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Abstract

Does the presence of a robot co-worker influence the performance of humans around it?
Studies of motor contagions during human-robot interactions have examined either how
the observation of a robot affects a human’s movement velocity, or how it affects the
human’s movement variance, but never both together. Performance however, has to be
measured considering both task speed (or frequency) as well as task accuracy. Here we
examine an empirical repetitive industrial task in which a human participant and a
humanoid robot work near each other. We systematically varied the robot behavior,
and observed whether and how the performance of a human participant is affected by
the presence of the robot. To investigate the effect of physical form, we added
conditions where the robot co-worker torso and head were covered, and only the moving
arm was visible to the human participants. Finally, we compared these behaviors with a
human co-worker, and examined how the observed behavioral affects scale with
experience of robots. Our results show that human task frequency, but not task
accuracy, is affected by the observation of a humanoid robot co-worker, provided the
robot’s head and torso are visible.

Introduction 1

Robotics is now increasingly shifting to service and application fields, where robots need 2

to collaborate with, and work in close proximity to, human co-workers. In these 3

scenarios, it is of prime importance to understand how the presence of a robot co-worker 4

influences the performance of humans around them. This understanding is essential not 5

just in regard to productivity, but also in order to monitor and control any emotional 6

and motor effects the presence of robot co-workers may have on the humans. 7

Observation of actions performed by others is known to induce implicit effects on an 8

individual’s action. These effects, that are referred to as motor contagions, have been 9

extensively studied in psychology and sports science [1–10]. In comparison, studies of 10

motor contagions during human-robot interactions [11] are sparse, and have examined 11

either how the observation of robots affect a human’s movement velocity [12–15], or how 12

it affects a human’s movement variance [16–19]. However, the studies that reported 13

changes in movement variance utilize arguably abstract tasks, and the studies reporting 14

changes in movement speed do not analyze at how the participant movement variance 15
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changed with the speed. On the other hand, most industrial tasks require specific 16

precisions in the movements and therefore, the performance in these tasks needs to be 17

defined by considering both task speed (or frequency) and task accuracy. Here 18

primarily, we analyzed how looking at a robot affects both, the speed and variance of 19

the observing human’s movement, to see whether we can quantify how human 20

performance is affected by motor contagions. Furthermore, while there is contradictory 21

evidence to suggest that the physical form of a robot co-worker (specifically whether it 22

is humanoid or not) does [20] or does not [17] affect the variance of movements by 23

human’s, it is unclear whether this is also true for the case of movements speeds, and 24

hence performance. Finally, it is unclear whether and how the performance effects due 25

to a robot co-worker are modulated by a human co-worker’s prior experience with 26

robots, an issue that is crucial to understand how the human performance will change 27

with continued exposure to a robot co-worker. 28

To address these issues, we examined an empirical repetitive industrial task in which 29

a human participant and a humanoid robot work near each other, see Fig. 1. We 30

systematically varied the behavior, specifically frequency of robot movements and 31

examined whether and how the frequency of movements by the human participants, and 32

their task accuracy, is affected by the presence of the robot. To investigate the effect of 33

physical form, we added conditions where the robot co-worker torso and head were 34

covered, and only the moving arm was visible to the human participants. Finally, in 35

order to compare the humanoid co-worker to a human co-worker, we also checked how 36

the effects on the participants changed with a human co-worker, with and without 37

his/her torso and head visible. To anticipate our results, we found that the presence of 38

a humanoid co-worker can affect human performance, but only when it’s humanoid form 39

is visible. Furthermore, the effect was observed to increase with prior robot experience 40

by the humans. 41

Fig 1. Experimental setup. The participants in our experiment worked in six
conditions; with a robot performing biological movements in A) robot co-worker
condition; B) human co-worker condition; to check relevance of human form in C) robot
covered co-worker condition; and D) human covered co-worker condition; E) a robot
co-worker performing non-biological movements in robot non-biol co-worker condition;
F) a robot co-worker performing industrial movements. The coordinate axis defining the
movement setup is indicated in white (A).

Materials and methods 42

Participants 43

A total of 45 healthy adults participated in our study. 3 participants (2 males and a 44

female of 3 nationalities, 29.6±5, mean±SD, aged 25-35) worked as volunteer models for 45

the capture of human arm motion data. 42 participants (20 Males and 22 females of 12 46

nationalities, 25.9±4.35, mean±SD, min. age 20, max. age 39), were participated as 47

‘co-workers’ in our main experiment. 3 out of 45 participants were left-handed according 48

to the Edinburgh Handedness Inventory, and all participants had normal or corrected to 49

normal vision. The experiments were approved by the local ethics committee at the 50

National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, 51

Japan, and all participants read and signed an informed consent form along with the 52

