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Abstract

The purpose of this work is to propose a novel a posteriori finite volume subcell limiter technique for the

Discontinuous Galerkin finite element method for nonlinear systems of hyperbolic conservation laws in

multiple space dimensions that works well for arbitrary high order of accuracy in space and time and that

does not destroy the natural subcell resolution properties of the DG method. High order time discretization

is achieved via a one-step ADER approach that uses a local space-time discontinuous Galerkin predictor

method to evolve the data locally in time within each cell.

Our new limiting strategy is based on the so-called MOOD paradigm, which a posteriori verifies the

validity of a discrete candidate solution against physical and numerical detection criteria after each time

step. Here, we employ a relaxed discrete maximum principle in the sense of piecewise polynomials and

the positivity of the numerical solution as detection criteria. Within the DG scheme on the main grid, the

discrete solution is represented by piecewise polynomials of degree N. For those troubled cells that need

limiting, our new limiter approach recomputes the discrete solution by scattering the DG polynomials at

the previous time step onto a set of Ns = 2N + 1 finite volume subcells per space dimension. A robust

but accurate ADER-WENO finite volume scheme then updates the subcell averages of the conservative

variables within the detected troubled cells. The recomputed subcell averages are subsequently gathered

back into high order cell-centered DG polynomials on the main grid via a subgrid reconstruction operator.

The choice of Ns = 2N+1 subcells is optimal since it allows to match the maximum admissible time step of

the finite volume scheme on the subgrid with the maximum admissible time step of the DG scheme on the

main grid, minimizing at the same time also the local truncation error of the subcell finite volume scheme.

It furthermore provides an excellent subcell resolution of discontinuities.

Our new approach is therefore radically different from classical DG limiters, where the limiter is using

TVB or (H)WENO reconstruction based on the discrete solution of the DG scheme on the main grid at the

new time level. In our case, the discrete solution is recomputed within the troubled cells from the old time

level using a different and more robust numerical scheme on a subgrid level.

We illustrate the performance of the new a posteriori subcell ADER-WENO finite volume limiter ap-

proach for very high order DG methods via the simulation of numerous test cases run on Cartesian grids

in two and three space dimensions, using DG schemes of up to tenth order of accuracy in space and time

(N = 9). The method is also able to run on massively parallel large scale supercomputing infrastructure,

which is shown via one 3D test problem that uses 10 billion space-time degrees of freedom per time step.

Key words: Arbitrary high-order Discontinuous Galerkin schemes, a posteriori subcell finite volume

limiter, MOOD paradigm, ADER-DG, ADER-WENO, high performance computing (HPC), hyperbolic

conservation laws
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1. Introduction

The discontinuous Galerkin (DG) finite element method has been originally proposed by Reed and Hill

[89]. Later, a solid theoretical framework has been established by Cockburn and Shu in a well-known

series of papers [26, 25, 24, 22, 27] for the application of discontinuous Galerkin schemes to nonlinear

hyperbolic systems of conservation laws. A very important property of DG schemes is that they satisfy

a local cell entropy inequality for any polynomial degree N used for the approximation of the discrete

solution. As a consequence, this guarantees nonlinear stability in L2 norm for arbitrary high order of

accuracy, see the proof by Jiang and Shu [59] for the scalar case and its subsequent extensions to systems

[11, 55]. This means that the DG scheme is by nature very robust and clearly appropriate for the solution

of nonlinear hyperbolic conservation laws. However, being a linear scheme in the sense of Godunov [51],

even the DG method needs some sort of nonlinear limiting to avoid the Gibbs phenomenon at shock waves

or other discontinuities. There is a vast literature on the topic of limiters for DG schemes and a non-

exhaustive review on this topic will be presented later in section 3 of this paper. The key idea of many DG

limiters is the following: first an unlimited solution is computed with the DG scheme, then an indicator

detects so-called troubled cells, i.e. those zones of the domain which may need limiting, see [62] for a

detailed comparison. For troubled cells, the degrees of freedom of the discrete solution are then modified

by some sort of nonlinear reconstruction technique, based on the discrete solution in the troubled cell and

its neighbors.

Concerning the time discretization, mostly explicit TVD Runge-Kutta schemes are used, which lead

to the so-called Runge-Kutta DG schemes. A review on DG schemes can be found in [23, 28]. However,

explicit DG schemes suffer from a very severe time step restriction where the maximum admissible Courant

number typically scales as approximately 1/(2N+1), if N denotes the polynomial degree of the approxima-

tion of the DG scheme. Alternative high order accurate explicit time discretizations for DG schemes have

been explored in [83] and [104, 40], which, however, have led to an even more restrictive CFL condition.

While the DG method is mostly used only for spatial discretization, it has been introduced as a uniform

discretization of space and time in the global space-time DG scheme of Van der Vegt et al. [109, 110, 68],

which leads to an implicit method of theoretically arbitrary high order of accuracy in space and time and

which is unconditionally stable. The strategy presented in [109, 110], however, requires the solution of a

global nonlinear algebraic system at each time step. In order to reduce the complexity of globally implicit

space-time DG schemes, in [36, 53, 35] a local space-time DG approach has been suggested, which leads

only to an element-local implicit method. However, also in this case the final DG scheme is explicit and

thus has to satisfy the typical stability condition of explicit DG schemes.

In the finite volume context, recently a new concept has been proposed, namely the Multi-dimensional

Optimal Order Detection (MOOD) approach, which is an a posteriori approach to the problem of limiting.

The key idea of this paradigm is to run a spatially unlimited high-order finite volume scheme in order to

produce a so-called candidate solution. Then the validity of this candidate solution is tested against a set

of predefined admissibility criteria. Some cells are marked as ’acceptable’ and are therefore valid. Some

others may be locally marked as ’problematic’ or ’troubled’, if they do not pass the detection process.

These cells and their neighbors are consequently locally recomputed using polynomial reconstructions of a

lower degree. Thus, after decrementing the polynomial degree and locally recomputing the solution, a new

candidate solution is obtained. That solution is again tested for validity and the decrementing procedure

re-applies, if necessary.

Such order decrementing can occur several times within one time step for the same cell, but it will

always halt after a finite number of steps: either the cell is valid for a polynomial degree greater than 0, or

the degree zero is reached. In the worst case, a cell is updated with a robust and stable first order accurate
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Godunov-type finite volume scheme, which is supposed to produce always valid (monotone and positivity-

preserving) solutions under CFL condition. This a posteriori check and order decrementing loop is called

the ’MOOD loop’. We refer the reader to [21, 29, 30, 77] for more details.

The link between the MOOD concept developed in the finite volume framework and the typical strategy

adopted in a classical DG limiter seems obvious. In both approaches first a candidate solution is computed

using an unlimited scheme. Then, troubled cells are detected based on some criteria and the discrete solution

is corrected. However, there are important differences: the typical DG limiters postprocess the candidate

solution using a nonlinear reconstruction technique. They furthermore use only one time level (the current

one) for the detection and postprocessing step. In contrast, the MOOD approach first of all uses two time

levels (the old one and the current one) for the detection of troubled cells. Second, the MOOD approach

recomputes the solution using a different numerical scheme, which is supposed to be more robust at shock

waves. The fact of recomputing the solution and of looking at two different time levels for the detection of

troubled cells makes it in the notation of the authors of [21, 29, 30, 77] an a posteriori approach.

The key innovation of the present paper is now the use of the aforementioned a posteriori MOOD

paradigm as a limiter for high order DG schemes. Since simple order decrementing as in the MOOD

approach for finite volume schemes would obviously destroy the natural subcell resolution capability of DG,

a more sophisticated strategy is needed here. We therefore suggest to recompute the solution of troubled

cells on a finer subgrid inside each cell, using a more robust but still very accurate one-step ADER-WENO

finite volume scheme [106, 10, 44]. The data can be scattered from the main grid to the subgrid and gathered

back via appropriate subcell projection and subcell reconstruction operators. Such operators are in principle

well-known from high order finite volume schemes and spectral finite volume schemes [114, 75, 102]. The

choice of the subgrid size is very important. In this paper we suggest to choose the subgrid size so that

the local CFL number on the subgrid is as large as possible, hence the maximum admissible time step

size of the finite volume scheme on the subgrid matches the maximum admissible time step of the DG

scheme on the main grid. This leads to Ns = 2N + 1 subcells per space dimension for a DG scheme using

a piecewise polynomial approximation of degree N. For alternative subcell methods used as limiter for

the DG method see [56, 100]. However, none of these uses our a posteriori detection concept, nor do

they recompute the solution in troubled cells via a better than second order accurate subcell finite volume

method. Furthermore, the method proposed in [100] does not use the optimal subgrid size that allows to get

the maximum admissible CFL number on the subgrid.

The rest of this paper is organized as follows. The one-step discontinuous Galerkin scheme used in

this paper (ADER-DG) is presented in section 2. In section 3 we give a thorough but still non-exhaustive

overview of existing a priori limiters for the DG method, such as slope/moment reduction, artificial viscos-

ity or WENO-like techniques. Then in section 4 we present all details of our new subcell-based a posteriori

approach. Next, section 5 gathers all numerical results for a large set of different test cases in order to assess

the validity and robustness of our new a posteriori subgrid limiter. Smooth and non-smooth test cases are

simulated. Finally, conclusions and perspectives are drawn in section 6.

2. The ADER Discontinuous Galerkin Method

In this paper we consider nonlinear systems of hyperbolic conservation laws in multiple space dimen-

sions of the form
∂Q

∂t
+ ∇ · F (Q) = 0, x ∈ Ω ⊂ Rd, t ∈ R+0 , (1)

with appropriate initial and boundary conditions

Q(x, 0) = Q0(x), ∀x ∈ Ω, Q(x, t) = QB(x, t) ∀x ∈ ∂Ω, t ∈ R+0 , (2)

where Q ∈ ΩQ ⊂ R
ν is the state vector of ν conserved quantities, and F(Q) = (f, g,h) is a non-linear flux

tensor that depends on state Q. Ω denotes the computational domain in d space dimensions whereas ΩQ is

3



the space of physically admissible states, also called state space or phase-space.

We solve this system of equations by applying the general family of PNPM methods introduced in [35],

which provides high order of accuracy in both space and time. However, in this paper we only focus on the

family of pure Discontinuous Galerkin (DG) schemes, i.e. the PNPN schemes in the context of [35]. The

numerical method is formulated as a one-step predictor corrector method [48]: in the predictor step (1) is

solved within each element in the small (see [52]) by means of a locally implicit space-time discontinuous

Galerkin scheme. The final time update of the discrete solution is explicit and is obtained by the one-step

corrector. In the following we only summarize the main steps, while for more details the reader is referred

to [35, 43, 53, 48, 10].

