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RECENT DEVELOPMENTS IN THE THEORY OF ANDERSON

MODULES

BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Abstract. Let K be a global function field over a finite field of characteristic

p and let A be the ring of elements of K which are regular outside a fixed

place of K. This report presents recent developments in the arithmetic of
special L-values of Anderson A-modules. Provided that p does not divide the

class number of K, we prove an “analytic class number formula” for Anderson

A-modules with the help of a recent work of Debry. For tensor powers of the
Carlitz module, we explain how to derive several log-algebraicity results from

the class number formula for these Anderson modules.
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Introduction

A classic topic in number theory is the study of the Riemann zeta function ζ(.)
and its special values ζ(n) for n ∈ Z. In 1935, Carlitz suggested to transport the
classical results to the function field setting in positive chracteristic. In [19], he con-
sidered the rational function field equipped with the infinity place and introduced
the Carlitz zeta values ζA(n) which are considered as the analogues of ζ(n). They
are related to the so-called Carlitz module which is the first example of a Drinfeld
module.
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In 1970s, Drinfeld [25, 26] invented many fundamental objects including Drinfeld
modules. These objects are associated to any function field equipped with an
arbitrary place. In 1986, the story continued with Anderson [1] who developed
the theory of Drinfeld modules in higher dimensions. Over the last fifty years, the
arithmetic study of Drinfeld modules and Anderson modules has played a dominant
role in function field arithmetic.

In recent years, the theory of special L-values of Anderson modules has rapidly
developed due to the fundamental works of Taelman [54] and Pellarin [48]. The
present paper aims to report recent developments in this topic. In particular, we
focus on the theory of the number class formula à la Taelman and its possible
connection with that of log-algebraicity.

Outline.

The paper is organized as follows.

• In Section 1, we fix some notation and give basic definitions of the Goss
map and the co-volumes of lattices.
• In Section 2, we introduce the notion of Anderson modules and provide a

number of examples.
• In Section 3, we study Anderson modules defined over a finite extension of

our function field. We introduce several fundamental objects such as the
unit module and the class module defined by Taelman as well as the module
of Stark units.
• In Section 4, we study the arithmetic of Anderson modules. In Section

4.1, we state a conjecture on the class formula à la Taelman for Anderson
modules and report what is known about this conjecture. In Section 4.2,
we explain a key result due to Debry in 2016 and establish the main result
of this paper which proves Conjecture 4.1 under a mild condition (Theorem
4.4).
• In Section 5, we provide an application of the class formula given in our

recent paper [11]. We investigate tensor powers of the Carlitz module and
derive some log-algebraicity results from the class formula for these An-
derson modules, which generalize the fundamental work of Anderson and
Thakur [7].
• In Section 6, we briefly give an (incomplete) list of references for related

topics.
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1. Background

This section follows closely the presentation given in [10], Section 2.3, [31], Sec-
tion 8.2 and [54], Proposition 4.
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1.1. Notation.

Throughout this paper, K denotes a global function field of genus g over a finite
field Fq of characteristic p, having q elements (Fq is algebraically closed in K). We
fix a place ∞ of degree d∞ ≥ 1 of K and denote by A the ring of elements of K
which are regular outside ∞. The ∞-adic completion K∞ of K is equipped with
the normalized ∞-adic valuation v∞ : K∞ → Z ∪ {+∞} and has residue field F∞.
The completion C∞ of a fixed algebraic closure K̄∞ of K∞ comes with a unique
valuation extending v∞, it will still be denoted by v∞. We define the Frobenius
τ : C∞ → C∞ as the Fq-algebra homomorphism which sends x to xq.

We fix π ∈ K∞ such that v∞(π) = 1 and π′ ∈ K̄∞ such that π′d∞ = π. Finally,
we choose a sign function sgn : K×∞ → F×∞, that is, a group homomorphism such
that sgn |F×∞= IdF×∞ and sgn(π) = 1.

Example 1.1 (The basic genus 0 case).

Our basic example deals with the case when g = 0 and d∞ = 1. It is called the
basic genus 0 case or the case A = Fq[θ].

Let K = Fq(θ) be the rational function field with an indeterminate θ. Let ∞ be
the infinity place of degree d∞ = 1. Then A = Fq[θ] and K∞ = Fq(( 1

θ )) equipped

with the discrete valuation v∞. We choose π = 1
θ and observe that v∞(θ) = −1.

For d ∈ N, A+,d denotes the set of monic elements in A of degree d. Note that A
is a principal ideal domain.

Example 1.2 (Principal ideal domains).

