6b′ = b
given u ∈ K∗.
Corollary 1.2. If char(K) = 2, the elliptic curves equations are reduced to

E : y2 + xy = x3 + ax2 + b

E ′ : y2 + xy = x3 + a′x2 + b′

where a3 = a4 = 0, a1 = 1, a2 = a and a6 = b.
E and E ′ are K-isomorphic if ∃s ∈ K such that a′ = a + s + s2 and b′ = b.
Furthermore, we have

φ : E → E ′

(x, y)→ (x, y + sx)

Proof. from equation 1.2.2, we obtain u = 1, r = t = 0 and so a′ = a+ s+ s2 and
b′ = b.
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Chapter 2

The group of elliptic curves

We refine out definition of elliptic curve as follows:

• if char(K) 6= 2, 3

{(x, y) ∈ K2 | y2 = x3 + ax+ b, 4a3 + 27b2 6= 0} ∪ {O}

• if char(K) = 2

{(x, y) ∈ K2 | y2 + xy = x3 + ax2 + b, b 6= 0} ∪ {O}

With O the point at∞. We can define a group over elliptic curves. Specifically:

• the elements of the group are the points of an elliptic curve,

• the identity element is the point O,

• the inverse of a point P is the one symmetric about the x-axis,

• addition is given by the following rule: given 3 aligned, non-zero points
P, Q and R, their sum P+Q+R=0.

Note that with the last rule, we only require three aligned points without
respect to order. This means that, if P , Q and R are aligned, then P + (Q+R) =
Q + (P + R) + R + (P + Q) = ... = 0. This way, we have intuitively proved
that the addition operator is associative and commutative: We are in an abelian
group.
But how do we actually compute the sum of two arbitrary points?

2.1 Geometric addition

Thanks to the the abelian group properties, we can write P + Q + R = 0 as
P + Q = −R. This equation, in this form, lets us derive a geometric method
to compute the sum between two points P and Q: if we draw a line passing
through P and Q, this line will intersect a third point on the curve R. If we take

8



Figure 2.1: Points addition over elliptic curves

the inverse point (the symetric point about x-axis),−R, we have found the result
of P +Q (see figure 2.1).
This geometric method works but needs some refinement. Particularly we need
to answer a few questions:

• What if P = 0 or Q = 0?
We can’t draw any line (0 = O is not on the xy-plane). But given that we
have defined 0 as the identity element, P + 0 = P ∀P .

• What if P = −Q?
The line going through the two points is vertical, thus does not intersect
the curve in a third point. But P is the inverse of Q, then we have P +Q =
P + (−P ) = 0.

• What if P = Q? There are an infinite number of lines passing through the
point. We take the line tangent to the curve, why? consider Q′ 6= P , as Q′

tends towards P the line passing through P andQ′ becomes tangent to the
curve (see figure 2.2).

• What if P 6= Q, but there is no third point R?
We are in a case very similar to the previous one. In fact, we are in the
case where the line passing through P and Q is tangent to the curve. Let
us assume that P is the tangency point, then P + Q = −P . If Q were the
tangency point, then P +Q = −Q.

Proof:

9



Figure 2.2: Points doublement over elliptic curves

Let (E) be the curve and (L) the line passing through P and Q

(E) : y2 = x3 + ax+ b

(L) : y = mx+ n

Lemma: Let f be a function differentiable in x = xP , g is a function tangent
to f in x = xP if and only if{

g(xP ) = f(xP )
g′(xP ) = f ′(xP )

Suppose the line (L) passes only through P andQ and let f be the function
of (E) and g the function of (L)

f(x) = ±
√
x3 + ax+ b

g(x) = mx+ n

The instersection points are solutions to

f(x) = g(x)

and consequently to
f 2(x) = g2(x) (2.1.1)

Because the intersection is supposed to occur only in two points, the cubic
equation (2.2.1) has a root a1 and a double root a2

g2(x)− f 2(x) = (x− a1)2(x− a2)

Thus, if we differentiate at a point x we obtain

2g′(x)g(x)− 2f ′(x)f(x) = (x− a1)(2(x− a2) + x− a1) (2.1.2)

Evaluating (2.1.2) at x = a1, yields:
10



– if f(a1), g(a1) 6= 0, then f is differentiable at x = a1 and

{
g(a1) = f(a1)
g′(a1) = f ′(a1)

– if f(a) = g(a) = 0, then f is not differentiable at x = a1, and in fact
either

lim
x→a+1

f ′(x) =∞ or

lim
x→a−1

f ′(x) =∞

either way, evaluating the limit in (2.1.2) we find that

lim
x→a−1

g′(x) =∞

Which implies that (L) must be a vertical line at x = a1, and since
f(a1) = 0 the curve (E) is passes through the x-axis at x = a1. Keep-
ing in mind that (E) is symetric about x-axis, we conclude that (E)
must be tangent to (L), as claimed.