2.1. Space discretization and data representation

The computational domain Ω is discretized by a Cartesian grid of conforming elements Ti, where the

index i ranges from 1 to the total number of elements NE . The elements are chosen to be quadrilaterals in

2D and hexahedrons in 3D. The union of all elements represents the computational grid or the main grid of

the domain,

TΩ =

NE
⋃

i=1

Ti. (3)

We denote the cell volume by |Ti| =
∫

Ti
dx. At the beginning of each time-step, the numerical solution

of equation (1) for the state vector Q is represented within each cell Ti of the main grid by piecewise

polynomials of maximum degree N ≥ 0 and is denoted by uh(x, tn) ∈ Uh,

uh(x, tn) =
∑

l

Φl(x)ûn
l , x ∈ Ti, (4)

where uh is referred to as the discrete “representation” of the solution. The space Uh of piecewise poly-

nomials up to degree N is spanned by the basis functions Φl = Φl(x). Throughout this paper we use the

Lagrange interpolation polynomials passing through the tensor-product Gauss-Legendre quadrature points

[101] as spatial basis functions, see also [69, 49, 70].

2.2. Local space-time predictor

The representation polynomials uh(x, tn) are now evolved in time according to a local weak formulation

of the governing PDE in space-time, see [36, 35, 53, 43, 48, 10]. The local space-time Galerkin method is

only used for the construction of an element-local predictor solution of the PDE neglecting the influence of

the neighbors. This predictor solution is further inserted into a corrector step described in the next section,

which then provides the appropriate coupling between neighbor elements via a numerical flux function

(Riemann solver).

Let us first transform the PDE (1) into a space-time reference coordinate system (ξ, τ) of the space-time

reference element [0; 1]d+1, with ∇ξ = ∂ξ/∂x · ∇. The spatial reference elements are denoted by TE and

are defined as TE = [0; 1]d, i.e. the unit square in two space dimensions and the unit cube in three space

dimensions, respectively. Time is transformed according to t = tn + ∆t τ. This yields

∂Q

∂τ
+ ∇ξ · F

∗ (Q) = 0, (5)

with the modified flux

F∗ := ∆t (∂ξ/∂x)T · F(Q). (6)
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To simplify notation, let us define the following two operators

〈 f , g〉 =

1
∫

0

∫

TE

( f (ξ, τ) · g(ξ, τ)) dξ dτ, (7)

[

f , g
]τ
=

∫

TE

( f (ξ, τ) · g(ξ, τ)) dξ, (8)

which denote the scalar products of f and g over the space-time reference element TE × [0; 1] and over the

spatial reference element TE at time τ, respectively.

Now we multiply (5) with a space-time test function θk = θk(ξ, τ) and subsequently integrate over the

space-time reference control volume TE × [0; 1] to obtain the weak formulation

〈

θk,
∂qh

∂τ

〉

+
〈

θk,∇ξ · F
∗
h (qh)

〉

= 0. (9)

The discrete solution of equation (9) in space and time, denoted by qh, as well as the discrete space-time

representation of the flux tensor F∗
h

are assumed to have the following form

qh = qh(ξ, τ) =
∑

l

θl(ξ, τ)q̂l := θlq̂l, (10)

F∗h = F∗h(ξ, τ) =
∑

l

θl(ξ, τ)F̂
∗
l := θlF̂

∗
l , (11)

where we have used the Einstein summation convention over two repeated indices. If one employs a nodal

basis as in [35], one simply has

F̂∗l = F∗(q̂l). (12)

Throughout this paper we use space-time basis functions that are the Lagrange interpolation polynomials

passing through the tensor-product Gauss-Legendre quadrature points on the space-time reference element

[0; 1]d+1, see [44]. In that way, all the resulting matrices have a sparse block structure and the computations

can be done efficiently in a dimension-by-dimension fashion. Integration by parts in time of the first term

in (9) yields
[

θk,qh

]1
− [θk,uh]0 −

〈

∂

∂τ
θk,qh

〉

+
〈

θk,∇ξ · F
∗
h

〉

= 0. (13)

Note that the piecewise high order polynomial representation uh is taken into account as initial condition of

the Cauchy problem in the small in a weak sense by the term [θk,uh]0.

Eqn. (10) is then substituted into (13) and yields the following iterative scheme, see [35, 53, 43] for more

details,
(

[θk, θl]
1 −

〈

∂

∂τ
θk, θl

〉)

q̂r+1
l = [θk,Φl]

0 ûn
l −

〈

θk,∇ξθl
〉

· F∗(q̂r
l ), (14)

where r is the iteration index. The iterative method (14) converges very efficiently to the unknown expansion

coefficients q̂l of the local space-time predictor solution, see [35, 53, 43]. Once the q̂l are obtained the local

space-time predictor qh is known inside each cell (10). The above iterative procedure has replaced the

cumbersome Cauchy-Kovalewski procedure that has been initially employed in the original version of the

ADER finite volume and ADER discontinuous Galerkin schemes [96, 105, 108, 106, 40, 104, 39].
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2.3. Fully discrete one-step ADER-DG scheme

The fully discrete one-step ADER-DG scheme [40, 104, 83] is obtained after multiplication of the

governing PDE (1) by a test function Φk ∈ Uh, which is identical with the spatial basis functions, and

subsequent integration over the space-time control volume Ti × [tn; tn+1]. The flux divergence term is then

integrated by parts and one obtains the weak formulation

tn+1
∫

tn

∫

Ti

Φk

∂uh

∂t
dxdt +

tn+1
∫

tn

∫

∂Ti

Φk F (uh) · n dS dt −

tn+1
∫

tn

∫

Ti

∇Φk · F (uh) dxdt = 0, (15)

where n is the outward pointing unit normal vector on the surface ∂Ti of element Ti. As usual in the

DG finite element framework [26, 25, 24, 22, 27] the boundary flux term in (15) is then replaced by a

numerical flux function (Riemann solver) in normal direction, G
(

q−
h
,q+

h

)

· n, which is a function of the left

and right boundary-extrapolated data, q−
h

and q+
h
, respectively. Inserting the local space-time predictor qh

into (15) then yields the following arbitrary high order accurate one-step Discontinuous Galerkin (ADER-

DG) scheme:























∫

Ti

ΦkΦldx























(

ûn+1
l − ûn

l

)

+

tn+1
∫

tn

∫

∂Ti

Φk G
(

q−h ,q
+
h

)

· n dS dt −

tn+1
∫

tn

∫

Ti

∇Φk · F (qh) dxdt = 0. (16)

In general we use the simple Rusanov (local Lax Friedrichs) flux [94], or the Osher-type flux recently pro-

posed in [42] as numerical flux function at the element boundaries, although any other kind of Riemann

solver could be also considered, see [107] for an overview of state-of-the-art Riemann solvers.

2.4. Time step restriction

The DG method applied to convective problems enjoys a Courant-Friedrichs-Lewy (CFL) number that

decreases with the approximation order N, roughly it follows 1
2N+1

, [23, 28]. This rather restrictive condition

is caused by the growth of the spectrum of the spatial discretization operator of the semi-discrete scheme

[71], hence the time step of an explicit DG scheme in multiple space dimensions has to satisfy

∆t ≤
1

d

1

(2N + 1)

h

|λmax|
, (17)

where h and |λmax| are a characteristic mesh size and the maximum signal velocity, respectively. This rather

restrictive condition on the time step is to be put in perspective with the subcell resolution capability of any

DG method, which allows the use of coarse or even very coarse grids. Recall that the representation poly-

nomials are in principle of arbitrary degree N ≥ 0. Consequently, within one cell multiple subcell features

can be captured. We refer the reader to the next section for a detailed description about subcell resolution.

This closes the brief description of the family of one-step ADER Discontinuous Galerkin schemes that

is further used in this paper. Note that this family of schemes is the unlimited version which, as such, can not

prevent numerical oscillations and/or Gibbs phenomenon from occurring in the presence of steep gradients

or shock waves. For sufficiently smooth solutions the unlimited ADER-DG scheme has shown an effective

order of accuracy of N + 1, linked to the representation spaceUh. See [35] for convergence tests in 2D and

3D. Nonetheless, adding some sort of limiting is of paramount importance to ensure the numerical stability

of the method, despite the nonlinear stability properties that can be proven for the DG scheme in L2 norm

and the associated local cell entropy inequality [59]. It is the purpose of the next two sections to discuss

the issue of limiters of DG schemes and to propose a new a posteriori subcell-based finite volume limiting

strategy.
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3. Nonlinear stability via a priori limiting

In this section we briefly review existing limiters for DG that have been designed upon paradigms such

as slope limiters, artificial viscosity or essentially non oscillatory reconstruction procedures, such as ENO,

WENO or HWENO. A discussion follows that will give birth to the paradigms and design principles of our

a posteriori subcell-based MOOD limiting presented in the next section.

3.1. A brief and non-exhaustive review of a priori limiters for DG schemes

The main difficulty of solving nonlinear hyperbolic systems of conservation laws arises due to the fact

that solutions of the system may become discontinuous, even if the initial conditions are smooth. This

important discovery was due to the groundbreaking work of Bernhard Riemann [92, 93]. Despite their

provable nonlinear L2 stability [59], even DG schemes can fail in the presence of strong shock waves or

steep gradients and may generate strong oscillations that can ultimately lead to a failure of the computation.

This is a consequence of the Godunov theorem [51] that also applies to the DG method. Therefore, some

sort of non-linear limiting is needed and a vast literature on designing such techniques for DG methods

does exist. Being exhaustive is almost impossible. As a consequence we only recall the underlying basic

principles and some of the most important limiters used. Philosophically speaking, any limiter procedure

for DG answers the following questions:

• Q1: Where are the locations where limiting is needed? This is the so-called troubled zone indicator.

We emphasize that the number of these locations may be very small, since for high order DG schemes

many features can be captured within one cell length, see Fig. 1.

• Q2: How do we achieve high order of accuracy along with a non-oscillatory property close to these

locations? Ideally one should manipulate or replace the DG polynomials in such a way that addi-

tional numerical dissipation is supplemented close to the detected locations, but nowhere else, and

preferably without destroying the subcell resolution of the DG method.

The design of such a priori limiters is a difficult task. However, amongst all DG limiters, three families

seem to emerge: artificial viscosity based limiters such as [90, 82, 50, 81, 109, 110, 20, 47, 34, 46], “Slope”

or moment limiters, for instance the total variation bounded (TVB) limiter of Cockburn and Shu [26, 25,

24, 22], the moment-based limiters [88, 1, 78, 118], or the hierachical slope limiters [31, 32, 33], as well

as WENO and HWENO based limiters, such as the ones developed in [86, 84, 85, 62, 4, 54, 64, 117, 121].

Let us briefly describe and comment the design principles of these three families.