Another important class of rings A consists of principal ideal domains. In partic-
ular, d∞ = 1 . Apart from the polynomial ring A = Fq[θ] mentioned above, there
are only four other rings. We extract the list from the article of Thakur [56].

• Example A: A = F3[x, y]/(y2 − x3 + x+ 1) for which g = 1.
• Example B: A = F4[x, y]/(y2 + y − x3 − α) for which g = 1. Here α is an

element of F4 satisfying α2 + α+ 1 = 0.
• Example C: A = F2[x, y]/(y2 + y − x3 − x− 1) for which g = 1.
• Example D: A = F2[x, y]/(y2 + y − x5 − x3 − 1) for which g = 2.

1.2. The Goss map.

We observe that A is a Dedekind domain. Let I(A) be the group of non-zero

fractional ideals of A and let P(A) = {xA, x ∈ K×} ⊂ I(A). We set Pic(A) = I(A)
P(A) .

Recall that if Cl(K) denotes the group of classes of degree zero divisors of K, we
have an exact sequence of finite abelian groups

0→ Cl(K)→ Pic(A)→ Z
d∞Z

→ 0.

Let deg : I(A)→ Z be the group homomorphism given by

deg(I) := dimFq
(A/I), for I ∈ I(A), I ⊂ A.

We set deg(x) := deg(xA) and observe that

deg(xA) = −d∞v∞(x), for x ∈ K×.
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Let I ∈ I(A), then there exists an integer h ≥ 1 such that Ih = xA for some
x ∈ K×. Let u be the unique element in K̄∞ such that v∞(u− 1) > 0 and

uh =
xπ−v∞(x)

sgn(x)
.

Following Goss ([31], Section 8.2), we set

[I] := uπ′−deg(I).

One can show that the map [.] : I(A) → K̄×∞ is a group homomorphism (see [31],
Section 8.2). Further, we have

[xA] =
x

sgn(x)
, for x ∈ K×.

Let M be a finite A-module, then there exist non-zero integral ideals I1, . . . , In of
A such that there is an isomorphism of A-modules

M '
n∏
j=1

A

Ij
.

We define
[M ]A := [I1 · · · In].

If we have an exact sequence of finite A-modules 0→M1 →M2 →M3 → 0, then

[M2]A = [M1]A[M3]A.

1.3. Lattices and co-volumes.

Let L/K be a finite extension of fields and let V be a finite dimensional K∞-
vector space. Let M be an A-submodule of V . We say that M is an A-lattice in V
if M is discrete and cocompact in V.

If M,N are two A-lattices in V, then one can show that there exists an isomor-
phism of K∞-vector spaces σ : V → V such that σ(M) ⊂ N ([10], Lemma 2.8).
The co-volume of these lattices is defined by

[M : N ]A :=
detK∞ σ

sgn(detK∞ σ)

[
N

σ(M)

]−1

A

.

One can show that [M : N ]A does not depend on the choice of σ ([10], Lemma 2.9).
Furthermore, if N ⊂M, then we have

[M : N ]A =

[
M

N

]
A

.

2. Anderson modules

2.1. Definitions.

Let d ≥ 1 be an integer. For an Fq-algebra B, let M = (aij)1≤i,j≤d ∈ Md×d(B)

be a d × d matrix with coefficients in B. If k ≥ 0 is an integer, we set M (k) to be

the matrix whose ij-entry is given by (ai,j)
(k) := (aq

k

i,j). We denote by Md×d(B){τ}
the non-commutative ring of twisted polynomials in τ with coefficients in Md×d(B)
equipped with the usual addition and the commutation rule

τkM = M (k)τk, k ∈ N.
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Now let L be a field extension of Fq equipped with an Fq-algebra homomorphism
ι : A→ L. An Anderson A-module (or an Anderson module for short) of dimension
d over L is an Fq-algebra homomorphism

E : A→Md×d(L){τ}

such that

1) For all a ∈ A, if we write Ea =
∑
k≥0Ea,kτ

k, Ea,k ∈Md×d(L), then we require

(Ea,0 − ι(a)Id)
d = 0d.

2) There exists a ∈ A such that Ea 6= Ea,0.

We denote by ∂E : A→Md×d(L) the Fq-algebra homomorphism given by ∂E(a) =
Ea,0 for a ∈ A.

Remark 2.1. By definition, a Drinfeld module over L is an Anderson module of
dimension 1 over L, i.e. it is an Fq-algebra homomorphism

φ : A→ L{τ}

such that

1) For all a ∈ A, if we write φa =
∑
k≥0 φa,kτ

k, φa,k ∈ L, then we have φa,0 = ι(a).

2) There exists a ∈ A such that φa 6= φa,0.