PLOS consent form for the usage of their images in the paper before taking part in the 53

experiments. Participants were well instructed and informed with the experiment and 54

task procedure, however they were näıve to the motives (participants were not told 55
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what aspect of their behavior we were analyzing in the experiment) of the experiments 56

to avoid bias in the results as we are interested in the implicit effect of motor contagion. 57

Each Participant received 2021 Japanese Yen (JPY) to participate. Participants for our 58

study were recruited through an advertisement via a local event forum, Facebook page 59

of our experiment and via word of mouth in the Tsukuba University, Tsukuba, Japan. 60

Participants needed to be at least 18 years old to participate in this experiment, apart 61

from that, there were no restrictions. 62

Setup 63

The participant and co-worker (a human or a humanoid robot) were seated on a chair 64

with tables facing each other as shown in the experiment setup (Fig. 1). On a 65

horizontally placed touch-screen (23-inch HD DELL, P2314T) on the table, participants 66

were presented with two red circles of diameter �5 cm at distance of 50 cm from each 67

other. The co-worker was similarly presented with two red circles on black cardboard 68

�9 cm at distance of 50 cm. The whole setup was enclosed by movable panels and the 69

panel behind the co-worker was covered with a dark grey curtain. A motion tracking 70

system (Motion Analysis Co.) with six infrared cameras (kestrel) and ten passive 71

markers were used to record the arm motions of the participant and co-worker at 200Hz. 72

A bipedal HRP-2Kai [21] humanoid robot (154 cm tall, 58 kg, 32 degrees of freedom) 73

was used as the robot co-worker (Fig. 1). A well-trained experimenter (M, 37) acted as 74

the human co-worker. Both co-workers used their right arm throughout the experiment. 75

Experimental task and conditions 76

Motivated by the hand movements during an industrial pick-and-place, or parts 77

assembly task, our task required participants to repeatedly touch two static red circles 78

on the touch-screen with a stylus in their right hand during the task (Fig. 1). While the 79

participants were asked to touch the circle in each trial, they were free to touch 80

anywhere on the circle. In preliminary experiments, we found that the standard 81

deviation of the participant’s touches were less than 1 cm (both in the x and y 82

directions), and we purposely chose the radius of the touched circles to be more than 2 83

times larger than their standard deviation (targets were of 5 cm in diameter). This 84

large size was crucial because, while the participants were asked to touch the circle in 85

each trial, they were free to touch anywhere on the circle. The large target size 86

therefore enabled us to observe any change in participant’s touch location (that may 87

accompany contagions in their speed), in terms of position and standard deviation, 88

across our experiment. 89

A co-worker (human or HRP-2Kai) worked on the same task in front of the 90

participants. The participants were asked to perform their task at their own chosen 91

‘comfortable’ frequency, and ignore the co-worker. The participants worked in a series of 92

50 second trials with the co-worker. In a trial, participants initially performed alone for 93

10 seconds (participant-alone period), performed with the co-worker for next 20 seconds 94

(together period) and then relaxed while watching the co-worker performs the task for 95

the last 20 seconds (co-worker-alone period) (Fig. 2). 96

Fig 2. Trial protocol. The participants worked in repeated trials with either a robot
or human co-worker (the figure shows the trial with a robot co-worker). Each trial
consisted of period when the participant worked alone and co-worker relaxed
(participant-alone period), both worked together (together period), and the co-worker
worked alone (co-worker-alone period). The notation of the time variable (represented
in general by τ) in each period are shown.
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All participants wore ear buds and headphones (through which we sent white noise) 97

and had no external audio feedback (confirmed in the post experiment questionnaire, 98

Q6). They were instructed to “always hold the stylus like a stamp and touch 99

alternatively inside each red circle on the touch-screen with continuous and smooth hand 100

movements at a comfortable speed”. They were specifically told to “focus on your own 101

task and ignore the co-worker when he/it starts after them”. No instructions were given 102

regarding the speed and movement trajectory. 103

We studied six experimental conditions. The participants worked with a HRP-2Kai 104

humanoid robot co-worker in four conditions, specifically, a) robot co-worker in which 105

the whole robot was visible to the participant, and the robot played back biological 106

movements, b) robot covered co-worker, in which the robot played back biological 107

movements, but its head and torso were covered, such that the participant could only 108

see the robot’s moving arm. c) robot non-biol co-worker, in which a fully visible robot 109

performed non-biological arm movements, d) robot indus co-worker, in which a fully 110

visible robot performed industrial arm movements and they worked with a trained 111

human experimenter in the remaining e) human co-worker and f) human covered 112

co-worker (where the head and torso of the human experimenter were covered) 113

conditions, (see subsection HRP-2Kai movement trajectories). 114

The experiment for each participant consisted of working in 3 conditions. Each 115

participant was assigned to one of 6 condition combination groups, see Table 1, each 116

with the robot co-worker condition (main), in addition to two out of five other 117

conditions. The order of the conditions was balanced across the combination groups. 118

This allowed us to compare the behavior of the same participants in each condition in a 119

combination group, with their behavior in the robot co-worker condition. 120

Table 1. condition combination groups (G)
HRP-2Kai in robot co-worker (RV), robot covered co-worker (RC), robot non-biol co-
worker (RN), robot indus co-worker (RI) conditions and Human experimenter in human
co-worker (HV), human covered co-worker (HC) conditions. The order of conditions in
a combination group were randomized across participants.