3.1.1. Artificial viscosity (AV)

The idea of using an artificial viscosity (AV) to stabilize shock waves dates back to von Neumann and

Richtmyer [80] during the Manhattan project in the 1940’s at Los Alamos National Laboratory. This idea

has been fruitful especially in the Lagrangian community since then and a lot of AV models emerged, bulk

AV, edge AV, tensor AV, see pages 17-21 of [76] and the reference herein for a review. Back to the origin, the

illuminating idea of von Neumann and Richtmyer was to introduce a purely artificial dissipative mechanism

of such a form and strength that the shock transition would be a smooth one, extending over a small number

of cell lengths, and then to include this dissipation into the finite difference equations, see [111], page

312. A lot of minor and/or major improvements have been developed since then but any artificial viscosity

technique revolves around the basic ideas: (i) define the region of the shock waves, (ii) add some dissipative

mechanism over a small number of cells.

While it is nowadays rarely used in the context of shock capturing finite volume schemes, the artificial

viscosity concept has become popular again in the context of DG schemes in order to capture shocks. In

[90] the authors use the magnitude of the residual to determine the amount of artificial viscosity added

to the shock region. In [82] the authors have introduced a subcell shock-capturing method based on the

manipulation of the density variable for determining the shock region and also the magnitude of artificial
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viscosity to be added. Piecewise constant artificial viscosity leading to oscillations has later been overcome

in [50] where the AV model is based on the system of equations solved (one additional equation is solved

for the AV). In the DG community researchers have improved the AV models adding artificial terms to the

physical viscosity coefficients [2] or using an analytic function of the dilatation [81] 1.

3.1.2. WENO limiting procedure

Some other authors suggest the use of a (H)WENO limiting procedure for Runge-Kutta DG methods,

for instance in [86, 84, 85, 4, 117, 65]. Usually these authors adopt the following framework:

1. Identify invalid cells (called “troubled cells”), namely, the cells which might need limiting. In [62]

a very detailed comparison among different possible troubled-cell indicators is carried out. These

indicators are a very important ingredient for triggering the subsequent WENO limiter procedure and

are often based on minmod-type slope limiters, such as the modified TVB minmod limiter for the

2D scalar case [22], the modified TVB minmod limiter in characteristic variables proposed in [24]

and [27] for nonlinear systems in one and multiple space dimensions, respectively. Sometimes, other

shock detection techniques such as the one suggested in [72] are used as troubled cell indicator. A

review can be found in [112], chapter 6. A troubled zone indicator based on subcell information has

been forwarded by Balsara et al. in [4].

2. Replace the DG polynomials in these detected cells with reconstructed polynomials, that keep the

original cell averages, preserve the same high order of accuracy, and are less oscillatory through a

more or less classical WENO reconstruction procedure, see [117] for the details. We underline that in

the case of WENO limiters, the subcell resolution property of the DG method is lost to some extent,

since the higher order moments are reconstructed from the cell averages defined on the coarse main

grid.

Note that in the same spirit Hermite WENO schemes have also been designed to be used as limiters for

DG schemes, see e.g. [61, 54, 63, 4], to avoid the non-compactness of the WENO limiters, but they are

following a similar idea.

Usually improving the identification of the troubled cells is a key point, as the procedure may rely on user-

defined parameters, which are often problem dependent even if in [117] the authors have shown a relative

insensibility of the method to these parameters. Last, the extension to 3D and more general meshes are

important key points, see [121]. More recently the troubled cell indicator has also been used for adaptive

methods h (mesh refinement), p (order enrichment), or r (mesh motion) by refining the troubled cells and/or

coarsening the others [57].

3.1.3. ”Slope”/moment reduction

Slope limiting or moment reduction techniques may permit to control the jumps of the DG polynomials

by constraining or nullifying the high-order components in designated cells [12, 1, 27, 78, 118]. A well-

designed slope limiter must filter out non-physical oscillations without sacrificing the order of accuracy

at smooth extrema. To do so some authors rely on monotonicity-preserving limiters frequently combined

with ad hoc smoothness or oscillation detection procedures. Originally, slope limiters were developed to

constrain piecewise linear polynomial reconstructions based on a discrete maximum principle, therefore

constructing “slope” limiters for higher order polynomials are difficult to build into this paradigm [72,

79]. Many classical limiters have been already used, for instance the minmod-based TVB limiter [25],

the family of moment limiters [88, 1], as well as monotonicity preserving limiters [103, 91]. Most of

these limiters succeed in controlling spurious numerical oscillations, but they may also present a tendency

1This phenomenon also occurred in the Lagrangian community. For instance, the function of the dilatation in [81] is related to the

so-called compression switch used in the Lagrangian community known from an unpublished work by Rosenbluth from Los Alamos

in the 1950’s, where he suggested that the artificial viscosity should be zero when the fluid is undergoing an expansion. This ’trick’ is

nowadays known as the ’artificial viscosity switch’ [16, 15, 14].
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to degrade accuracy when mistakenly used in certain smooth regions of the solution. In [31, 32, 33] the

authors have developed a so-called hierarchical slope limiter. Briefly this limiter constrains the derivatives

of polynomials, written in the Taylor polynomial form, in order to eliminate under/overshoots measured at

the vertices of the cell, see [33]. This vertex-based hierarchical slope limiter has some common features

with the moment limiter from [72] and seems to preserve smooth extrema without using any troubled cell

indicator. Recently this hierarchical slope reduction problem has also been recast into an optimization

problem [33].

3.2. Discussion

Most of the aforementioned shock capturing procedures for DG schemes have a common feature: they

rely on the fact that spurious numerical oscillations can be detected and corrected in the discrete solution

by looking at only one time step tn and usually without using the PDE. The a priori character is evident for

artificial viscosity based approaches, where the shock detector and the magnitude of the artificial viscosity

are chosen based on the current solution uh(x, tn). The TVB, (H)WENO and moment limiters can be to some

extent considered as a posteriori limiter techniques, since they modify the higher order moments in troubled

cells at the end of each time step (or Runge-Kutta stage) after having used an unlimited version of the DG

scheme. Nonetheless, the troubled cell indicator as well as the limiter usually only consider the current

discrete solution and higher order moments are replaced by some sort of nonlinear data reconstruction

based on the degrees of freedom of the current solution, without using the PDE.

In a DG method many features can be captured within one characteristic cell length. Certain limiters

may therefore dissipate a lot of these subscale features, and only subtle ones would maintain at the same

time the high subcell accuracy and assure stability of the numerical solution at shock waves. According

to numerical evidence provided in [17] for the one-dimensional case, the artificial viscosity approach [82]

seems to be more appropriate for capturing subcell features compared to other DG limiters, especially for

very high polynomial degrees N. Ultimately, one may demand that a DG limiter acts only on the smallest

length scale within one cell to avoid that excessive numerical dissipation impacts all features that are repre-

sented by uh. This smallest length scale is related to the size of the cells and to the polynomial degree N.

Recent developments have been made concerning the construction of sub-cell limiters, which use either

a finite volume method on subcells [100] or a smooth switch between a high order DG scheme and a first

order finite volume subgrid method, [17, 56], but none of these is based on the a posteriori concept proposed

in this paper, nor do they rely on the use of higher order finite volume schemes on the subgrid.

Following the ideas of a novel a posteriori detection approach (MOOD), that has been introduced for

the first time in the context of very high order accurate finite volume schemes in [21, 29, 30, 77], we propose

to extend the MOOD concept to the context of very high order accurate DG finite element schemes in the

following.

4. Nonlinear stability via a posteriori sub-cell limiting (SCL)

4.1. General design principles

The subcell resolution is also evident from the amount of data that are stored per cell in the DG context,

namely from the number of the degrees of freedom, which is a function of the polynomial degree N. For

our tensor-product basis functions, the number of spatial degrees of freedom per cell is (N + 1)d.

As already discussed before, limiting acts in two steps: First the troubled cell indicator detects which

regions of the computational domain need limiting and, second, the limiting effectively adds some sort of

numerical dissipation in these regions, either directly via artificial viscosity or via a nonlinear data recon-

struction or slope limiting procedure. However, an appropriate DG limiter should ideally detect and correct

problematic situations on a subscale level.
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Starting with piecewise high order polynomial data uh(x, tn) it seems difficult to detect a priori prob-

lematic situations which will occur between time tn and time tn+1. In [21, 29, 30, 77] in the context of high

order finite volume (FV) schemes the authors have adopted a different strategy, called MOOD. This latter

consists in testing a posteriori a so-called candidate solution u∗
h
(x, tn+1) that has been obtained using an

unlimited high order scheme. If this candidate solution does not fulfill a set of properties called detection

criteria, then the cells for which it has failed are recomputed using a more robust and more dissipative

lower order scheme (decrementing of the order of accuracy of the scheme). For an invalid cell, the iterative

MOOD loop ends either with a valid solution that has passed the detection criteria, or, with a solution that

is updated with the lowest order scheme that is supposed to be monotone and positivity preserving under

CFL condition. The detection criteria developed in [21, 29, 30, 77] for different hyperbolic systems of con-

servation laws have proven to be sensitive enough to avoid excessive numerical diffusion while maintaining

an effective high order of accuracy for smooth problems. More important, they are sufficient to dissipate

numerical oscillations and ensure stability.

4.2. Subcell data representation, projection and reconstruction

If uh(x, tn) is the data representation of the DG scheme within cell Ti at time tn and we consider a fine

subgrid of Ti, denoted by Si =
⋃

j S i, j made of (Ns)
d subcells called S i, j, j = 1, . . . , (Ns)

d, with Ns ≥ N + 1,

then we introduce an alternative data representation denoted by vh(x, tn), which is defined by a set of

piecewise constant subcell averages vn
i, j

. These subcell averages are directly computed from uh(x, tn) by

L2 projection, which in this case simply means the computation of the integral average of uh(x, tn) since

vh(x, tn) is piecewise constant on the subcells S i, j:

vn
i, j =

1

|S i, j|

∫

S i, j

uh(x, tn)dx =
1

|S i, j|

∫

S i, j

φl(x)dx ûn
l , ∀S i, j ∈ Si. (18)

The above equation (18) is in the following also called projection operator P, denoted by vh(x, tn) =

P (uh(x, tn)). Throughout this paper, the subcells are chosen to be equidistant Cartesian subcells [44]. To

gather back the piecewise constant subcell data into a high order DG polynomial, we apply the following

reconstruction operator R: find uh(x, tn) and therefore ûn
l

so that

∫

S i, j

uh(x, tn)dx =

∫

S i, j

vh(x, tn)dx, ∀S i, j ∈ Si. (19)

This is a classical reconstruction or recovery problem of a higher order polynomial from known cell av-

erages, which typically arises within the finite volume context and also in spectral finite volume methods

[114, 75, 113]. The approach presented in this paper explicitly admits Ns > N + 1, hence the resulting sys-

tem may be overdetermined. This overdetermined system of reconstruction equations is then solved using

a constrained least-squares approach, see [67, 38], where the constraint is the integral conservation of the

cell average over the big cell Ti, i.e.