Let E be an Anderson module of dimension d over L as above and let B be an
A-algebra. We can define two A-module structures on Bd. The first one is denoted
by E(B) where A acts on Bd via E:

a ·

m1

...
md

 =
∑
k≥0

Ea,k


mqk

1
...

mqk

d

 , for a ∈ A,

m1

...
md

 ∈ Bd.
The second one is denoted by Lie(E)(M) where A acts on Bd via ∂E :

a ·

m1

...
md

 = Ea,0

m1

...
md

 , for a ∈ A,

m1

...
md

 ∈ Bd.
2.2. The Carlitz module.

When A = Fq[θ], i.e. the basic genus 0 case (see Example 1.1), the first example
of a Drinfeld module is the Carlitz module over K defined by Carlitz [19] in 1935.
It is the Fq-algebra homomorphism C : A→ K{τ} given by

Cθ = θ + τ.

More generally, a Drinfeld module over L is an Fq-algebra homomorphism φ : A→
L{τ} given by

φθ = ι(θ) + higher terms in τ.
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2.3. Tensor powers of the Carlitz module.

We still work with A = Fq[θ]. Then an Anderson module of dimension d over
L is an Fq-algebra homomorphism E : A → Md×d(L){τ} given by a non-constant
twisted polynomial

Eθ =
∑
k≥0

Eθ,kτ
k, Eθ,k ∈Md×d(L)

such that

(Eθ,0 − ι(θ)Id)d = 0d.

Of special interest are tensor powers of the Carlitz module which are studied in
details by Anderson and Thakur [7]. Let n ≥ 1 be an integer. We define the n-th
tensor power of the Carlitz module C⊗n : A→Mn×n(K){τ} by

C⊗nθ =


θ 1 · · · 0

θ
. . .

...
θ 1

θ

+


0 0 · · · 0
...

...
...

0 0 · · · 0
1 0 · · · 0

 τ.

2.4. Finite Drinfeld modules.

For general A, Gekeler [30] investigated finite Drinfeld modules, i.e. those defined
over a finite field L. He developed an analogy of these modules with abelian varieties
and obtained the analogue of Tate’s isogeny theory.

2.5. Sign-normalized rank one Drinfeld modules.

For general A, in parallel with the seminal work of Drinfeld [25, 26], Hayes [37, 38]
studied the theory of rank one Drinfeld modules which play the role of the Carlitz
module when A = Fq[θ]. This is the reason why one often refers sign-normalized
rank one Drinfeld modules to Drinfeld-Hayes modules.

For simplicity, we suppose that d∞ = 1. We refer the interested reader to Hayes’
work [37, 38] (see also [3, 57] for d∞ = 1 and [10] or [31], Chapter 7 for general
d∞). By definition, a sign-normalized rank one Drinfeld module is an Fq-algebra
homomorphism φ : A→ K̄∞{τ} such that

φa = a+ · · ·+ sgn(a)τdeg a, for a ∈ A \ {0}.

By [31], Theorem 7.2.15, there always exist sign-normalized rank one Drinfeld mod-
ules.

Let H be the Hilbert class field of A, i.e. the maximal abelian everywhere
unramified extension of K in which∞ splits completely. Denote by OH the integral
closure of A in H. One can show that φa ∈ OH{τ} for a ∈ A. Further, if φ is a
sign-normalized rank one Drinfeld module and σ ∈ Gal(H/K), then σ(φ) is also a
sign-normalized rank one Drinfeld module. This gives rise to the bijection between
the set of sign-normalized rank one Drinfeld modules and the finite set Gal(H/K).
We note that the cardinal of Gal(H/K) is equal to the class number |Cl(K)| of K.
In particular, there are exactly |Cl(K)| sign-normalized rank one Drinfeld modules.

Example 2.2 (The basic genus 0 case).
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When A = Fq[θ], the unique sign-normalized rank one Drinfeld module is the
Carlitz module C.

Example 2.3 (Principal ideal domains).

We work with the four PIDs for which Pic(A) = 1 (see Example 1.2). Since
|Cl(K)| = 1, there is a unique sign-normalized rank one Drinfeld module for each
A. Thakur gave an explicit formula of these Drinfeld modules in [56], Sections II
and III.

For example, in Example A where A = F3[x, y]/(y2 − x3 + x + 1), the unique
sign-normalized rank one Drinfeld module is given by

φx = x+ x1τ + τ2,

φy = y + y1τ + y2τ
2 + τ3,

where

x1 = y(x3 − x), y1 = y(y3 − y), y2 = y9 + y3 + y.

Example 2.4 (Elliptic curves).