The goemetric method is now complete and covers all cases, but if we want a
computer to perform point addition, we need to turn the geometric method into
an algebraic method.

2.2 Algebraic addition

Given an elliptic curve (E) and two points P (xP , yP ) and Q(xQ, yQ), we try here
to transform the rules described in the geometric addition section into a set of
equation. We first derive equations for a curve over K with char(K) 6= 2, 3 and
then with char(K) = 2. In the first case we have

(E) : y2 = x3 + ax+ b

Let (L) be the line passing through P and Q

• if xP 6= xQ

(L) : y = mx+ n

Where

m =
yP − yQ
xP − xQ

n = yP −mxP
= yQ −mxQ

11



The intersection points of (E) and (L) are the solutions to the equation

(mx+ n)2 = x3 + ax+ b

(mx+ yP −mxP )2 = x3 + ax+ b

(m(x− xP ) + yP )2 = x3 + ax+ b

m2(x2 + x2P − 2xxP ) + y2P + 2yPx− 2yPxP = x3 + ax+ b

x3 −m2x2 + (a− 2m2xP − 2yP )x+ (b+ 2yPxP − y2P −mx2P ) = 0 (2.2.1)

Finding the points of intersection requires solving the cubic equation (2.2.1),
which can be tedious (e.g. Tschirnhaus method). But since we know two roots
out of the three we can use Vieta’s formulas.

Vieta’s Formulas:
Let P (x) = anx

n + an−1x
n−1 + ... + a1x + a0 be a polynomial of degree n with

an 6= 0. By fundamental theorem of algebra, P (x) is known to have n roots
x1, x2, ..., xn. The formulas relate the coefficients to sums and products of the
roots as follows:

x1 + x2 + ...+ xn =
−an−1
an

(2.2.2)

x1x2x...xn = (−1)n
a0
an

(2.2.3)

The polynomial (2.2.1) has three solutions xP , xQ and xR. Thus, according to
equation (2.2.2) of Vieta’s formulas:

xP + xQ + xR =
−(−m2)

1
= m2

which means
xR = m2 − xP − xR

using the equation of (L) we find

yR = m(xR − xP ) + yP

Keeping in mind that P+Q = −R and that−R is symetric about x-axis we write

−R(x, y) = R(x,−y)

Then the coordinate of P +Q are

x = m2 − xP − xQ (2.2.4)
y = −m(x− xP )− yP (2.2.5)

• if xP = xQ
12



(L) : y = f ′(xP )(x− xP ) + f(xP )

Where f(x) = ±
√
x3 + ax+ b = y the function of elliptic curve (E) and

f ′(x) =
1

2

±(3x2 + a)

±
√
x3 + ax+ b

=
3x2 + a

2y

So we have

f(xP ) = yP

f ′(xP ) =
3x2 + a

2y

And

(L) : y =
3x2P + a

2yP︸ ︷︷ ︸
m

x+

(
yP −

3x2P + a

2yP
xP

)
︸ ︷︷ ︸

n

As previously we prove that P + Q coordinates are the same with the new cal-
culated m. Where

m =
3x2P + a

2yP

=
3x2Q + a

2yQ

In case we have char(K) = 2 we have

(E) : y2 + xy = x3 + ax2 + b

• if xP 6= xQ

(L) : y = mx+ n

Where

m =
yP + yQ
xP + xQ

n = yP +mxP

= yQ +mxQ

We are in case char(K) = 2, so 2xi = 0∀xi ∈ K. Thus −xi = xi.
the y coordinate of R the aligned point with P and Q is

yR = m(xR + xP ) + yP

Let us call R−1 the symetric point of R and find its y coordinate, we have

y2R + xRyR = x3R + ax2R + b

y2R−1 + xR−1yR−1 = x3R−1 + ax2R−1 + b
13



Thus a quadratic equation

y2R−1 + xR−1yR−1 + (xRyR + y2R) = 0

And according to Vieta’s formulas, the sum of the two roots yR and yR−1 is equal
to

yR + yR−1 = −xR = xR

Thus
yR−1 = yR + xR

So the y coordinate of P +Q is

y = m(xR + xP ) + yP + xR

Let’s find the x coordinate using the equation of (E)