Sessions/Groups G1 G2 G3 G4 G5 G6
Session 1 RI RC HV RC RN RC
Session 2 RV RI RV HC HV RN
Session 3 RN RV HC RV RV RV

Each condition had 10 trials. The co-worker performed at a constant, 121

pseudo-randomly selected frequency (in the range of 0.16 to 1.1 Hz) in each trial. The 122

pseudo-random nature of the co-worker performance was critical to avoid behavioral 123

drift contamination across trials. The human co-worker was provided with a metronome 124

using earphones like in [15], to cue and help maintaining the movement frequency in 125

each trial. 126

The robot movements in the robot co-worker conditions were a playback of the 127

movements recorded from a previous human volunteer (see subsection HRP-2Kai 128

movement trajectories for details). We quantified the participant performance in the 129

trials by their half time periods or htp (the average time between two consecutive 130

alternate touches, measured using motion tracking), and the variance of their press 131

location (measured as a change of mean and standard deviation of their touch-screen 132

presses in the X-Y plane). 133
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HRP-2Kai movement trajectories 134

The biological movements played on HRP-2Kai in robot co-worker and robot covered 135

co-worker conditions were a playback of the human arm movements (Fig. 3, blue plot) 136

recorded in a preliminary experiment with three volunteers using the same (Motion 137

Analysis Co.) motion tracking system, while the human movements were cued by an 138

audio metronome. Movements were collected at several frequencies between 0.16 to 139

1.1Hz. We found the movements of the three volunteers to be statistically similar in the 140

Cartesian velocity profiles (p>0.05), and showing similar trend in movement height with 141

movement frequency –trajectory height consistently decreased with increase of 142

movement frequency. We therefore chose to use the movements recorded from one 143

volunteer (a male) in this experiment. 144

Fig 3. HRP-2Kai movement trajectories. The trajectories played by the robot in
robot co-worker, robot covered co-worker, robot non-biol co-worker and robot indus
co-worker conditions.

Well learnt human movements are characterized by a bell-shaped velocity profile. 145

The peak of the bell-shaped profile may be shifted forward in time when precision is 146

required at the reach end (like in our task when the participants required to touch 147

inside a given target region), but the velocity profile is normally characterized by a 148

single peak. Therefore, to develop a ‘non-biological’ movement profile for the robot 149

non-biol co-worker condition, we developed a movement profile with multiple velocity 150

peaks. This profile was developed in position-time (cyan plots in Figs. 3 and 4) profile 151

using fifth and third order polynomial segments (lift-off, carry, set-down) [22]. We 152

observed that human volunteers’ movements to predominantly be in the Y-Z plane. The 153

piece-wise polynomial trajectory for the robot non-biol co-worker condition was 154

designed over the y (horizontal) and z (vertical) dimensions, while x was always kept 155

constant zero. 156

Fig 4. HRP-2Kai trajectory generation. The time trajectories in the Y and Z
axis by the HRP-2Kai in the robot non-biol co-worker and robot indus co-worker
condition, and the via-points (blue circles) used to generate both trajectories.

The industrial trajectory was characterized by a constant velocity phase. Inspired 157

from the industrial manipulators, and keeping in mind our HRP-2Kai joint constraints 158

during fast movements, we improvised the traditionally used industrial trapezoidal 159

velocity profile, with a third order velocity sections in the acceleration and deceleration 160

phase (magenta plots in Figs. 3 and 4). Again, since our movements were restricted in 161

the Y-Z plane, we designed our smooth trapezoidal trajectory over the y (horizontal) 162

and z (vertical) dimensions, while x is kept constant and zero. The Z elevation (zmax) 163

in this trajectory was set to 13 cm when the robot moved from left to right, and 8 cm 164

during the return. 165

Variables 166

Our analysis is based on the position data from both the participant’s and co-worker’s 167

stylus markers. To extract out possible behavioral differences between the movements 168

forward and backward, between the touch points, we analyzed behavioral variables 169

across each movement between the red circles on the touch-screen, which we call as 170

iterations (such that two iterations make a movement cycle). As participants and 171

co-workers were required to make non-stop continuous movements between touches, we 172