When g = 1 and d∞ = 1, explicit formulas for sign-normalized rank one Drinfeld
modules are given by Anderson ([2], Section 5.5). The interested reader could be
referred to [34] for similar calculations.

2.6. Tensor powers of sign-normalized rank one Drinfeld modules.

One can define tensor powers of sign-normalized rank one Drinfeld modules by
[36], Sections 2 and 5. These Anderson modules are studied in a forthcoming work
of the authors [12]. We should mention that in the case of elliptic curves when
g = 1 and d∞ = 1, they are investigated by a different method by Green [32, 33].

3. Arithmetic of Anderson modules

3.1. Setup.

We are now interested in Anderson modules defined over a finite extension of K.
Let L/K be a finite extension and let OL be the integral closure of A in L. We set
L∞ := L⊗K K∞.

Let E/OF be an Anderson module of dimension d ≥ 1 defined over OL, i.e. for
all a ∈ A, we require that Ea ∈Md×d(OL){τ}. In particular, we have an Fq-algebra
homomorphism ∂E : A→Md×d(OL) which extends uniquely to a continuous map

∂E : K∞ →Md×d(L∞).

3.2. Exponential series and logarithm series.

One can show that there exist unique power series expE , logE ∈ Id+Md×d(L){{τ}}τ
satisfying the following equalities in Md×d(L){{τ}}:

expE ∂E(a) = Ea expE , a ∈ A,
logE Ea = ∂E(a) logE , a ∈ A,

expE logE = logE expE = Id.
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These power series expE and logE are called the exponential series and the logarithm
series attached to E. The exponential series expE converges on Lie(E)(L∞) (see for
example [31], Section 5.9, and the original article of G. Anderson [1]). In particular,
expE induces a homomorphism of A-modules

expE : Lie(E)(L∞)→ E(L∞).

We should stress that the logarithm series logE does not converge everywhere but
only on a neighborhood of 0.

3.3. Unit and class modules.

Following L. Taelman [52], we introduce the unit module attached to E/OL as
follows:

U(E/OL) := {x ∈ Lie(E)(L∞) | expE(x) ∈ E(OL)}.
By [52], one can easily deduce that U(E/OL) is in fact an A-lattice in Lie(E)(L∞).
Further, the exponential series expE induces an exact sequence of A-modules:

0→ U(E/OL)→ Lie(E)(L∞)→ E(L∞)

E(OL)
→ E(L∞)

E(OL) + expE(Lie(E)(L∞))
→ 0.

One can show that

H(E/OL) :=
E(L∞)

E(OL) + expE(Lie(E)(L∞))

is a finite A-module which is called the class module attached to E/OL.

If M is an A-lattice in Lie(E)(L∞), the regulator of M is defined by

RegE/OL
(M) := [Lie(E)(OL) : M ]A.

In particular,

RegE/OL
(U(E/OL)) := [Lie(E)(OL) : U(E/OL)]A.

3.4. Stark units.

We recall the notion of Stark units which is first introduced by two of the authors
for Drinfeld modules when A = Fq[θ] ([16]) and subsequently developed by the
authors for Anderson modules for general A ([10, 11]).

Let z be an indeterminate over K∞ and let Tz(K∞) := F∞[z]((π)) be the Tate
algebra in the variable z with coefficients in K∞. We set

Tz(L∞) := L∞ ⊗K∞ Tz(K∞).

The map τ : L∞ → L∞, x 7→ xq, extends uniquely into a continuous homomorphism

of Fq[z]-algebras τ : Tz(L∞) → Tz(L∞). Let Ẽ : A[z] → Md×d(L[z]){τ} be the
morphism of Fq[z]-algebras such that

Ẽa =
∑
k≥0

zkEa,kτ
k, a ∈ A.

There exists a unique element expẼ ∈ Id + τMd×d(L[z]){{τ}} such that

expẼ ∂E(a) = Ẽa expẼ , a ∈ A.
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If expE =
∑
i≥0Eiτ

i, Ei ∈Md×d(L), one can show that

expẼ =
∑
i≥0

ziEiτ
i.

In particular, expẼ converges on Lie(Ẽ)(Tz(L∞)) and induces a homomorphism of
A[z]-modules

expẼ : Lie(Ẽ)(Tz(L∞))→ Ẽ(Tz(L∞)).

Let ev : Lie(Ẽ)(Tz(L∞)) → Lie(E)(L∞) be the evaluation at z = 1. Observe
that ev induces a short exact sequence of A-modules :

0→ (z − 1) Lie(Ẽ)(Tz(L∞))→ Lie(Ẽ)(Tz(L∞))→ Lie(E)(L∞)→ 0.