∫

Ti

uh(x, tn)dx =

∫

Ti

vh(x, tn)dx. (20)

The operator given by the solution of (19) and (20) is in the following denoted by uh(x, tn) = R (vh(x, tn)).

It is obvious that finding uh(x, tn) from (19) corresponds to the computation of the (pseudo-) inverse of the

matrix associated with the projection operator (18). Hence, the two operators R and P satisfy the property

R ◦ P = I, (21)
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Figure 1: Examples of DG polynomials uh on a cell (red) and associated projection vh = P(uh) onto subcell averages (blue). The

information contained in uh can be recovered from vh via the subcell reconstruction operator for Ns ≥ N + 1. Throughout this paper

we use Ns = 2N + 1 subcells.

where I is the identity operator. If the subgrid is large enough (Ns ≥ N + 1) then there is no loss of

accuracy when applying the projection operator, since uh(x, tn) can always be recovered identically from

vh(x, tn) = P (uh(x, tn)) using the recovery operator R due to relation (21), thus vh(x, tn) is able to represent

all the information contained in uh(x, tn), see Fig. 1. If Ns = N+1, like in [100], then the number of subcells

corresponds exactly to the number of degrees of freedom associated with the spaceUh.

Consequently, it is equivalent in terms of nominal accuracy to represent data either with a DG scheme

of polynomial degree N on the cell Ti, or, representing the data by piecewise constant cell averages on the

subgrid Si, j.

The use of subgrid information has been used very successfully also in the context of semi-implicit

finite volume methods for free surface flows, see [18, 19], where it has led to a significant improvements in

terms of numerical accuracy and computational efficiency.

4.3. Extension of MOOD to DG schemes

The a posteriori MOOD concept is now extended to the DG context as follows. First, a candidate solu-

tion u∗
h
(x, tn+1) is computed from uh(x, tn) by the unlimited DG scheme (16). Next, we apply the following

detection criteria.

Physical admissibility detection (PAD). The detection criteria must contain physics-based admissibility

properties, and, as such can not be uncorrelated with the hyperbolic system of conservation laws which is

solved. Hence, a candidate solution u∗
h
(x, tn+1) is said to be physically valid inside cell Ti for this system if

πk

(

u∗h(x, tn+1)
)

> 0, ∀x ∈ Ti, ∀k, (22)

where πk(Q) is the physical quantity that must satisfy the positivity constraint and which is a function of

the state vector Q. For the Euler equations of compressible gas dynamics, for example, the mass density

ρ and the fluid pressure p must be positive everywhere and for all times, hence π1(Q) = ρ and π2(Q) = p.

There is a growing interest in designing high order accurate and positivity preserving finite volume and DG

methods. For the most recent developments in the field of DG schemes see, for example, [119, 116, 120].
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Numerical admissibility detection (NAD). In the past, the discrete maximum principle (DMP) was a very

successful guideline for the construction of high resolution shock capturing schemes. In this paper, we

therefore use the following relaxed version of a discrete maximum principle, which takes into account the

data representation of the DG method under the form of piecewise polynomials. It is a natural extension

of the DMP for cell averages used in [21, 29, 30, 77]. The DMP is applied in an a posteriori manner as

follows. A candidate solution u∗
h
(x, tn+1) is said to fulfill the numerical admissibility detection criterion in

cell Ti if the following relation is fulfilled componentwise for all conserved variables:

min
y∈Vi

(uh(y, tn)) − δ ≤ u∗h(x, tn+1) ≤ max
y∈Vi

(uh(y, tn)) + δ, ∀x ∈ Ti, (23)

whereVi is a set containing element Ti together with its Voronoi neighbor cells that share a common node

with Ti. We see from (23) that the discrete maximum principle is now applied in the sense of polynomials.

The polynomial that represents the candidate solution on element Ti must remain between the minimum

and the maximum of the polynomials that have represented the discrete solution at the old time step in the

neighborhoodVi of cell Ti.

The quantity δ is used to relax the strict maximum principle in order to allow some very small overshoots

and undershoots and to avoid problems with roundoff errors that would occur when applying (25) in a strict

way, without using δ. Throughout this paper we set

δ = ǫ ·

(

max
y∈Vi

(uh(y, tn)) −min
y∈Vi

(uh(y, tn))

)

, (24)

with ǫ = 10−3. We underline that the slight relaxation of the maximum principle has no influence on the

positivity of the solution, because the positivity is detected separately under the PAD above. Since it is

not very practical from a computational point of view to calculate the maximum and the minimum of the

discrete solution uh(x, tn) within the neighborhoodVi exactly, we use the following discrete version of (23)

on the subscale level instead, which can be easily evaluated on the basis of subcell averages:

min
y∈Vi

(vh(y, tn)) − δ ≤ v∗h(x, tn+1) ≤ max
y∈Vi

(vh(y, tn)) + δ, ∀x ∈ Ti, (25)

with v∗
h
(x, tn+1) = P

(

u∗
h
(x, tn+1)

)

and vh(y, tn) given by (27). A candidate solution is said to be valid inside

cell Ti, if it has passed both the physical and the numerical admissibility detection criteria, i.e. if (22) and

(25) are satisfied. In this case, we set a cell-based indicator function β to βn+1
i
= 0. If a cell does not

fulfill the above a posteriori MOOD detection criteria, a cell is marked or flagged like in a typical troubled

zones indicator by setting βn+1
i
= 1. However, we emphasize again that in our approach the detector uses

information from two different time levels, tn and tn+1, while a classical troubled zone indicator would only

look at the discrete solution at one time level. An alternative self-adjusting a priori strategy to trigger the

subcell finite volume limiter presented in this paper could be the flattener algorithm proposed in [8].

After the detection phase given by (22) and (25), the next operation of our subcell limiter consists

in updating the discrete solution in invalid cells using a more robust scheme on the subgrid and based

on the alternative data representation vh(x, tn). For this task, one could in principle choose a simple and

cheap second order TVD finite volume scheme, as used in [100], but we prefer to use a higher order one-

step ADER-WENO finite volume method to avoid the clipping of local extrema on the subgrid. This is

particularly important if local extrema on the subgrid are associated with physical phenomena, such as

sound waves. The WENO scheme on the subcells is able to resolve the subscale features without sacrificing

neither the high resolution of smooth features, nor the robustness at shock waves and other discontinuities.

For invalid cells the discrete solution is then recomputed starting from the alternative data representa-

tion vh(x, tn), given by piecewise constant subcell averages. The update is carried out using a third order

ADER-WENO finite volume scheme on the Cartesian subgrid. For details see [106, 10, 44], where all

12



implementation details for reconstruction and one-step time update are given. Here, we just abbreviate the

entire ADER-WENO scheme acting on the subcell averages by

vh(x, tn+1) = A (vh(x, tn)) . (26)

If the cell Ti has been flagged also in the previous time step as a troubled cell, the initial data for vh(x, tn) are

directly available on the subgrid from the ADER-WENO finite volume scheme of the previous time step,

otherwise, the initial data are given by the projection operator applied to the DG polynomials on the main

grid. Appropriate boundary conditions are also needed for the WENO reconstruction on the subgrid of cell

Ti, like in the context of high order cell-by-cell AMR schemes [3, 44, 58], hence the neighbor cell data are

also scattered onto virtual subcells in the same way. To summarize, the initial and boundary data for the

subcell ADER-WENO finite volume scheme are given by

vh(x, tn) =

{

P (uh(x, tn)) if βn
i
= 0,

A(vh(x, tn−1)) if βn
i
= 1.

x ∈ T j ∀T j ∈ Vi. (27)

Note that this operation is local and involves only the cell and its direct neighborhoodVi, hence our subcell

limiter (26) together with the necessary initial and boundary conditions (27) fits well in the general philoso-

phy of DG schemes. Note also, that both, the ADER-DG scheme (16) as well as the ADER-WENO subcell

limiter (26) are one-step schemes, hence the limiter is applied only once per time step, without the need of

carrying out the same procedure in each Runge-Kutta substage of a classical RK-DG scheme again.

Finally, for troubled cells (βn+1
i
= 1) we gather back the subgrid data representation vh(x, tn+1) produced

by the subcell limiter using the reconstruction operator R, which computes the final representation of the

high order DG polynomial of degree N on the main grid, i.e. uh(x, tn+1) = R
(

vh(x, tn+1)
)

. This concludes

the description of our extension of the MOOD paradigm to DG schemes.

We stress that in our a posteriori subcell limiter approach the new discrete solution is recomputed by

using a different and more robust numerical scheme,

uh(x, tn+1) = R (A(vh(x, tn))) , (28)

while the TVB and (H)WENO limiters post-process the unlimited candidate solution u∗
h
(x, tn+1) by a non-

linear reconstruction operator, acting on selected degrees of freedom of the cell and its neighbors. Our

limiter approach presented here is also very different from the one proposed by Sonntag and Munz [100],

who use an a priori switch from a DG formulation on the main grid to a subcell TVD finite volume scheme

based on some a priori indicator function. It is also very different from the subcell approach forwarded

in [56], which smoothly switches between a high order DG scheme and a first order finite volume subcell

method based again on an a priori indicator function.

4.4. Summary of the a posteriori subcell based MOOD limiting

The a posteriori subcell based MOOD limiter is a five-act play, see Fig. 2. We start with the cell centered

piecewise polynomial representation of degree N on the main grid uh(x, tn) ∈ Uh in each cell and perform

the following steps:

1. High-order cell-based ADER-DG update. From uh(x, tn) the unlimited ADER-DG scheme (16) is used

to compute a candidate solution u∗
h
(x, tn+1). This DG scheme is meant to be the highest order accurate

scheme that one wishes to use.

2. Cell-to-subcell scattering (projectionP). Project u∗
h
(x, tn+1) onto the subcells, v∗

h
(x, tn+1) = P

(

u∗
h
(x, tn+1)

)

.

The subgrid of any cell must be dense enough to recover the original degrees of freedom ofUh via the

subcell reconstruction operator R, hence Ns ≥ N + 1.
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Figure 2: Top: classical DG algorithm with a priori limiter embedded in the solver. After the fluxes and the limiter have been

computed no more action is taken and the solution can not be corrected if needed anymore — Bottom: sketch of our approach, where

an unlimited candidate solution u∗
h
(x, tn+1) is provided by the DG solver. Subsequently, the scatter step projects the candidate solution

onto the subgrid to get v∗
h
(x, tn+1) = P

(

u∗
h
(x, tn+1)

)

for applying the subgrid detection criteria. An a posteriori MOOD-type procedure

is further applied based on the relaxed discrete maximum principle (25) and some physical admissibility criteria like positivity (22).