could extract individual iterations of participant’s and co-worker’s by looking for 173
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changes in the direction of y-velocity in the recorded motion capture data. In this study, 174

we were interested in the task performance of participants, and therefore we primarily 175

concentrated on the time between the alternate touches in each iteration, which we refer 176

to as the half-time period (htp) or τ , and the location of their touches on the 177

touch-screen (in the X-Y plane). In addition, we also analyzed various measures of 178

position, velocity and acceleration along the Y (horizontal) and Z (vertical) axes over 179

each iteration. However, these results are out of scope of this study. 180

Data analysis 181

We quantified the motor contagion in a participant’ htp (the average time between two 182

consecutive alternate touches) by analyzing the change of participant’s htp between the 183

together period and alone-period (see Fig. 2) in a trial (τ tp(i)− τap (i)), relative to the htp 184

of the co-worker behavior in the same trial (τc(i) −Av(τap )), where Av(τap ) represents 185

the average undisturbed htp by a participants across his/her participant-alone periods. 186

This data was regressed with either a first or second order regression model that was 187

chosen based on the Akaike Information Criteria (AIC) [23] and by using MATLAB’s 188

fitlm function for each participant. The tangent slope at the minimum data abscissa 189

value (min[τc(i) −Av(τap )]) was collected across participants, checked for normality 190

using the Shapiro-Wilk test and then analyzed for difference from zero using a one 191

sample T-test (in case the distribution was normal) or a Signed Rank test. The fitting 192

of htp in one sample participant from each of the six reported conditions are shown in 193

Fig. 5, and the plot of the collection of slopes are in shown in Fig. 6. A similar 194

procedure was used to analyze the change in a participant’s average X press location, 195

average Y press location, standard deviation of X press location, and standard deviation 196

of Y press locations relative to the htp of the co-worker behavior in the same trial 197

(τc(i) −Av(τap )). The slopes from these analysis are shown in Fig. 7. 198

Fig 5. Examples of linear regression fits. The change of participant’s htp (the
average time between two consecutive alternate touches) between the together period
and alone-period (τ tp(i) − τap (i)), relative to the htp of the co-worker behavior in the
same trial (τc(i) −Av(τap )), where Av(τap ) represents the average undisturbed htp by a
participant across all his/her participant-alone periods. Note that the (robot or human)
co-worker htp was random across trials, and the data in plots here are the ensemble of
the participant behaviors arranged in increasing co-worker’s htp on the abscissa. Each
plot represent a condition, A) robot co-worker (blue); B) human co-worker (orange); C)
robot covered co-worker (dark blue); D) human covered co-worker (dark orange); E)
robot non-biol co-worker (cyan); F) robot indus co-worker (magenta) conditions. We
used the AIC to choose either a first or second order model to fit the data for each
participant. The lines represent the tangent slopes at the minimal data abscissa value.

Fig 6. All six conditions htp comparision. The plot of the collection of slopes
which is obtained in Fig. 5 and S1 Fig to S6 Fig supplementary figures. The
condition-wise comparison of the change of participants htp with co-worker htp.
P-values are Bonferroni corrected where required. The tangent slope at the minimum
data abscissa value (min[τc(i) −Av(τap )]) was collected across participants (as shown in
Fig. 5), checked for normality using the Shapiro-Wilk test and then analyzed for
difference from zero using a one sample T-test (in case the distribution was normal) or a
Signed Rank test.

Next, to check the relevance of the human form, we conducted the robot covered 199

co-worker and human covered co-worker conditions, in which the head and torso of the 200
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Fig 7. Participants touch variance. Change of participant touch position with A)
robot co-worker htp; B) human co-worker htp. A similar procedure which was used to
quantify htp was also used here (see subsection Data analysis) to analyze the change in
a participant’s average X press location, average Y press location, standard deviation of
X press location, and standard deviation of Y press locations relative to the htp of the
co-worker behavior in the same trial.

co-worker was covered and only the moving arm was visible to the human (see Fig. 1C, 201

D or inset photos in Fig. 6). All other experimental settings and analysis were same as 202

in the robot co-worker and human co-worker conditions. 203

Participant sample size 204

As the effects of the robot co-worker condition was the focus of our experiments, each of 205

our participant worked in the robot co-worker condition, and two of the remaining 5 206

conditions (human co-worker, robot covered co-worker, human covered co-worker, robot 207

non-biol co-worker and robot indus co-worker). Note that due to the fact that each of 208

our conditions lasted over 20 minutes, resulting in more than 1 hour of total experiment 209

time for the three conditions, we could not have every participant participating in all 210

the conditions. We initially recruited 35 participants to have 14 participants in each of 211

the five conditions (giving five participant groups each of whom participated in one of 212