We define

USt(E/OL) := ev({x ∈ Lie(Ẽ)(Tz(L∞)) | expẼ(x) ∈ Ẽ(OL[z])}).

We observe that USt(E/OL) ⊂ U(E/OL). The A-module USt(E/OL) is called the
module of Stark units attached to E/OL. One can prove that USt(E/OL) is an
A-lattice in Lie(E)(L∞) and that we have (see [10, 11, 16]):[

U(E/OL)

USt(E/OL)

]
A

= [H(E/OL)]A.

In particular,

RegE/OL
(USt(E/OL)) = RegE/OL

(U(E/OL)) · [H(E/OL)]A.

We observe that [H(E/OL)]A ∈ K̄ where K̄ is the algebraic closure of K in K̄∞.
This leads us to the following open problem:

Problem 3.1. Let E/OL be an Anderson module. Show that

RegE/OL
(USt(E/OL)) 6∈ K̄.

4. The class formula à la Taelman

We continue with the notation of Section 3.1. Recall that L/K is a finite exten-
sion and OL is the integral closure of A in L. We have set L∞ = L⊗K K∞.

4.1. The class formula à la Taelman: a conjecture.

Let E be an Anderson module of dimension d defined over OL. For any maximal
ideal P of OL, we put FP = OL

P which is a finite extension of Fq. Then E(FP)

and Lie(E)(FP) are finite A-modules. Thus it makes sense to consider the quotient
[Lie(E)(FP)]A

[E(FP)]A
. The special L-value attached to E/OL is defined by

LA(E/OL) :=
∏
P

[Lie(E)(FP)]A
[E(FP)]A

,

where P runs through the maximal ideals of OL.

We state a conjecture on special L-values of Anderson modules which is also
known as the class formula à la Taelman:



10 BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Conjecture 4.1. Let E be an Anderson module defined over OL. Then

1) (Convergence) The infinite product

LA(E/OL) =
∏
P

[Lie(E)(FP)]A
[E(FP)]A

converges in C∞.

2) (Class formula) We have the class formula for E/OL:

RegE/OL
(USt(E/OL)) = LA(E/OL),

or equivalently,

[Lie(E)(OL) : U(E/OL)]A · [H(E/OL)]A = LA(E/OL).

We mention below what is known about this Conjecture.

(1) When A = Fq[θ] (see Example 1.1), Conjecture 4.1 is true for the Carlitz
module defined over the ring A itself by the pioneer work of Carlitz [19]. In
2012, Taelman made a breakthrough and proved that Conjecture 4.1 holds
for any Drinfeld module E/OL. Shortly after, Fang [29] and Demeslay
[23, 24] proved the class formula for any Anderson module E/OL. While
the proof of Demeslay follows closely the original proof of Taelman, that
of Fang is based on the work of V. Lafforgue [41] using shtukas and the
theory of Fontaine in equal characteristics. In particular, the convergence
part relies heavily on the works of Anderson [4] and Böckle and Pink ([17],
Chapter 8).

(2) For the four extra rings A which are PIDs (see Example 1.2), Thakur [56, 59]
proved the class formula for the unique sign-normalized rank one Drinfeld
module over A (see Example 2.3).

(3) For general A, in [10], the authors succeeded in proving the above Conjec-
ture for sign-normalized rank one Drinfeld modules over any finite extension
of K. The proof is based on the work of Gekeler [30] for the convergence
and on the arithmetic of Stark units for the class formula.

(4) For general A satisfying the hypothesis that p does not divide |Cl(K)|,
Debry [22] showed that Conjecture 4.1 holds for any Drinfeld module E/OL.

(5) For general A, the validity of this Conjecture for Drinfeld modules hav-
ing good reduction everywhere is a consequence of the recent work of M.
Mornev [45].

(6) For general A, Taelman ([51], Proposition 8) showed that if E is abelian
or A-finite (see [36], Section 5 for definitions), then the convergence part
(Conjecture 4.1, Part 1)) holds. In particular, LA(E/OL) is well-defined
for any Drinfeld module E/OF since any Drinfeld module is abelian and
A-finite (see for example [36], Corollary 5.15).

In the rest of this Section, based on the work of Debry [22], we will explain the
validity of this Conjecture for any Anderson module E/OL under the hypothesis
that p does not divide |Cl(K)|, see Theorem 4.4.

4.2. A theorem of Debry and its application to the class formula.
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We set

Z(K,∞) := {x ∈ 1 + πF∞[[π]] | NK∞/Fq(( 1
a ))(x) = 1 for all a ∈ A \ Fq, }.