Valid cells are left unmodified, whereas bad cells are recomputed using an ADER-WENO finite volume scheme on the subgrid. Last,

for these troubled cells, a gathering step reconstructs the piecewise polynomials of degree N on the main grid. The green color

corresponds to operations made on the subgrid, black and blue colors correspond to cell based operations on the main grid.
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3. A posteriori MOOD detection procedure. Given a set of detection criteria like positivity (22) and DMP

(25), determine on a subcell basis which cells of the main grid contain an invalid candidate solution

u∗
h
(x, tn+1). Mark the associated cell Ti as invalid by setting βn+1

i
= 1. Otherwise, if all detection criteria

are satisfied on a subcell basis, the cell Ti does not require limiting and we set the flag βn+1
i
= 0. In

this case the algorithm can exit with the candidate solution uh(x, tn+1):=u∗
h
(x, tn+1) without further

treatment.

4. Subcell-based ADER-WENO update. For each invalid cell project the initial and boundary data onto the

subcells using (27). Then update the subgrid data using a higher order ADER-WENO finite volume

scheme on the subgrid (26) to obtain vh(x, tn+1) = A (vh(x, tn)). Note that the initial and boundary

conditions for the ADER-WENO scheme are provided in each grid cell and its neighbors either by the

projection operator P (for unlimited cells), or by the ADER-WENO scheme applied in the previous

time step (for limited cells).

5. Subcell-to-cell gathering (reconstruction R). For any troubled cell with βn+1
i
= 1 gather the new

subgrid information into a cell-centered DG polynomial of degree N on the main grid by applying the

subcell reconstruction operator (19), uh(x, tn+1) = R
(

vh(x, tn+1)
)

.

Note that in this paper we do not consider the full successive order decrementing loop proposed in the

original references on MOOD schemes, [21, 29, 30, 77], but we consider only two possible schemes: either

the unlimited high order ADER-DG scheme on the coarse grid, or the more robust ADER-WENO finite

volume scheme on the subgrid. This means that each grid zone is decremented at most once. Note also

that, of course, the numerical fluxes in unlimited DG cells adjacent to limited cells must be recomputed in

order to maintain conservation and consistency of the scheme. Within the DG finite element framework

and the finite volume framework used here, however, it is no problem to deal with such hanging nodes at

nonconforming grid interfaces properly, see [44, 37] for details in the context of high order finite volume

schemes on space-time adaptive meshes with hanging nodes in space and time. For the DG method, the

flux integral over the element boundary in Eqn. (16) is simply written as the sum of integrals over the

sub-edges between the main grid and the subgrid. On both grids and for both methods (ADER-DG and

ADER-WENO finite volume scheme), a space-time predictor qh(x, t) needed for one-step numerical flux

integration is available.

To summarize: handling non-conforming grids with different mesh size and different orders of accuracy

in each zone (so-called hp-refinement) is possible in a very natural manner in the combined DG and finite

volume framework used here, see also [23]. However, it means that if a cell is flagged for a posteriori

limiting, those direct neighbors of the cell which are not marked for limiting also need to be recomputed

to ensure conservation and consistency. Note, however, that only direct neighbors are affected and that

the same treatment is also necessary in the original MOOD method, [21, 29, 30, 77]. Furthermore, the

recomputation affects only those edges of unlimited cells that are adjacent to a limited element, hence the

simplest way of practical implementation is a flux-correction approach that subtracts the original unlimited

DG fluxes and adds the new subcell ADER-WENO fluxes across the respective subedges to all moments of

the unlimited DG cell. Of course, this correction step of unlimited zones adjacent to troubled zones needs

additional MPI communication within a parallel implementation of the scheme, but only direct neighbors

are involved, hence the scheme is still fully local.

Concerning the additional memory requirements of our algorithm we would like to emphasize that the

alternative data representation needs to be stored only in the troubled cells, while for the detection criterion

(25) it is sufficient to store for each cell Ti the maximum and minimum of each conserved variable found

in the subcells of the neighborhood Vi. If the limiter is acting only in a restricted number of zones of the

computational domain, which is usually the case, then the memory overhead produced by our approach is

very small. Last but not least, the same a posteriori detection approach is also applied to the L2 projection

of the initial condition, i.e. if the DMP and the PAD are not satisfied for uh(x, 0) with respect to the exact

initial condition Q(x, 0), we immediately activate the subcell representation in troubled zones at the initial

time t = 0.
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4.5. On the optimal choice of the subgrid size

At a first glance, the natural choice for the number of subgrid cells seems to be Ns = N + 1, in order to

represent exactly the same amount of information within the subcell averages as originally contained in the

high order DG polynomials on the main grid. This choice has been made for example in [100]. However, we

are convinced that this choice is not the best one in terms of accuracy and local truncation error of the finite

volume scheme on the subgrid. For a very detailed modified equation analysis (differential approximation)

of high order ADER finite volume schemes, together with their dissipation and dispersion properties, see

[41]. In [41] it was shown for the linear scalar advection equation in 1D that the error terms of ADER

finite volume schemes of up to order 16 in space and time contain the factor (1 − CFL), which means that

the schemes are the more accurate the larger the CFL number. Looking at the typical (severe) time step

restriction of explicit DG schemes given by (17), we note that by using N + 1 subcells the CFL number for

the finite volume method on the subgrid is only about half of the maximum admissible CFL number of an

explicit Godunov-type finite volume scheme, since the finite volume method on the subgrid must satisfy the

stability condition

∆t ≤
1

d

1

Ns

h

|λmax|
. (29)

Note that h
Ns

is the size of the subgrid cells. If we want to use the optimal time step on the subgrid with

a Courant number close to the maximal one, the subgrid must satisfy Ns = 2N + 1, which clearly follows

from (17) and (29). A coarser subgrid would lead to small local CFL numbers for the finite volume scheme

on the subgrid and thus to more numerical dissipation and dispersion, in addition to the reduced sub-cell

resolution due to the coarser mesh itself! In other words, the optimal value of Ns = 2N + 1 yields lower

errors not only due to a smaller mesh size, but also in terms of smaller constants in front of the error terms

in the local truncation error analysis. Of course, also the choice Ns > 2N + 1 is suboptimal, since in this

case the subgrid finite volume scheme would limit the (already small) time step of the DG scheme on the

main grid. At the end, the choice of Ns is left to the user, but the aim of this section was to discuss the

choice of the optimal value of Ns in terms of accuracy and computational efficiency.

5. Numerical results

In this paper we focus on the the Euler equations of compressible gas dynamics
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= 0, (30)

where ρ denotes the mass density, v = (u, v,w) is the velocity vector, p is the fluid pressure, E is the total

energy density and I denotes the d × d identity matrix. With the notation vv we intend the dyadic product

of the velocity vector with itself. To close the system the equation of state (EOS) of a perfect gas with

adiabatic index γ is used:

p = (γ − 1)

(

ρE −
1

2
ρv2

)

. (31)

The a posteriori MOOD-type subcell finite volume limiter has been implemented within an MPI parallel

3D code devoted to hyperbolic system of conservation laws on Cartesian grids, see [44] for the general

framework. For most test cases presented in this section we have employed the ADER Discontinuous

Galerkin method with piecewise polynomials of degree N = 5 or N = 9, referred to as ADER-DG-P5 and

ADER-DG-P9, in the following. This DG method is then supplemented by the new a posteriori sub-cell

limiter (SCL). The scheme acting at the subcell level is a third order ADER-WENO finite volume method

[106, 44] with P2 reconstruction, denoted by WENO3. Hence the full scheme is called DG-PN+WENO3
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SCL. For comparison purposes we will also employ low order DG schemes with N = 1, 2 in one test case.

In the Discontinuous Galerkin finite element framework, each variable inside a computational cell is

represented by a polynomial of degree N > 0. In what follows, we will therefore always use the following

visualization technique for 2D and 3D contour plots. We plot the numerical solution uh(x, tn) as pointvalues

interpolated onto a subgrid with Ns = N+1 if the cell is unlimited (βn+1
i
= 0) and we will plot the alternative

representation of the solution vh(x, tn) on the subgrid used for the limiter with Ns = 2N + 1 if the cell has

been detected as a troubled cell (βn+1
i
= 1). For 1D cuts we usually take equidistant samples at subgrid level

of the solution representations uh(x, tn) and vh(x, tn), respectively. This is extremely important in order to

verify that the subscale structure of the DG polynomials really represents a physically valid state within one

large cell. Moreover, an acceptable DG method should maintain smooth solutions and, more importantly, it

should produce genuinely discontinuous profiles at shock waves without spurious oscillations. In order to

visualize which cells have been limited, in the rest of this section we will systematically represent in blue

the unlimited cells (βn+1
i
= 0) and in red (βn+1

i
= 1) the limited cells, see for instance Figure 4 below.

A well known difficulty of a high order accurate method dealing with discontinuous solutions is to deposit

entropy (and dissipation) on a length scale which is much smaller than the characteristics length of the

coarse cell. Indeed, if the coarse cell is very large, spreading a shock wave over one or two of such cell(s)

typically generates an excessively large numerical dissipation. Our a posteriori subcell limiter is supposed

to act differently and in this section we will provide the numerical evidence of this property.

The methodology of validation is based on a sequence of classical test cases, namely:

• Sod and Lax shock tube [107] - these shock tubes are classical tests to assess the ability of a numerical

method to deal with simple waves (rarefaction, contact discontinuity and shock wave).

• Smooth vortex - this test is designed to observe the high-order of accuracy of a numerical method

when the exact solution is smooth. Note that, in theory, in this case any limiter should not be activated

at all if the mesh is fine enough. A detailed numerical convergence table for polynomial degrees

ranging from N = 1 to N = 9 is provided.

• Shu-Osher oscillatory shock tube [98] - this test is designed to show the difficulty of capturing smooth

small-scale features and shock waves.

• Double Mach reflection [115] - this classical test is meant to measure visually the ability of a numer-

ical method to capture complex patterns created after the interaction of shock waves. We use this test

to show the behavior of the method when the polynomial degree of the DG scheme is increased.

• Forward facing step [115] - this classical test simulates a supersonic flow over a forward facing step.

The solution approaches a steady-state solution composed of multiple interacting shock waves and

vortex like structures which are often dissipated with low order accurate schemes.

• 2D Riemann problems [73] - this classical suite of test problems is meant to assess the ability of a

numerical method to solve genuinely two-dimensional Riemann problems emerging from four piece-

wise constant states joining at the origin.

• Shock-vortex interaction [45, 13] - this test is designed to observe the interaction of a planar shock

wave with a cylindrical vortex and the subsequent complex structures of primary and secondary

waves.