the five conditions in addition to the robot co-worker condition), so as to enable a intra 213

participant one sample T-test between the robot co-worker and each of the remaining 214

conditions. The number ‘14’ was chosen as it corresponds to participant numbers in 215

similar previous studies [14, 15] and corresponds to a power analysis using G* power for 216

a 2-tailed, one sample T-test (α=0.05, β=0.85, d=0.9) [24, 25]. However, we found that 217

with these participant numbers, the slopes in the same robot co-worker condition were 218

not similar among the participant groups (p<0.05, one-way ANOVA). The robot 219

co-worker condition slopes were significantly different from zero with two participant 220

groups (p=0.022, and p=0.038), tended to be significant in two (p=0.07, and p=0.08) 221

and not significant in another (p=0.36). As a majority of the values tended to be 222

significant, we decided to increase the participant numbers by 50% (7 participants) 223

across the participant group that were tending or not significant (these included 224

participants who participated also in the robot covered co-worker, robot non-biol 225

co-worker, and robot indus co-worker conditions), making a total of 42 participants. 226

With this participant number, the robot co-worker htp slopes were observed to be 227

similar across the participant groups (H(4), P=0.99; one-way Kruskal-Wallis H-test). 228

After removal of three outliers, this gave us participants numbers of 13 (human 229

co-worker condition), 13 (human covered co-worker), 17 (robot covered co-worker), 17 230

(robot non-biol co-worker), 18 (robot indus co-worker), and 39 in total for the robot 231

co-worker condition, see Table 2. 232

Table 2. Participant sample size

condition sample size
robot co-worker 39

human co-worker 13
robot covered co-worker 17

human covered co-worker 13
robot non-biol co-worker 17

robot indus co-worker 18
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Questionnaire 233

Perception and fatigue 234

Each of the participant in our experiment answered a short post experiment 235

questionnaire consisting of 6 questions. The participants were asked to choose a score 236

on a scale of 0 to 7, where 0 (Not at all), 7 (very strongly), for each of these questions, 237

individually for every session they participated in: 238

Q1. My movements were affected when the agent was working with me. 239

Q2. My movement speed was changed when the agent was working with me. 240

Q3. I was tired during the experiment. 241

Q4. I could maintain the movement speed that I wanted even when the robot was 242

performing its task. 243

Q5. I found it difficult to do my task when the agent was working with me. 244

Q6. I could hear noises from the co-worker during the experiment. 245

Q1, Q2, Q4 and Q5 were designed to access whether the participants cognitively 246

realized the affects on their behavior due to the co-worker. A score close to one in Q1, 247

Q2 and Q5 (and a score close to 7 in Q4) indicates that they did not consciously realize 248

the effects. Therefore we considered the Q4 scores by subtracting the reported values 249

from 7. 250

Robot exposure questionnaire 251

Following the end of our data collection, we also noted the need to measure the 252

participant’s robot experienced and exposure to robots. We therefore sent them a 253

questionnaire of four questions: 254

RQ1. How many hours do you see and/or read about robots on average per week 255

(include robots on TV)? 256

RQ2. If you work with robots currently, how many hours do you work with robots (or 257

on robotics related topics) per week? 258

RQ3. If you have worked with robots, but do not work anymore, how many hours have 259

you worked on them? 260

RQ4. How will you rate your knowledge of robots? 261

For each question, the participant had to answer in hours and chose between ‘0’, 262

‘less than 5’, ‘5-10’ ‘10-15’, ‘15-20’, ‘20-25’, ‘25-30’, ‘more than 30’. 263

Statistical correction 264

As reported earlier, every participant in our study participated in three conditions: the 265

robot co-worker condition, and two of the remaining conditions. We thus compare the 266

behavior of the participant in any condition with the robot co-worker. For each 267

participant, there were thus two comparisons made. Correspondingly, in our 268

comparisons in Fig. 6, we use a Bonferroni correction of (3 conditions - 1) 2, and all p 269

values below 0.05 were multiplied by 2. Therefore, note that all the comparisons 270

between conditions in Fig. 6 are between equal number of participants (and we use a 271

one sample T-test). 272
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Results 273

Robot behavior influences human movement frequency 274

Fig. 5 shows the change of participant’s htp (the average time between two consecutive 275

alternate touches) between the together period and alone-period (τ tp(i) − τap (i)), relative 276

to the htp of the co-worker behavior in the same trial (τc(i) −Av(τap )), where Av(τap ) 277

represents the average undisturbed htp by a participants across all his/her 278

participant-alone periods. Note that the (robot or human) co-worker htp was random 279

across trials, and the data in Fig. 5 is an ensemble of the participant behaviors arranged 280

in increasing co-worker’s htp on the abscissa. We then collected the slope of the 281

polynomial at the lowest data abscissa as a measure of how the participant htp was 282

affected by the co-worker htp. In the robot co-worker condition the slope distribution 283

was not normal across the participants (p<0.05, Shapiro-Wilk test, median=0.017) and 284

was significantly positive across participants (median=0.017, Z(38)=3.70, p=0.0002, 285