We note that 1+πF∞[[π]] is a Zp-module by exponentiation and that Z(K,∞) is a
sub-Zp-module of 1 + πF∞[[π]]. Recall that Cl(K) is the group of classes of degree
zero divisor of K and denote by Cl(K)[p] the p-torsion subgroup of Cl(K). By
[22], Section 4 (see in particular Proposition 4.14, Corollary 4.15, Proposition 4.20,
Corollary 4.21 and the Remarks after Corollary 4.22), it follows that Z(K,∞) is a
finitely generated Zp-module. Further, Debry proved the following theorem ([22],
Chapter 4):

Theorem 4.2 (Debry 2016). There exists an injective group homomorphism

Z(K,∞)

Z(K,∞)p
↪→ Cl(K)[p].

As an immediate application, we get the following corollary:

Corollary 4.3. Suppose that p does not divide |Cl(K)|. Let (αn)n∈N be a sequence
of elements in K×∞ such that for all n ∈ N, we have sgn(αn) = 1. We assume that
for all a ∈ A \ Fq the infinite product

∏
n∈NNK∞/Fq(( 1

a ))(αn) converges in Fq(( 1
a )).

Then the infinite product
∏
n∈N αn converges in K×∞.

Proof.

1) Since p does not divide |Cl(K)|, Theorem 4.2 implies that

Z(K,∞)

Z(K,∞)p
= 1.

Since Z(K,∞) is a finitely generated Zp-module, by Nakayama’s Lemma, we obtain

Z(K,∞) = {1}.

2) We observe that

lim
n→+∞

NK∞/Fq(( 1
a ))(αn) = 1, for all a ∈ A \ Fq.

Since sgn(αn) = 1, we deduce that

αn ∈ 1 + πF∞[[π]], for n� 0.

3) Let (βn)n∈N be a convergent sub-sequence of (αn)n∈N. We put β = limn→+∞ βn.
It follows that

NK∞/Fq(( 1
a ))(β) = 1, for all a ∈ A \ Fq.

Thus β ∈ Z(K,∞). We conclude that β = 1.

4) By Step 3), the sequence (αn)n∈N admits only 1 as an accumulation point. Since
1+πF∞[[π]] is compact, (αn)n∈N converges to 1. Hence

∏
n∈N αn converges in K∞.

The proof is finished. �

We are now ready to prove the main theorem of this Section.
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Theorem 4.4. Suppose that p does not divide |Cl(K)|. Let E be an Anderson
module defined over OL. Then Conjecture 4.1 holds for E/OL, i.e. LA(E/OL) is
well-defined and we have the equality:

RegE/OL
(USt(E/OL)) = LA(E/OL).

Proof. Let pu be the biggest power of p dividing d∞.

1) Since p does not divide |Cl(K)|, by the proof of Corollary 4.3, it follows that

Z(K,∞) = 1.

2) We claim that LA(E/OL) converges. In fact, for any element a ∈ A \ Fq, the
Anderson module E : A→Md×d(OL){τ} induces an Anderson module E : Fq[a]→
Md×d(OL){τ}. We have already mentionned that LFq [a](E/OL) is well-defined by
Demeslay [23, 24] and Fang [29] (see the discussion after Conjecture 4.1).

Let M be a finite A-module and let NK/Fq(a) : I(A) → I(Fq[a]) be the norm
map on fractional ideals. Then for any finite A-module M , if FittAM denotes the
Fitting ideal of M , we have

NK/Fq(a)(FittAM) = FittFq [a]M.

It follows that∏
P

NK∞/Fq(( 1
a ))

((
[Lie(E)(FP)]A

[E(FP)]A

)pu(qd∞−1)
)

= LFq [a](E/OL)p
u(qd∞−1).

We observe that for any maximal ideal P of OL, we have

sgn

((
[Lie(E)(FP)]A

[E(FP)]A

)pu)
= 1.

By Corollary 4.3, we conclude that LA(E/OL) is well-defined.

3) Now we prove the class formula for E/OL. We observe that LA(E/OL)p
u

and
RegE/OL

(USt(E/OL))p
u

lie in K∞. Thus

NK∞/Fq(( 1
a ))

(
LA(E/OL)p

u
)qd∞−1

= LFq [a](E/OL)p
u(qd∞−1),

and

NK∞/Fq(( 1
a ))

(
RegE/OL

(USt(E/OL))p
u
)qd∞−1

= Reg
Fq [a]

E/OL
(USt(E/OL))p

u(qd∞−1),

where Reg
Fq [a]

E/OL
denotes the regulator of the induced Anderson module E : Fq[a]→

Md×d(OL){τ}.
By the class formula for the induced Anderson modules E : Fq[a]→Md×d(OL){τ}

for a ∈ A \ Fq (see [23, 24, 29]), we obtain(
LA(E/OL)

RegE/OL
(USt(E/OL))

)pu
∈ F×∞Z(K,∞).