• 3D explosion problem [107] - this test is designed to show the ability of a scheme to deal with separate

spherical waves in 3D and subsequently validates the approach in 3D. We use this test also to prove

that our approach is well suited for being used within a massively parallel MPI framework running

on 8000 CPU cores and capable of dealing with 10 billion space-time degrees of freedom per time

step and conserved variable.
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5.1. Sod and Lax shock tube

Here, we run the planar Sod shock tube problem and the classical Lax shock tube problem on a 2D

structured mesh to assess the ability of the methods to capture one-dimensional simple waves. The initial

conditions for density, velocity component u and pressure are listed in Table 1. The other velocity com-

ponent is initialized with v = 0. The ratio of specific heats is γ = 1.4 and for both problems the initial

Problem
Left state Right state Final time

ρL uL pL ρR uR pR tfinal

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.2

Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.14

Table 1: Initial left and right states for the density ρ, velocity u and the pressure p for the Sod and Lax shock tube problems. Final

simulation times tfinal are also provided.

discontinuity is located in x = 0.5. The exact solution for these one-dimensional Riemann problems can be

found in [107]. The computational domain Ω = [0; 1] × [−0.5; 0.5] is paved with a very coarse structured

mesh made of Nx × Ny cells with Nx = 20 and Ny = 5, see Figure 4. Dirichlet boundary conditions are

imposed in x-direction while periodic boundaries are applied in y-direction.

In Figure 3 we present the results for DG-P9 where density, velocity in x-direction and pressure are dis-

played along the x direction versus the exact solution. In this figure each DG-P9 polynomial is represented

by 10 sample points. We observe a very good agreement with the exact solution, the shock being resolved

just in one cell. In Figure 4 we also represent the unlimited polynomials (blue) and the limited ones (red),

we can clearly see that the contact discontinuity in the Sod problem is resolved within one single cell in an

almost S-type shape, thanks to the use of very high order polynomials of degree N = 9. On the other hand,

although the cells embracing the shock region have been limited (they are colored in red), the subcell data

are first of all non-oscillatory, second, the plateaus before and after the shock are well captured and third

the shock is properly represented by a jump at an element interface. Back to the 1D panels we can see that

this jump on subcell values is perfectly located at the exact shock wave location. The same comments also

hold for the Lax problem. In conclusion, although the number of cells is very small, the ADER-DG-P9

scheme with SCL can produce a very accurate solution and also the discontinuities are very sharp even on

a very coarse mesh. The a posteriori limiter has acted properly to maintain the shock wave within one or

two subcells.

5.2. Smooth vortex

The isentropic vortex problem was initially introduced for the two-dimensional compressible Euler

equations in [97] to test the accuracy of numerical methods, since the exact solution is smooth and has

a simple analytical expression. Let us consider the computational domain Ω = [−5, 5] × [−5, 5] and an

ambient flow characterized by ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, w∞ = 0.0, p∞ = 1.0, with a normalized

ambient temperature T ∗∞ = 1.0 computed with the perfect gas equation of state and γ = 1.4.

A vortex is centered on the z axis line at (xvortex, yvortex) = (0, 0) and supplemented to the ambient gas at the

initial time t = 0 with the following conditions u = u∞ + δu, v = v∞ + δv, w = w∞, T ∗ = T ∗∞ + δT
∗ where

δu = −y′
β

2π
exp

(

1 − r2

2

)

, δv = x′
β

2π
exp

(

1 − r2

2

)

, δT ∗ = −
(γ − 1)β

8γπ2
exp

(

1 − r2
)

,

with r =
√

x′2 + y′2 and x′ = x − xvortex, y
′ = y − yvortex. The vortex strength is given by β = 5.0 and the

initial density follows the relation

ρ = ρ∞

(

T ∗

T ∗∞

)
1
γ−1

=

(

1 −
(γ − 1)β

8γπ2
exp

(

1 − r2
)

)
1
γ−1

. (32)
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Figure 3: Sod shock tube problem (left panels) at tfinal = 0.2 and Lax problem (right panels) at tfinal = 0.14. In both cases a very coarse

mesh of only 20 × 5 cells on the main grid has been used. An ADER-DG-P9 scheme supplemented with a posteriori ADER-WENO3

subcell limiter has been used — 1D cut on 200 equidistant sample points through the numerical solution (symbols) vs exact solution

for density (top), velocity component u (middle) and pressure (bottom).
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Figure 4: Sod problem (top panel tfinal = 0.2) and Lax problem (bottom panel tfinal = 0.14) solved on a 20 × 5 element mesh using

ADER-DG-P9 with a posteriori WENO3 subcell limiter — The density variable is displayed. Troubled cells are shown in red, while

blue cells are updated with the unlimited ADER-DG-P9 on the main grid.
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Periodic boundary conditions are prescribed everywhere, so that at the final time tfinal = 10 the vortex

is back to its original position. The numerical flux used here was the Osher-type flux presented in [42].

This problem has a smooth solution and thus should be simulated with effective high-order of accuracy if

the limiter behaves properly. Four successively refined grids made of Nx × Nx squares are employed to

compute these errors. We compute the discrete L1, L2 and L∞ error norms between the exact solution and

the numerical solution for the density at the final time. The computation of these error norms is performed

using a sufficiently high order accurate Gaussian quadrature rule. The errors and the rate of convergence are

reported in Table 2 for the ADER-DG-PN supplemented with the a posteriori WENO3 subcell limiter and

N varying from 2 to 9. From this table we can observe that the optimal order of convergence is essentially

achieved by the scheme and that the proposed a posteriori subcell limiter does not destroy the accuracy

of the high order DG scheme. Beyond P7 it seems more difficult to get perfect orders due to the fact that

the errors are very small and roundoff starts to play a role. However, even on these ultra coarse meshes

the results are very accurate, for instance comparing the ADER-DG-P9 on 8 × 8 cells which is roughly as

accurate as ADER-DG-P3 on 50 × 50 cells or ADER-DG-P2 on 100 × 100 elements.

5.3. Shu-Osher oscillatory shock tube

This test [98] is a 1D hydrodynamic shock tube. The downstream flow has a sinusoidal density fluctu-

ation ρ = 1 − ε sin(λπx) with a wave length of λ = 5 and an amplitude of ε = 0.2. A Mach 3 shock front

is initially located at x = −4 on domain [−5; 5]. The left and the right states are given by ρL = 3.857143,

uL = 2.629369, pL = 10.33333 and ρR = 1 + 0.2 sin(5πx), uR = 0 and pR = 1. The final time is set to

tfinal = 0.18. This problem involves small scales after the shock has interacted with the sine wave that can

be captured either with a fine enough mesh or with high order accurate method. Here a very coarse mesh

made of 40 cells in x-direction and 5 in y-direction is chosen. The numerical flux was the Osher-type flux

presented in [42].

The results of ADER-DG-P9 with a posteriori WENO3 subcell limiter method are presented in Figure 5. A

1D view is first depicted, where each P9 polynomial is represented by 10 sample points per cell. A reference

solution (straight line) obtained by a classical third order ADER-WENO scheme on a very fine mesh is also

plotted. The quality of the result is excellent for a 40 cell mesh. The bottom part of the figure displays the

cell centered P9 polynomials. The red cells have been limited, therefore updated with WENO3 on subcells

whereas the blue cells have been updated with unlimited ADER-DG-P9 on the main grid. It is important to

note that the DG polynomials are almost continuous across all cell boundaries, except for the shock wave,

where a real discontinuity is preserved. In other words the unavoidable limiting has not smeared the shock

wave on two cells of the main grid, but it has been able to keep the subcell description of this discontinuity,

thus leading to a shock wave spread over only one or two subcells. Note that the leftmost waves are actually

contained within one single cell. These waves are steepening and will later become genuine shock waves2.

As expected the a posteriori detection procedure has flagged these waves for subsequent subcell correction,

hence their red color.

5.4. Double Mach reflection problem

Next we have run the 2D double Mach reflection problem of a strong shock that was proposed in [115].

This test problem involves a Mach 10 shock in a perfect gas with γ = 1.4 which hits a 30◦ ramp with the

x-axis. Using Rankine-Hugoniot conditions we can deduce the initial conditions in front of and after the

shock wave

(ρ, u, v, p)(x, t = 0) =











1
γ
(8.0, 8.25, 0.0, 116.5), if x′ < 0.1,

(1.0, 0.0, 0.0, 1
γ
), if x′ ≥ 0.1,

(33)

2This is the same effect for Burgers equation when a smooth initial profile evolves into a shock wave.
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2D isentropic vortex problem — ADER-DG-PN +WENO3 SCL

Nx L1
error L2

error L∞ error L1
order L2

order L∞ order Theor.

D
G
-P

2

25 9.33E-03 2.07E-03 2.02E-03 — — —

3
50 6.70E-04 1.58E-04 1.66E-04 3.80 3.71 3.60

75 1.67E-04 4.07E-05 4.45E-05 3.43 3.35 3.25

100 6.74E-05 1.64E-05 1.82E-05 3.15 3.15 3.10

D
G
-P

3

25 5.77E-04 9.42E-05 7.84E-05 — — —

4
50 2.75E-05 4.52E-06 4.09E-06 4.39 4.38 4.26

75 4.36E-06 7.89E-07 7.55E-07 4.55 4.30 4.17

100 1.21E-06 2.37E-07 2.38E-07 4.46 4.17 4.01

D
G
-P

4

20 1.54E-04 2.18E-05 2.20E-05 — — —

5
30 1.79E-05 2.46E-06 2.13E-06 5.32 5.37 5.75

40 3.79E-06 5.35E-07 5.18E-07 5.39 5.31 4.92

50 1.11E-06 1.61E-07 1.46E-07 5.50 5.39 5.69

D
G
-P

5

10 9.72E-04 1.59E-04 2.00E-04 — — —

6
20 1.56E-05 2.13E-06 2.14E-06 5.96 6.22 6.55

30 1.14E-06 1.64E-07 1.91E-07 6.45 6.33 5.96

40 2.17E-07 2.97E-08 3.59E-08 5.77 5.93 5.82

D
G
-P

6

5 2.24E-02 4.15E-03 3.11E-03 — — —

7
10 1.76E-04 2.75E-05 2.86E-05 6.99 7.24 6.76

20 1.67E-06 2.28E-07 2.26E-07 6.72 6.91 6.98

25 3.60E-07 4.96E-08 6.27E-08 6.86 6.84 5.74

D
G
-P

7

5 5.50E-03 1.22E-03 1.46E-03 — — —

8
10 4.63E-05 6.26E-06 6.95E-06 6.89 7.61 7.71

15 1.62E-06 2.20E-07 2.29E-07 8.28 8.26 8.42

20 2.05E-07 2.80E-08 2.28E-08 7.18 7.17 8.01

D
G
-P

8

4 9.11E-03 1.80E-03 3.44E-03 — — —

9
8 4.97E-05 7.51E-06 6.93E-06 7.52 7.90 8.96

10 7.50E-06 1.05E-06 1.18E-06 8.47 8.81 7.95

15 2.40E-07 3.34E-08 3.09E-08 8.49 8.51 8.98

D
G
-P

9

4 3.95E-03 7.89E-04 1.42E-03 — — —

10
8 1.01E-05 1.44E-06 1.52E-06 8.61 9.09 9.87

10 1.44E-06 2.00E-07 2.27E-07 8.74 8.85 8.51

12 2.67E-07 3.70E-08 3.77E-08 9.26 9.25 9.85

Table 2: L1, L2 and L∞ errors and convergence rates for the 2D isentropic vortex problem for the ADER-DG-PN scheme supplemented

with a posteriori ADER-WENO3 subcell limiter for N = 2 to 9 from top to bottom.
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Figure 5: Shu-Osher problem at tfinal = 0.18 with ADER-DG-P9 with a posteriori ADER-WENO3 subcell limiter on a 40×5 mesh —

Top: 1D cut through the numerical solution (symbols) vs reference solution (ultra fine ADER-WENO solution in straight line). Any

P9 polynomial is represented by 10 sample points per cell — Bottom: troubled cells, which have been updated with ADER-WENO3

on the subgrid, are shown in red, blue cells have used the unlimited ADER-DG-P9 scheme on the main grid.
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where x′ is the coordinate in a rotated coordinate system. Reflecting wall boundary conditions are pre-

scribed on the bottom and the exact solution of an isolated moving oblique shock wave with shock Mach

number Ms = 10 is imposed on the upper boundary. A Rusanov (local Lax-Friedrichs) flux has been used

for this test problem. Inflow and outflow boundary conditions are prescribed on the left side and the right

side, respectively.