(m(x+ xP ) + yP + xR)2 + xR (m(xR + xP ) + yP + xR) = x3R + ax2R + b

x3R + (m2 + am)x2R + (b+m2x2P + y2P ) + (mxP + yP )xR = 0

using Vieta’s formulas, we have

xP + xQ + xR = m2 +m+ a

xR = m2 +m+ a+ xP + xQ

• if xP = xQ

We have to find the equation of the tangent (L) : y = f ′(xP )(x− xP ) + f(xP ).
let us derivate (E):

d

dxdy

(
y2 + xy

)
=

d

dxdy

(
x3 + ax2 + b

)
2y.dy + y.dx+ x.dy = 3x2.dx+ 2a.x.dx

dy (2y + x) = dx(3x2 + 2ax− y)

dy

dx
=

3x2 + 2ax− y
2y + x

f ′(x) =
x2 + y

x

= x+
y

x

Thus the equation of (L) is

(L) : y =

(
xP +

yP
xP

)
︸ ︷︷ ︸

m

x+ (yP +mxP )︸ ︷︷ ︸
n

14



As previously the coordinates of P +Q are

x = m2 +m+ a+ 2xP = m2 +m+ a

y = m(x+ xP ) + yP + x

Finally let us recapitulate the results in the table below:

char(K) Condition m Coordinates of P +Q

6= 2, 3 xP 6= xQ
yP−yQ
xP−xQ

x = m2 − xP − xQ
y = −m(x− xP )− yP

6= 2, 3 xP = xQ
3x2

P+a

2yP

x = m2 − 2xP
y = −m(x− xP )− yP

= 2 xP 6= xQ
yP+yQ
xP+xQ

x = m2 +m+ a+ xP + xQ
y = m(x+ xP ) + yP + x

= 2 xP = xQ xP + yP
xP

x = m2 +m+ a
y = m(x+ xP ) + yP + x

Table 2.1: Algebraic addition equations

2.3 Scalar multiplication

Other than addition, we can define another operation: scalar multiplication, that
is:

nP = P + P + ...+ P︸ ︷︷ ︸
n times

where n is a natural number. It may seem that nomputing nP requires n addi-
tions, but if n has k digits the algorithm would be O(2k). However there is a fast
algorithm called double and add. Its principle can be better explained with an
example. Take n = 151, its binary representation is 100101112 and can be turned
into a sum of powers of two:

151 = 27 + 24 + 22 + 21 + 20

In view of this, we can write:

151P = 27P + 24P + 22P + 21P + 20P

What the double-and-add algorithm tells us to do is:

• Take P

• Double it to get 2P

• Add 2P to P

• Double 2P to get 22P
15



• Add it to the result

• ...

In the end we compute 151P performing just seven doublings and four addi-
tions. If doubling and adding are both O(1) operations, then this algorithm is
O(log n) which is better than O(n).

2.4 The logarithm problem

Given a natural number n and a point P on the elliptic curve, we can compute
Q = nP in a polynomial time using the add-and-double algorithm. But what
about the other way round? What if we know Q and P and need to find out
n? This problem is known as the logarithm problem. This problem is believed
to be a "hard" one to solve and there are no "easy" algorithms that run in poly-
nomial times to do so. To make the problem even harder, a variant is called
the discrete logarithm problem. As we will see in the next post, if we reduce
the domain of our elliptic curves, scalar multiplication remains "easy" while the
discrete logarithm becomes "hard". This duality is the key brick of ECC.
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Chapter 3

Elliptic curves over finite fields

In this section we restrict our curves to finite fields. A finite field is a set of a
finite number of elements. An example of finite field we use in cryptography is
the set of integers modulo p, where p is a prime number. It is generally denoted
GF (p) or Fp, and char(Fp) = p.
An elliptic curve is now defined as:

{(x, y) ∈ F2
p | y2 ≡ x3 + ax+ b (mod p), 4a3 + 27b2 6≡ 0 (mod 0)} ∪ 0

where 0 is still the point at∞, and a and b are two integers in Fp. This forms a
group over K = Fp and the equations for addition law are the same as in Table
2.1. Note that the prime p is usually taken very large (6= 2, 3), so we consider
that the addition equations are those for char(K) 6= 2, 3.
The figure 3.1 shows points addition over the curve y2 ≡ x3 − x + 3 (mod 127)
with P = (16, 20) and Q = (41, 120). Note that the line y ≡ 4x + 83 (mod 127)
that connects thes points "repeats" itself in the plane ("the modulo effect").