We note that

sgn
(
LA(E/OL)p

u
)

= sgn
(

RegE/OL
(USt(E/OL)p

u
)

= 1.
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Thus (
LA(E/OL)

RegE/OL
(USt(E/OL))

)pu
∈ Z(K,∞).

Since Z(K,∞) = 1, we obtain(
LA(E/OL)

RegE/OL
(USt(E/OL))

)pu
= 1.

The class formula follows.

The proof of Theorem 4.4 is finished. �

To end this Section, we would like to ask the following question.

Problem 4.5. Do there exist a global function field K/Fq and a place ∞ of K such
that Z(K,∞) 6= {1}?

5. An example: tensor powers of the Carlitz module

In this section, we work with tensor powers C⊗n of the Carlitz module for n ∈ N∗
which are studied extensively by Anderson and Thakur in [7]. We report our recent
work [11] which explains how to derive log-algebraicity identities from the class
formula for C⊗n.

Throughout this section, we deal with the basic genus 0 case (see Example 1.1).
Recall that K = Fq(θ), A = Fq[θ] and K∞ = Fq(( 1

θ )) equipped with the discrete
valuation v∞. For d ∈ N, recall that A+,d denotes the set of monic elements in A
of degree d.

5.1. The Carlitz-Goss zeta function and its special values.

We briefly recall the definition and some properties of the Carlitz-Goss zeta
function. We refer the interested reader to [31], Chapter 8 for more details.

Let S∞ = C×∞ × Zp. We have an injective group homomorphism

s : Z→ S∞
n 7→ (θn, n).

For (x, y) ∈ S∞, the following infinite sum converges in C∞:

ζA((x, y)) =
∑
d≥0

∑
a∈A+,d

( a
θd

)−y
x−d.

The function ζA : S∞ → C∞ is called the Carlitz-Goss zeta function. The Carlitz
zeta values are the special values of this zeta function and are given by

ζA(n) := ζA(s(n)) =
∑
d≥0

∑
a∈A+,d

a−n, n ∈ Z.
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One can prove that ζA(0) = 1 and one sees that ζA(n) converges in K∞ for n > 0.
The Carlitz-Goss zeta function has trivial zeroes: for n < 0 and n ≡ 0 (mod q−1),
we have

ζA(n) = 0.

Furthermore, for n < 0 and n 6≡ 0 (mod q − 1), one can show that

ζA(n) ∈ A \ {0}.

Recall (see Example 2.2) that C/A is the Carlitz module over A given by

Cθ = θ + τ.

Then there exists π̃ ∈ K̄∞ called the Carlitz period such that

{x ∈ C∞, expC(x) = 0} = π̃A.

One can prove that

π̃ = (−θ)
1

q−1 θ
∏
k≥1

(
1− θ

θqk

)−1

.

In 1941, Wade [60] showed that π̃ 6∈ K̄, i.e. π̃ is transcendental over K. Further-
more, for n ≥ 1 such that n ≡ 0 (mod q − 1), we have

ζA(n)

π̃n
∈ K×.

In 1991, J. Yu proved that ζA(n) 6∈ K̄ for n ∈ N∗ and furthermore, for all n ≥ 1

such that n 6≡ 0 (mod q − 1), ζA(n)
π̃n 6∈ K̄.

Problem 5.1.

Does the Carlitz-Goss zeta function satisfies a kind of functional equation remi-
niscent that of the Riemann zeta function ?

5.2. The class formula implies log-algebricity identities.

This section is based on the pioneer work of Anderson-Thakur [7] (see also [14,
46]) and on the recent paper of the authors ([11], Section 5). The reader interested
by similar results for general A could read [2, 3, 10].

Let n ≥ 1 be an integer and let k0 be the smallest integer such that qk0 ≥ n.
Recall (see Example 2.3) that the n-th tensor power of the Carlitz module C⊗n :
A→Mn×n(A){τ} is the Anderson module given by

C⊗nθ =


θ 1 · · · 0

θ
. . .

...
θ 1

θ

+


0 0 · · · 0
...

...
...

0 0 · · · 0
1 0 · · · 0

 τ.

The map ∂C⊗n : A→Mn×n(A) is given by

∂C⊗n(θ) =


θ 1 · · · 0

θ
. . .

...
θ 1

θ

 .
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We note that

L(C⊗n/A) = ζA(n).