The computational domain is given by Ω = [0; 3.5] × [0; 1] and the main grid is built using a characteristic

length of h = 1/100, leading to 350 × 100 computational cells. We solve this problem with four schemes:

ADER-DG-PN with N = 1, 2, 5 and 9, all supplemented with the a posteriori ADER-WENO3 subcell lim-

iter. The results are depicted using 33 isolines ranging from 1.5 to 17.5 for the density variable at tfinal = 0.2,

see Fig 6. We first present the density contour lines along with the cells colored by the indicator function

βn+1
i

: red cells have been recomputed using the subcell ADER-WENO3 scheme (βn+1
i
= 1), whereas blue

cells (βn+1
i
= 0) have kept the original unlimited ADER-DG-PN method. The shock waves are well detected

for all DG schemes. Moreover, the interaction zone where a lot of small scale vortex structures develop is

almost free of limiting for ADER-DG-P5 and ADER-DG-P9 and more troubled cells are detected by our

a posteriori method for a low order ADER-DG-P2 scheme, which is quite remarkable. One would have

intuitively expected that higher order schemes tend to create more oscillations and thus need more limiting.

It seems, however, that the higher order DG scheme has better subcell resolution capabilities and therefore

can treat these vortex structures as smooth subscale features, without the need of a limiter. Also more erro-

neously detected troubled cells are observed for the ADER-DG-P2 scheme in the upper part of the figure,

behind the main shock wave. Only minor details seem to differ in the indicator function between ADER-

DG-P5 and ADER-DG-P9. Nonetheless, the numerical structures represented by the density isolines seem

to be richer with the ADER-DG-P9 scheme.

Overall, also for this very difficult problem which exhibits at the same time strong shock waves and

smooth flow features, our detection procedure seems to identify discontinuities associated with shock waves

properly and it ignores complex but smooth vortex-type flow structures, as expected. In order to confirm

this observation we propose in Fig 7 two zooms on the interaction zone for ADER-DG-PN schemes with

N = 1, 2, 5, and 9. The main grid is also plotted in light gray color to compare the numerical thickness

of a shocks wave and the size of the vortex-type structures with respect to the main grid size. From this

figure we confirm that the DG scheme behaves better with increasing N, the degree of the DG polynomial.

ADER-DG-P9 dissipates less and, as such, is capturing more structures than the other schemes. Also the

smearing of the shocks is less pronounced with ADER-DG-P9 than with ADER-DG-P5 on the same grid.

All schemes capture the shock waves properly without spurious oscillations, but the numerical dissipation

of the lower order schemes destroys the small scale vortex structures that are obtained on this rather coarse

grid only by the highest order DG schemes. The limiter does not seem to destroy this ability. In other

words, the subcell resolution property of the DG scheme seems to be very well preserved.

From the results of this test case we can conclude that the a posteriori subcell limiter provides a valid

detection strategy of troubled cells and that the ADER-WENO3 scheme used on the subgrid is able to

preserve the overall accuracy of the high order DG scheme on the main grid.

5.5. Forward facing step

In this section we simulate the so called forward facing step (FFS) problem, also proposed by Wood-

ward and Colella in [115]. It consists of a Mach 3 wind tunnel with a step. The initial condition consists in a

uniform gas with density ρ = γ, pressure p = 1, velocity components u = 3, v = 0 and γ = 1.4. The compu-

tational domain is given by Ω = [0; 3]× [0; 1]\[0.6; 3]× [0; 0.2] and reflective wall boundary conditions are

applied on the upper and lower boundary of the domain, whereas inflow and outflow boundary conditions

are applied at the entrance and the exit. The solution of this problem involves shock waves interacting with

the boundaries and it is run up to a final time of tfinal = 4. The mesh is uniform, using a characteristic length

of h = 1/100, leading to about N = 300×100 cells on the main grid. For this test we run the ADER-DG-P5

scheme with a Rusanov flux, supplemented with the a posteriori ADER-WENO3 subcell limiter (SCL). In
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Figure 6: Double Mach reflection problem at tfinal = 0.2 with ADER-DG-P2, ADER-DG-P5 and ADER-DG-P9 (from top to bottom)

supplemented with a posteriori ADER-WENO3 subcell limiter — 33 isolines ranging from 1.5 to 17.5 are displayed for the density

variable (black lines) along with the troubled cells (red) and the unlimited cells (blue) at this time level. The characteristic mesh

spacing is only h = 1/100 in all cases.
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Figure 7: Double Mach reflection problem at tfinal = 0.2 with ADER-DG-P1, P2, P5 and P9 (from top left to bottom right) supple-

mented with a posteriori ADER-WENO3 subcell limiter — Zooms on the interaction zone. 33 isolines ranging from 1.5 to 17.5 are

displayed for the density variable (black lines). The mesh is underlined in gray color.
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Fig. 8 we display the density variable at the final time. The top panel represents an extruded density (the

azimuth and the color represent the numerical density). From this view we can clearly see several smooth

zones separated by the shock waves. Furthermore, we can distinguish the Kelvin-Helmholtz instabilities

developing along the top shear wave. These instabilities are maintained when they move across the shock

waves. Moreover, the unsteady vortices create small amplitude acoustic waves, which are expected from

such unsteady flows. Yet, they are often smeared by more dissipative numerical schemes. On the same

figure we propose in the middle panel the classical black and white isolines in contrast with the previous

figure. It is clear that the perturbed isolines emanating from the vortices are due to the acoustic waves,

previously seen on the extruded 3D view. Finally the bottom panel shows the limited cells updated with the

subcell WENO3 scheme (in red) and the unlimited ADER-DG-P5 cells (in blue). As expected, the great

majority of the computational domain is computed with the unlimited ADER-DG-P5 scheme, apart from

the shock waves, where the subcell limiter mechanism seems to act properly.

5.6. 2D Riemann problem

In this section we consider a set of two-dimensional Riemann problems which has been proposed and ex-

tensively studied in [95, 73] and which has also been recently used to construct genuinely multidimensional

Riemann solvers of the HLL type, see [6, 7, 9]. The computational domain is Ω = [−0.5; 0.5] × [−0.5; 0.5]

and the initial conditions are given by

u(x, y, t = 0) =































u1 if x > 0 ∧ y > 0,

u2 if x ≤ 0 ∧ y > 0,

u3 if x ≤ 0 ∧ y ≤ 0,

u4 if x > 0 ∧ y ≤ 0.

(34)

The initial conditions and the final simulation time, tfinal, for the five configurations presented in this article

are listed in Table 5.6. For more information about the other configurations the reader is referred to [95, 73].

For the simulation we have used a main grid of 100 × 100 elements with a DG-P5 scheme supplemented

with our a posteriori WENO3 subcell limiter.

In Figs. 9-10 the numerical results are presented for the first three and for the last two Riemann prob-

lems, respectively. In the left panels we show the distribution of the density at the final time, with equidistant

isolines between the minimum and the maximum value. The number of isolines is 30 for RP1 and RP2, 50

for RP3 and RP4, and 40 for RP5. In the right panels we show, as usual, the corresponding mesh and the

# ρ u v p ρ u v p
tfinal

x ≤ 0 x > 0

R
P

1 y > 0 0.5323 1.206 0.0 0.3 1.5 0.0 0.0 1.5
0.25

y ≤ 0 0.138 1.206 1.206 0.029 0.5323 0.0 1.206 0.3

R
P

2 y > 0 0.5065 0.8939 0.0 0.35 1.1 0.0 0.0 1.1
0.25

y ≤ 0 1.1 0.8939 0.8939 1.1 0.5065 0.0 0.8939 0.35

R
P

3 y > 0 2.0 0.75 0.5 1.0 1.0 0.75 -0.5 1.0
0.30

y ≤ 0 1.0 -0.75 0.5 1.0 3.0 -0.75 -0.5 1.0

R
P

4 y > 0 1.0 -0.6259 0.1 1.0 0.5197 0.1 0.1 0.4
0.25

y ≤ 0 0.8 0.1 0.1 1.0 1.0 0.1 -0.6259 1.0

R
P

5 y > 0 1.0 0.7276 0.0 1.0 0.5313 0.0 0.0 0.4
0.25

y ≤ 0 0.8 0.0 0.0 1.0 1.0 0.0 0.7276 1.0

Table 3: Initial conditions for the 2D Riemann problems numbered from 1 to 5. These further correspond to Configurations 3, 4, 6, 8

and 12 in [73]
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Figure 8: Forward Facing Step problem at tfinal = 4 with ADER-DG-P5 supplemented with a posteriori ADER-WENO3 subcell

limiter — Top-panel: extruded 3D density (color and azimuth) — Middle-panel: density represented as isolines — Bottom-panel:

troubled cells (red) updated using the subcell ADER-WENO3 method and unlimited ADER-DG-P5 cells (blue).
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cells, colored in red, which have been updated with the subcell WENO3 scheme, while the unlimited cells

are marked in blue. It seems that the limiter is active only along strong discontinuities. Apart from these

waves (and some parasitical cells along with the start-up error for RP3) the limiter is inactive in smooth

regions, leading to an optimal precision given by the unlimited ADER-DG-P5 scheme.

The computational results, and in particular the generation of the main structures in all these two dimen-

sional Riemann problems, are in good agreement with the literature [73]. Nonetheless, in these simulations

the numerical dissipation is drastically reduced and, as such, the numerical solution shows much more

small-scale features than usually reported, which are for example due to the Kelvin-Helmholtz instability

along shear waves (see RP3 and RP4 in Figs. 9-10 respectively).