Signed Rank test). The positive slopes (light blue data in Fig. 6) show that the robot 286

performance htp (hence frequency) influenced the human participants. First, the human 287

participant’s htp increased when the robot htp was longer (see first quadrants of 288

Fig. 5A), but for several participants, this increase had a threshold after which the 289

participant’s htp decreased. This behavior is the reason why we found a second order fit 290

to explain the data better with many participants using AIC. Second, the participants 291

htp also decreased when the robot htp was shorter (3rd quadrants of Fig. 5A, only across 292

the participants in robot co-worker condition) indicating that a faster robot made the 293

participants frequency higher. The htp results were similar with the human co-worker. 294

The positive slopes (orange data in Fig. 6) show that the human co-worker’s 295

performance htp (hence frequency) influenced the human participants (median=0.012, 296

p=0.0017, Signed Rank test). 297

Press accuracy in the human not affected by robot co-worker 298

Studies in motor control have exhibited that human movements are constrained by 299

motor noise, which increases with the magnitude of motor commands in the 300

muscles [26]. In the case of ‘regular’ and automatic movements in daily life, this leads to 301

a trade-off between the speed and accuracy of the movement [27]. However, the 302

accuracy of movements is also modulated by the regulation of arm impedance by muscle 303

co-contraction [28–30]. As mentioned earlier, to comment on the task performance of 304

the human co-worker, we next analyzed whether and how the touch accuracy of the 305

participants changed alongside the contagions in their htp. 306

Again, note that the target circles provided to the participants were large (5 cm 307

diameter), and there were no constraint on where inside the target they touched. 308

Therefore the participant’s touches can change (in position and/or variance) with their 309

movement speed, without violating the task. However, interestingly we found that while 310

the participants htp (hence movement frequency) changed, there were no such trend in 311

the participants press (task) accuracy. 312

The mean touch positions were (X=0.95 cm; Y=1.17 cm) from the circle center 313

across the participants, and showed a mean standard deviations of (std(X)=0.23 cm; 314

std(Y)=0.79 cm) (across participants) when they worked alone (in the participant-alone 315

period). And crucially, the participants maintained the same touch positions (there was 316

no change of mean touch positions X: p=0.64; Y : p=0.86) and mean standard 317

deviations (change of std(X): p=0.56; std(Y): p=0.41) between when they worked alone 318

and when they worked with the robot co-worker (Fig. 7A), showing that the robot did 319

not affect their task accuracies. 320

The press accuracy was similarly constant in the human co-worker condition in 321
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which the participants worked with another (unfamiliar) human, with no observed 322

changes in the mean touch positions (X: p=0.69; Y : p=0.83; Fig. 7B) and mean 323

standard deviations (std(X): p=0.56; std(Y): p=0.39; Fig. 7B). Here note again, that 324

the touched circles were relatively large (5 cm) and the participants could have changed 325

their touch position and variance while still satisfying the required task, but we do not 326

observe this trend. Together, the change in movement frequency, and the lack of change 327

in task accuracy shows that robot as well as human co-workers influenced participant 328

task performance in our experiment. 329

Human form matters 330

Interestingly, covering the head and torso extinguished the contagions in the 331

participant’s htp –the participant’s htps were no longer affected in the robot covered 332

co-worker (T(16)=-0.3, p=0.78; dark blue data in Fig. 6) and the human covered 333

co-worker (T(12)=0.24, p=0.82; dark orange data in Fig. 6), and these effects were 334

significantly lower than the effects induced in the same participants in the robot 335

co-worker condition (T(16)=2.74, p=0.028, Bonferroni corrected, one sample T-test 336

between robot co-worker and robot covered co-worker; T(12)=2.50, p=0.054, Bonferroni 337

corrected, one sample T-test between robot co-worker and human covered co-worker). 338

This result show that the human form is crucial for induction of the performance 339

changes. 340

In the robot co-worker and robot covered co-worker conditions, the robot played 341

back the biological arm movements of a previous human volunteers. Finally, 342

corresponding to previous studies that have shown that motor contagions are 343

attenuated when a robot makes non-biological movements [9, 15], we added two control 344

conditions (robot non-biol and robot indus) in which the participants could see the 345

robot co-worker’s whole upper body, but the robot made non-biologically inspired arms 346

movements to perform the task (see subsection HRP-2Kai movement trajectories). 347

Consistent with previous studies we did not find any significant change in htps in this 348

condition (Z(16)=-1.07, p=0.29 (cyan data); Z(17)=-0.28, p=0.77 (magenta data) in 349