In 1990, Anderson and Thakur proved the following fundamental result ([7], The-
orem 3.8.3): for n ≥ 1, there exists zn ∈ Lie(C⊗n)(K∞) such that expC⊗n(zn) ∈
C⊗n(A) and

ΓnζA(n) = ι(zn),

where expC⊗n is the exponential series associated to C⊗n, ι is the projection onto
the last coordinate and Γn ∈ A is the Carlitz factorial (see [31], Section 9). The
proof of Anderson and Thakur is based on the explicit expression of power sums
and the Anderson-Thakur polynomials.

Recall that the logarithm series logC⊗n ∈ In + τMn×n(K){{τ}} satisfies

logC⊗n expC⊗n = expC⊗n logC⊗n = In.

We put logC⊗n =
∑
k≥0 Lkτ

k, Lk ∈Mn×n(K). We denote by ι : Lie(C⊗n)(K∞)→
K∞ the projection on the last coordinate. Finally, let W ⊂ Lie(C⊗n)(K∞) be the
K∞-vector space generated by Lk0τ

k(x), x ∈ Lie(C⊗n)(K∞). In [11], we prove the
following properties:

1) dimK∞W = 1 and ι(W ) 6= {0}.
2) USt(C

⊗n/A) ⊂ Lie(C⊗n)(K) +W.

Recall that the class formula for C⊗n/A states that

RegC⊗n/A(USt(C
⊗n/A)) = ζA(n).

Combining with the above properties, it follows that there exists an explicit element
xn ∈ Lie(C⊗n)(K) ∩W such that ι(xn) ∈ K× and

∂C⊗n(A)(∂C⊗n(ζA(n))xn) = USt(C
⊗n/A) ∩W.

We note that USt(C
⊗n/A) ∩W is an A-lattice in W. In particular, by projecting

on the last coordinate, we rediscover the above theorem of Anderson-Thakur:

ζA(n)ι(xn)A ⊂ ι(USt(C⊗n/A)).

Remark 5.2.

1) By similar arguments, one can obtain a log-algebraicity identity with an extra
variable z (see [11], Theorem 5.3).

2) We should mention that in a work in progress, Papanikolas [46] obtains simi-
lar log-algebraicity identities for C⊗n. His proof is based on Anderson’s method
developed in [2, 3].

6. Further reading on related topics

In the last section, apart from the excellent books of Goss [31] and Thakur [58],
we would like to give a list of references for related topics on Anderson modules.
We would stress that this list is far from exhaustive.
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6.1. Anderson motives and dual motives.

In the same paper [1], Anderson gave the definition of Anderson motives which
is closely related to that of Anderson modules. Later, he [5] introduced the notion
of Anderson dual motives which turns out to be useful for transcendence theory.

• For definitions and basic properties, we refer to the seminal paper of An-
derson [1] and also [5, 18] and [31], Section 5 for A = Fq[θ]. For general A,
one can read the excellent survey of Hartl and Juschka [36].
• For the Tannakian theory of motives, we refer to the papers of Papanikolas

[47] and Taelman [50].
• For Pink’s theory of Hodge structures over function fields, one could also

read [36].

6.2. Shtukas.

In his seminal papers [27, 28] on Langlands correspondence for GL(2) over func-
tion fields, Drinfeld extended the notion of Drinfeld modules and introduced the
notion of shtukas, which plays a dominant role in the Langlands program over
function fields (see [39, 40, 42, 43] for recent developments).

It turns out that shtukas and its variants such as τ -sheaves and local shtukas
are also very useful for arithmetic questions of Anderson modules. We refer the
interested reader to [31], Chapter 6 and [10, 35, 41, 44, 45, 55, 57] for further
information.

6.3. Special L-values of Anderson modules.

Special L-values of the Carlitz module over a cyclotomic extension are studied
in [15, 53].

For A = Fq[θ], deformations of special L-values of the Carlitz-Goss zeta function
in Tate algebras are studied by Pellarin and two of the authors [13, 14, 16, 48]
(see also [8] for arithmetic applications). For general A, one could read recent
developments in [9, 10, 34].

We should mention a conjecture of Taelman on special L-values of Anderson
modules. It was first formulated by Taelman in [51] and studied extensively in [11].

6.4. Log-algebraicity.

To our knowledge, little is known about log-algebraicity. The most important
results are due to Anderson who extended examples of Carlitz [19] and Thakur
[56] and proved several identities for signed-normalized rank one Drinfeld modules.
These results are extended and revisited by [10, 13, 14, 16, 46] and [58], Chapter 8.

6.5. Transcendence theory.

For applications to transcendence questions of special L-values of Anderson mod-
ules when A = Fq[θ], we refer the reader to [6, 21, 49, 61, 62] or to a recent survey
of Chang [20].
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CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex,
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