Figure 3.1: Points addition over E/GF (p)
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3.1 Group order

We said that an elliptic curve defined over a finite field has a finite number of
points. An important question that we need to answer is: how many points are
there exactly? Firstly, let’s say that the number of points in a group is called
the order of the group. Trying all the possible values for x from 0 to p1 is not
a feasible way to count the points, as it would require O(p) steps, and this is
"hard" if p is a large prime. Luckily, there’s a faster algorithm for computing
the order: Schoof’s algorithm. The algorithm was the first deterministic poly-
nomial time algorithm for counting points on elliptic curves. Before Schoof’s
algorithm, approaches to counting points on elliptic curves such as the naive
and baby-step-giant-step algorithms were, for the most part, tedious and had
an exponential running time.
Let E be an elliptic curve over a finite field Fp where p is a prime 6= 2, 3. The
short Weistrass equation is given by:

y2 = x3 + ax+ b

with a, b ∈ Fp.
In order to count the points on an elliptic curve, we compute the cardinality
of E(Fp). Schoof’s approach to computing the cardinality #E(Fp) makes use
of Hasse’s theorem on elliptic curves (see appendix A) along with the Chinese
remainder theorem (see appendix B) and division polynomials.
Hasse’s theorem tells us that the cardinality of the group of points is

|p+ 1#E(Fp)| ≤ 2
√
p

or equivalently
#E(Fp) = p+ 1− t,

with |t| ≤ 2
√
p we now have that computing the cardinality of t modulo N

where N > 4
√
p is sufficient for determining t, and thus #E(Fp). While there is

no efficient way to directly compute t (mod N) for general N , it is possible to
compute t (mod l) for l a small prime. We choose S = {l1, l2, ..., lr} to be a set
of distinct primes such that

∏r
i=1 li = N > 4

√
p. Given t (mod li) for all li ∈ S,

the chinese remainder theorem allows us to compute t (mod N). In order to
compute t (mod l) for a prime l 6= p, we make use of the theory of the Frobenius
endomorphism φp

φp : E(Fp)→ E(Fp)

(x, y)→ φp(x, y) = (xp, yp)

which has the following property:

φ2
p − tφp + p = 0 ∀P ∈ E(Fp)
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3.2 A cyclic subgroup

We will try here to construct a cyclic subgroup using scalar multiplication

nP = P + P + ...+ P︸ ︷︷ ︸
n times

This multiplication has interesting properties in Fp. Take for example the curve
y2 ≡ x3 + 2x + 3 (mod 97) and the point P = (3, 6). Now calculate all the
multiples of P :

• 0P = 0

• 1P = (3, 6)

• 2P = (80, 10)

• 3P = (80, 87)

• 4P = (3, 91)

• 5P = 0

• 6P = (3, 6)

• 7P = (80, 10)

• 8P = (80, 87)

• 9P = (3, 91)

• ...

Here we can immediately spot two things: firstly, the multiples of P are just five:
the other points of the elliptic curve never appear. Secondly, they are repeating
cyclically. We can write:

• 5kP=0

• (5k+1)P=P

• (5k+2)P=2P

• (5k+3)P=3P

• (5k+4)P=4P

Not only that, but we can immediately verify that these five points are closed
under addition. Which means: however I add 0, P, 2P, 3Por4P , the result is
always one of these five points. Again, the other points of the elliptic curve
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never appear in the results. The same holds for every point, not just for P =
(3, 6). In fact, if we take a generic P :

nP +mP = P + P + ...+ P︸ ︷︷ ︸
n times

+P + P + ...+ P︸ ︷︷ ︸
m times

= P + P + ...+ P︸ ︷︷ ︸
n+m times

= (n+m)P

Which means: if we add two multiples of P , we obtain a multiple of P (i.e.
multiples of P are closed under addition). This is enough to prove that the set
of the multiples of P is a cyclic subgroup of the group formed by the elliptic
curve. The point P is called generator or base point of the cyclic subgroup.

3.3 Subgroup order

A question to ask is: what is the order of the subgroup generated by a point P ?
or, equivalently, what the order of P is? To answer this question, we need to
consider the following:

• The order is the number of points of the subgroup. So it is the smallest
positive integer n such that nP = 0.

• The order of the subgroup is linked to the order group by Lagrange’s the-
orem.