Fig. 6), and these values were different (tending to significance) compared to the robot 350

co-worker condition of the same participants (robot non-biol condition: T(16)=2.32, 351

p=0.066, Bonferroni corrected, one sample T-test) and (robot indus condition: 352

T(17)=2.53, p=0.043, Bonferroni corrected, one sample T-test). 353

The performance effect were implicit 354

An average of the scores from Q1, Q2, Q5 and Q4 (value subtracted from 7) was found 355

to be equal to (mean±SD, 1.90±0.18) for the robot co-worker condition, and 356

(mean±SD, 1.65±0.24) for the human co-worker condition respectively. These low 357

scores suggested that the participants did not consciously realize the effects on their 358

behavior. Q3 was used to confirm that the participants were not tired in our task. We 359

obtained scores of (mean±SD, 0.96±0.18) across the participants in the robot co-worker 360

condition, and (mean±SD, 0.75±0.22) in the human co-worker condition. Q6 was used 361

to confirm that the participants did not hear any external audio cues from either the 362

robot’s joints in the robot co-worker conditions (mean±SD, 0.5±1.25), nor the human 363

co-worker’s touches in the human co-worker conditions (mean±SD, 0.58±1.36). 364

Contagion increases with robot exposure 365

We received answers from 23 participants on our robot exposure questionnaire. Out of 366

these participants, one participant who scored ‘0’ for all questions was removed. We 367

averaged the scores (taking either one from RQ2 and RQ3, as they were complementary) 368
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for the others and plotted the average against their htp slope in the robot co-worker 369

condition in Fig. 8. Interestingly, we observed a significant positive correlation 370

(Pearson’s R=0.44, p=0.039), such that the effect on the participants were larger if they 371

had more exposure and experience with robots. This result is conform to a recent report 372

where participants with more experience with robots show higher adaptation to it, 373

see [31]. 374

Fig 8. Robot experience exposure. The plot of the change of participant htp, with
respect to their prior robot exposure and experience (self-scored by participants) showed
a significant correlation between the two.

Discussion 375

In summary, primarily, we observed that the performance frequencies of human 376

participants were influenced by the presence of a humanoid robot co-worker (or a 377

human co-worker). We observed that participants not only become slower with a slower 378

co-worker, but also faster with faster co-workers. Here we were interested to see the 379

change of participant behavior ‘relative’ to the robot behavior. Hence we looked at a 380

ratio, hence to quantify the motor contagion, we analyzed change in participant’s htp 381

between the together period and alone-period in a trial and relative to the htp of the 382

co-worker behavior in the same trial. When the numerator term (τ tp(i) − τap (i)) is 383

negative that means participants get faster from their initial participant-alone period 384

htp (movement speed) and vice versa. Note that the subtraction in the denominator (of 385

Av(τap ) ) is a constant that only shifts the curve and does not effect the slope. 386

In this study we wanted to choose a task that is simple, yet rich, and is 387

representative of many industrial co-worker scenarios. We found that (repetitive) pick 388

and place tasks to be the most common industrial tasks in which robots are employed. 389

We therefore chose to start with a cyclic touch task in this experiment. The results we 390

obtain here therefore, are specific to repetitive tasks. On the other hand, it has been 391

shown that cyclic and discrete tasks may be very different in terms of neural 392

processes [32], and further studies are required to verify whether the effects that we 393

observe here are also valid for discrete movements. Further studies are also required to 394

understand whether and how the contagions we observed here are related to Motor 395

entrainment, which is a phenomena predominantly defined for rhythmic auditory 396

stimuli [33, 34]. In our case we used white noise feedback to stop the participants from 397

hearing noise from the moving robot. However, having said that, it is possible that the 398

effect we observe here may be a form of visual Motor entrainment. 399

The performance frequencies of the participants were affected by the human and 400

humanoid robot co-workers, their (press) task accuracy remained undisturbed (Fig. 7). 401

The effect on the human co-worker’s frequency and the absence of an effect on his 402

accuracy, suggests that the performance of the human participants is affected by the 403

presence of a robot co-worker; a slower robot co-worker reduces human performance (in 404

terms of speed and accuracy), while a faster robot co-worker improves it. Previous 405

studies have shown that specialized robots can influence both human performance and 406

motivation during physical [35] and cognitive [36] interactions, our results here show 407

that the mere presence of humanoid robots can induce effects in human performance. 408