Lagrange’s theorem:
For any finite group G, the order of every subgroup H of G divides the order of
G.
These two information give us a way to find out the order of a subgroup with
base point P :

• Calculate the elliptic curve’s N using Schoof’s algorithm.

• Find out all the divisors of N .

• For every divisor n of N , compute nP .

• The smallest n such that nP = 0 is the order of the subgroup.

Example:
Let (E) : y2 = x3 − x + 3 be an elliptic curve over F37. (E) forms a group
of order N = 42 (Schoof’s algorithm). Thus, its subgroups may have order
n = 1, 2, 3, 6, 7, 14, 21 or 42. If we try P = (2, 3) we can see that P 6= 0, 2P 6=
0, ..., 7P = 0, hence the order of the generated subgroup is n = 7.

In view of this example, it is clear that the hardest step is to find a suitable
point P to generate the subgroup. That is: we won’t choose a point and then

20



calculate its order, but we will do the opposite; we will first choose an order that
looks good enough anf then we will look for a suitable point. How?

Lagrange’s theorem implies that the number h = N
n

is always an integer
(because n is a divisor ofN ). This number is called the cofactor of the subgroup.
For every point P of an elliptic curve we have NP = 0 because N is a multiple
of any candidate n. Thus,

n(hP ) = 0

which means that the pointG = hP generates a subgroup of order n if n is prime
(otherwise the order will be one of the divisors of n) and if G 6= 0 in which case
the subgroup has order 1.
In the light of this, we can outline the following algorithm:

• Calculate ther order N of an elliptic curve.

• Choose a prime order n of the subgroup.

• Compute the cofactor h = N/n.

• Choose a random point P on the curve.

• Compute G = hP .

• If G = 0, then go to the fourth step. Otherwise we have found a generator
of a subgroup with order n and cofactor h.

3.4 Discrete logarithm problem

As we did when working with continuous elliptic curves, we are now going to
discuss the question: if we know P and Q, what is k such that Q = kP ?
This problem, which is known as the discrete logarithm problem for elliptic
curves, is believed to be a "hard" problem, in that there is no known polynomial
time algorithm that can run on a classical computer. There are, however, no
mathematical proofs for this belief.
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Chapter 4

Examples of ECC algorithms

Our elliptic curve algorithms will work in a cyclic subgroup of an elliptic curve
over a finite field. Therefore, our algorithms will need the following parameters:

• The prime p that specifies the size of the finite field

• The coefficients a and b of the elliptic curve equation.

• The base point G that generates our subgroup.

• The order n of the subgroup.

• The cofactor h of the subgroup.

In conclusion, the domain parameters for our algorithms are the sextuple (p, a, b, G, n, h).
Actually, the coefficients a and b are genrated using a seed and hash functions in
order to give some sort of assurance that the curve has not been specially crafted
to expose vulnerabilities known to the author.

Algorithm scheme:

• The private key is a random integer d chosen from {1, ..., n− 1}.

• The public key is the point H = dG.

If we know d andG findingH is easy. But if we knowH andG, finding d is hard
(the discrete logarithm problem).

4.1 ECDH: Elliptic Curve Diffie-Hellman

ECDH is a variant of the Diffie-Hellman algorithm for elliptic curves. It is ac-
tually a key-agreement protocol. The problem it solves is the following: two
parties, Alice and Bob, want to exchange information securely, so that a third
party, the Man In the Middle, may intercept them, but may not decode them.
Here’s how it works:
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• First, Alice and Bob generate their own private and public keys. We have
the private key dA and the public key HA = dAG for Alice, and the keys dB
and HB = dBG for Bob. Note that both Alice and Bob are using the same
domain parameters: the same base point G on the same elliptic curve on
the same finite field.

• Alice and Bob exchange their public keys HA and HB over an insecure
channel. The Man In the Middle would intercept HA and HB, but won’t be
able to find out neither dA nor dB without solving the discrete logarithm
problem.

• Alice calculates S = dAHB (using her own private key and Bob’s public
key), and Bob calculates S = dBHA (using his own private key and Alice’s
public key). Note that S is the same for both Alice and Bob, in fact:

S = dAHB = dA(dBG) = dB(dAG) = dBHA

4.2 ECDSA: Elliptic Curve Digital Signature

The scenario is the following: Alice wants to sign a message with her private
key (dA), and Bob wants to validate the signature using Alice’s public key (HA).
Nobody but Alice should be able to produce valid signatures. Everyone should
be able to check signatures. Again, Alice and Bob are using the same domain
parameters. ECDSA works on the hash of the message, rather than on the mes-
sage itself. The choice of the hash function is up to us, but it should be obvious
that a cryptographically secure hash function should be chosen. The hash of the
message ought to be truncated so that the bit length of the hash is the same as
the bit length of n (the order of the subgroup). The truncated hash is an integer
and will be denoted as z.
The algorithm performed by Alice to sign the message works as follows:

• Take a random integer k chosen from {1, ..., n1} (where n is still the sub-
group order).

• Calculate the point P = kG (where G is the base point of the subgroup).

• Calculate the number r = xP (mod n) (where xP is the x coordinate of P ).

• If r = 0, then choose another k and try again.

• Calculate s = k−1(z + rdA) (mod n) (where dA is Alice’s private key and
k−1 is the multiplicative inverse of k modulo n).

• If s = 0, then choose another k and try again.

The pair (r, s) is the signature.
In order to verify signatures we’ll need Alice’s public key HA , the (truncated)
hash z and the signature (r, s).
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• Calculate the integer u1 = s−1z (mod n).

• Calculate the integer u2 = s−1r (mod n).

• Calculate the point P = u1G+ u2HA.

The signature is valid only if r = xP (mod n).
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Appendix A

Hasse’s theorem

Let E(Fp) be an elliptic curve over the finite field Fp with p prime. Then there
exists a unique t ∈ Z such that

#E(Fp) = p+ 1− t where |t| < 2
√
p

Sketch of the proof:
Define the Frobenius map fp : E(Fp) → E(Fp) where (x, y) → (xp, yp), then
fp(P ) = P ∀P ∈ E because xp ≡ x (mod p) (Little Fermat’s Thoerem). Thus,
(fp − 1)(P ) = 0 which means ker(fp − 1) = E(Fp). Further:

#E(Fp) = #ker(fp − 1) = deg(fp − 1)

Now let t = p+ 1−#E(Fp). Then by Washington proposition 3.16 in [?], for
r, s ∈ Z and gcd(s, p) = 1 we have

deg(rfp − s) = r2deg(fp) + s2deg(−1) + rs (deg(fp − 1)− deg(fp)− deg(−1))

= r2p+ s2 + rs(#E(Fp)− p− 1)

= r2p+ s2 + rs (p+ 1− t− p− 1)

= r2p+ s2 − rst

Since deg(rfp − s) ≥ 0 and s 6= 0 then dividing through by s2 gives

p
(r
s

)2
− t
(r
s

)
+ 1 ≥ 0

Having that the set of rational numbers r
s

with gcd(s, p) = 1 is dense in R implies
that for all x ∈ R we have

px2 − tx+ 1 ≥ 0 (A.0.1)

So quadratic equation (A.0.1) has no real roots, hence its discriminant ∆ is non-
positive. Thus

∆ = t2 − 4p ≤ 0⇒ |t| < 2
√
p

Completing the proof.
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Or alternatively, one can use Cauchy-Swartz inequality defining the inner prod-
uct

< f, g >= deg(f) + deg(g)− deg(f − g)

This yields:

| < f, g > |2 ≤< f, f > . < g, g >

|deg(f) + deg(g)− deg(f − g)|2 ≤ 2deg(f)2deg(g)

subsituing f and g with fp and −1 completes the proof.
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Appendix B

Chinese remainder theorem

Let n1, n2, ..., nk be pairwise relatively primes(pgcd(ni, nj) = 1∀i 6= j). For all
a1, a2, ..., ak, there exists a unique integer x modulo n =

∏k
i=1 ni, such that:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk) (B.0.1)

A solution x might be computed as the following: For every i, the integers ni

and n̂i = n
ni

= n1...ni−1ni+1...nk are pairwise relatively primes, and according to
BÃl’zout theorem there are integers ui et vi such that uini+vin̂i = 1. Let ei = vin̂i,
thus we have:

ei ≡ 1 (mod ni)

ei ≡ 0 (mod nj) pour j 6= i

A particular solution to this system of equations is:

x =

aiei∑
i=1

This is a unique solution modulo n =
∏k

i=1 ni.
Proof:
Suppose there are 2 solutions x et y to the system (B.0.1). We have:

x− y ≡ 0 (mod n1)

x− y ≡ 0 (mod n2)

...

x− y ≡ 0 (mod nk)

Thus:
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(x− y)k ≡ 0 (mod
k∏

i=1

ni)

x− y ≡ 0 (mod n)

y ≡ x (mod n)
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