Interestingly, the effect on the movement frequency was observed only when the 409

head and torso of the co-worker was visible to the participants (Fig. 6), indicating the 410

crucial importance of the human form for these effects. Note that in order to investigate 411

the effect of the visibility of the co-worker torso, we chose to cover the torso of the 412

humanoid robot instead of using a different manipulator as a co-worker due to two main 413
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reasons. Primarily, this enabled us to create a condition where the physical appearance 414

of the robot arm and its movement were identical between the robot co-worker and 415

robot covered co-worker conditions. Furthermore, this helped us clarify that the 416

contagions are not influenced by the presence of a humanoid co-worker (and the 417

participant’s knowledge of it), but rather by the torso visibility. Both these issues would 418

have been unclear with the use of a manipulator as a co-worker. On the other hand, our 419

results open several new questions for future research perspectives. First, we observed 420

that the visibility of the robot co-worker’s torso modulates contagions in a human 421

co-worker, but the reasons behind this are still unclear. The effect is probably related to 422

aspects of saliency as the torso not only occupies a larger visual field, but (especially the 423

head and the eyes) also probably attracts participant attention when present. Second, 424

in our task we examined the case where the robot co-worker made predominantly arm 425

movements, while the torso remained static. While we believe the effect of the torso’s 426

visibility should increase in tasks in which the torso moves, it remains to clarify how the 427

torso movements affect contagions. Finally, while here we analyze a task where both 428

co-workers (human and humanoid robot HRP-2Kai) and participants perform the same 429

task, it would be interesting to analyze whether and how the contagions manifest in 430

settings where the co-workers and participants work on different tasks, including 431

non-industrial task that are explicitly collaborative, or competitive. 432

Quantitatively, the trends we observed were significant but not that substantial. 433

However, within our participants, these trends were observed to increase with their 434

participant’s robot experience (Fig. 8), suggesting that they can prevail over a long time 435

and are thus may important in scenarios involving long time robot-human interactions. 436

Note that the questions used to quantify robot exposure represent the self perceived 437

robot exposure by the participants rather than the actual robot exposure. A standard 438

questionnaire to access actual robot exposure is absent and the development of one can 439

be useful to understand how the effects, such as the one we highlight here, vary over 440

time. 441

Overall, the results of our exploratory study highlight several new features of motor 442

contagions, but also opens new questions for future research. These results can be useful 443

for customizing the design of robot co-workers in industries and sports in order to 444

moderate or exploit the contagions induced by them; contagions such as those related to 445

body postures and undesirable competitions and that may affect worker health and 446

psychology in long run, may be reduced by controlling the physical appearance and/or 447

kinematics of robot co-workers, while where ethically valid, contagions may also be used 448

to improve worker performance speed and hence productivity. 449

Supporting information 450

S1 Video. The video of our experiment explaining task protocol and data 451

analysis is available here. https://goo.gl/9rqv4G 452

S1 Fig. All participants regression fits in the robot co-worker condition. 453

Examples of linear regression fits obtained between the participant’s htp change between 454

the together and alone conditions (ordinates), as a function of co-worker’s htps 455

(abscissa). Note that most participant plots show a positive slope indicating that the 456

robot co-worker’s performance htp (hence frequency) influenced the human participants. 457

S2 Fig. All participants regression fits in the human co-worker condition. 458

Examples of linear regression fits obtained between the participant’s htp change between 459

the together and alone conditions (ordinates), as a function of co-worker’s htps 460
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(abscissa). The positive slopes show that the human co-worker’s performance htp (hence 461

frequency) influenced the human participants. 462

S3 Fig. All participants regression fits in the robot covered co-worker 463

condition. Examples of linear regression fits obtained between the participant’s htp 464

change between the together and alone conditions (ordinates), as a function of 465

co-worker’s htps (abscissa). Note that there is no trend in slopes across participant –the 466

slopes were in fact observed to be zero across participants (Fig. 6), indicating that the 467

participant’s htps were not affected in the robot covered co-worker condition. 468

S4 Fig. All participants regression fits in the human covered co-worker 469

condition. Examples of linear regression fits obtained between the participant’s htp 470

change between the together and alone conditions (ordinates), as a function of 471

co-worker’s htps (abscissa). Like in S3 Fig, the slopes were observed to be zero across 472

participants (Fig. 6), indicating that the participant’s htps were not affected in the 473

human covered co-worker condition. 474

S5 Fig. All participants regression fits in the robot non-biol co-worker 475

condition. Examples of linear regression fits obtained between the participant’s htp 476

change between the together and alone conditions (ordinates), as a function of 477

co-worker’s htps (abscissa). The plots again show that the participant’s htps were not 478

affected in the robot non-biol co-worker condition. 479

S6 Fig. All participants regression fits in the robot indus co-worker 480

condition. Examples of linear regression fits obtained between the participant’s htp 481

change between the together and alone conditions (ordinates), as a function of 482

co-worker’s htps (abscissa). Like in S3 Fig to S5 Fig, we observed no effect in the 483

participants in the robot indus co-worker condition. 484
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