To have a reliable comparison, we have repeated the test case RP3 using a sixth order finite volume

ADER-WENO scheme with space-time adaptive mesh refinement (AMR), using the method described in

[44]. The results of this comparison are illustrated in Fig. 11: in the left panel we have simply reported

again the solution of Fig. 9, while in the right panel we can see the solution with the sixth order ADER-

WENO scheme using AMR. In the AMR simulations, the level 0 grid is composed of 50 elements which

has then been adaptively refined using two levels of refinement and a refinement factor of 5 (right panel),

which leads to an equivalent resolution of 1250 × 1250 elements on the finest level. The high order finite

volume simulation with an AMR code clearly confirms the onset of a Kelvin-Helmholtz instability, which

means that the results obtained with the high order ADER-DG scheme with subcell limiter are reliable,

since this kind of physical instability actually should be observed in numerical simulations for sufficiently

fine meshes or sufficiently high order accurate schemes.

For these classical test cases it seems that the coupling of a posteriori subcell limiter and high order

DG schemes is a valid tool to capture the discontinuous waves without spurious oscillations, and also the

smooth part of the flow without excessive numerical dissipation.

5.7. Shock-vortex interaction

As a final test in two space dimensions, we have considered the interaction of a vortex with a steady

shock wave. Originally proposed by [87], this test is a true benchmark for a high order numerical scheme,

as it involves a complex flow pattern with both smooth features and discontinuous waves. The initial

conditions, defined over the computational domain Ω = [0; 2] × [0, 1], are given by a stationary normal

shock wave placed at x = 0.5 and by a vortex, which is placed at (xc, yc) = (0.25, 0.5). The shock Mach

number is denoted by MS and inside the vortex we have the following distribution of the angular velocity:

vφ =































vm
r
a

for r ≤ a ,

vm
a

a2−b2

(

r − b2

r

)

for a ≤ r ≤ b ,

0 otherwise ,

(35)

with r2 = (x−xc)2+(y−yc)2. The temperature of the vortex is obtained after solving the ordinary differential

equation

dT

dr
=
γ − 1

Rγ

v2
φ(r)

r
, (36)

from which it is possible to compute the density and the pressure as

p = p0

(

T

T0

)
γ

γ−1

, ρ = ρ0

(

T

T0

)
1
γ−1

. (37)

The unperturbed upstream values are of course related through the ideal gas equation of state, i.e. p0 =

Rρ0T0, where we set the gas constant to R = 1. The strength of the vortex is described in terms of the

Mach number MV = vm/c0, where c0 =
√

γp0/ρ0 is the sound speed upstream of the shock. In our
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Figure 9: 2D Riemann problems simulated with an ADER-DG-P5 method supplemented with a posteriori ADER-WENO3 subcell

limiter — Left panels: isolines of the density variable — Right panels: limited cells (red) and unlimited cells (blue). From top to

bottom RP1, RP2 and RP3.
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Figure 10: Same caption as Fig.9, but for RP4 and RP5 (from top to bottom).
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Figure 11: Comparison of RP3 solved with two different numerical methods. Left panel: same as Fig.9, obtained with the ADER-DG-

P5 method with subcell limiter on a coarse 100 × 100 main grid. Right panel: solution obtained with a sixth order ADER-WENO6

finite volume scheme with AMR (equivalent resolution: 1250 × 1250), showing the Kelvin-Helmholtz instability on the shear waves.
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test, the specific values of these parameters are γ = 1.4, a = 0.075, b = 0.175, MS = 1.5, MV = 0.7,

p0 = 1, ρ0 = 1. Finally, the downstream values in the post-shock region are computed through the classical

Rankine–Hugoniot conditions [74]. We have solved this problem with the ADER-DG-P5 version of our

scheme over a computational grid with characteristic length h = 1/100. The results of our calculations are

reported in Fig. 12. The top panel shows the distribution of the mass density at time tfinal = 0.7, while in

the bottom panel the troubled cells are shown in red and the unlimited cells are reported as usual in blue.

Overall, these results confirm the ability of the scheme in capturing at the same time shock waves as well

as smooth vortex features that produce small amplitude acoustic waves. Our results can be compared with

those obtained through ADER finite volume schemes with fourth order of accuracy (see Fig. 9 in [39]) and

with the numerical solution provided in [87].

5.8. 3D explosion problem

To validate the new scheme in three spatial dimensions, we have considered an explosion problem on

the computational domainΩ = [−1; 1]3. The setup represents a multi-dimensional extension of the classical

Sod problem [99], with initial conditions given by

(

ρ, u, v,w, p
)

=















(

1, 0, 0, 0, 1
)

for r ≤ R ,
(

0.125, 0, 0, 0, 0.1
)

for r > R ,
(38)

where r =
√

x2 + y2 + z2 is the radial coordinate, while R = 0.5 denotes the radius of the initial discontinu-

ity. The equation of state is assumed to be that of an ideal-gas, with adiabatic index γ = 1.4. This test is

important, as it involves the propagation of waves which are not aligned with the Cartesian grid. Since the

problem is spherically symmetric, the reference solution can be obtained solving an equivalent one dimen-

sional PDE in the radial direction with geometric source terms, see [107].

The simulation has been performed using an ADER-DG-P9 scheme together with the new ADER-

WENO subcell limiter. We have considered two different grid resolutions, with a number of elements given

by (25 × 25 × 25) and (100 × 100 × 100), respectively. We emphasize that because of the high degree of

the DG polynomial used here (N = 9), which implies (N + 1)4 = 104 space-time degrees of freedom to

represent the space-time predictor inside each element, the total amount of space-time degrees of freedom

for the grid 100 × 100 × 100 is actually NDOF = 1010. To the best of our knowledge, the explosion problem

in three space dimensions has never been solved with a DG scheme on such a big mesh with such high

order of approximation in space and time. The computation has been performed in parallel using the MPI

standard on 8000 CPU cores of the SuperMUC supercomputer at the Leibniz Rechenzentrum (LRZ) in

Munich, Germany. Our MPI parallelization of the scheme is based on domain decomposition, using the

free software packages METIS and parMETIS, see [66].

Figure 14 shows the profiles of the density along the x− axis at time tfinal = 0.2, together with the 1D

reference solution [107]. In these 1D cuts the discrete solution has been sampled on 125 equidistant sample

points in order to represent the subcell resolution capabilities of the DG method on the coarse 253 grid.

Even at the lowest resolution of 253 elements, which means only ∼ 12 elements for the interval 0 ≤ x ≤ 1,

the high degree of the DG polynomial allows to capture the outgoing shock-wave and contact discontinuity

with a very good level of accuracy. Note that the vertical gridlines displayed in the left panel of Fig. 14

correspond exactly to the cell size of the main grid, hence the shock wave as well as the contact discontinuity

are each resolved in just one single cell. The grid with 1003 elements provides an excellent result that is in

perfect agreement with the 1D reference solution. In Figure 13 we have reported a three-dimensional view

of the mass density on the z = 0 plane, while highlighting in red those elements which have been evolved

with the ADER-WENO scheme on the subgrid. It is interesting to note that, even in this three dimensional

problem, our a posteriori limiter strategy has been required only for a rather small number of elements that

are crossed by the outward propagating waves, while no action of the limiter needs to been taken in the

smooth regions of the solution.
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Figure 12: Shock-vortex interaction problem solved with ADER-DG-P5 supplemented with a posteriori ADER-WENO3 subcell

limiter — Top panel: distribution of the mass density at time tfinal = 0.7 — Bottom panel: troubled cells (red) and unlimited cells

(blue).
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Figure 13: Limited cells (red) updated with the subcell ADER-WENO3 finite volume scheme and unlimited DG cells (blue), together

with the density distribution on the plane z = 0 for the three dimensional explosion problem at tfinal = 0.2 with ADER-DG-P9 and

1003 elements, corresponding to 10 billion space-time degrees of freedom per time step.
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Figure 14: Three dimensional explosion problem at tfinal = 0.2 with ADER-DG-P9 supplemented with a posteriori ADER-WENO3

subcell limiter — From left to right: comparison of the 1D reference solution with the numerical solution obtained over two different

grids with 253 and 1003 elements, respectively.
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6. Conclusion and Perspectives

In this paper we have presented a novel a posteriori subcell limiter approach for the discontinuous

Galerkin finite element method. The main building blocks of our scheme are rather simple. First, a so-

called candidate solution is computed by using an unlimited high order ADER-DG scheme. Second, we

apply two simple a posteriori detection criteria, namely the positivity of the candidate solution and a relaxed

discrete maximum principle in the sense of piecewise polynomials. If the candidate solution satisfies both

detection criteria in a cell, then it is accepted, otherwise, the discrete solution is recomputed. This is

achieved by going back to the old time level tn in all troubled cells and by projecting the discrete solution

uh(x, tn) onto a subgrid, obtaining and alternative data representation vh(x, tn) in terms of piecewise constant

subcell averages. These subcell averages are then evolved in time using a robust and high order accurate

ADER-WENO finite volume scheme on Cartesian grids, see [106, 10, 44]. For the troubled cells the new

subcell averages vh(x, tn+1) are finally gathered back into the DG polynomials uh(x, tn+1) by using a subcell

reconstruction operator and the entire process starts over again for the next time step.

In this paper we have chosen the family of one-step ADER-DG schemes, but the a posteriori subcell

limiter could be in principle also employed in combination with an explicit RK-DG scheme [27, 28]. Fur-

thermore, also classical pointwise WENO schemes with TVD-Runge-Kutta time discretization as originally

proposed by Jiang and Shu [60] and their higher order extensions proposed by Balsara and Shu [5] could

be used to update the cell averages on the subgrid inside troubled zones.

Moreover, a possible future extension would be to add in the cascade after the DG-PN scheme and

the subcell WENO finite volume method, a second order TVD scheme or even a first order Godunov-type

finite volume scheme on the subgrid, for the case where there are still remaining invalid subcells after the

use of the subcell WENO procedure. The MOOD detection criteria would then be applied again after the

subcell WENO solver on a WENO candidate solution. In fact the WENO3 scheme may still have problems

of positivity when the hyperbolic system of conservation laws becomes extremely complex, see [77] and

when the self-adjusting a priori technique presented by Balsara in [8] is not used. A possibile solution to

this problem either consists either in using the self-adjusting positivity preserving methodology presented

in [8], or to add one more MOOD layer in Fig. 2 with a more dissipative scheme to get for instance the

sketch in Fig. 15

In the future we plan to investigate the extension of the a posteriori subcell limiter to ADER-DG

schemes on unstructured meshes as well as to the more general family of PN PM schemes proposed in

[35]. Finally, we would like to investigate the behavior of our new a posteriori subcell limiter for DG

schemes also on other systems of conservation laws and non-conservative hyperbolic PDE, such as for

example compressible multi-material flows and classical or relativistic magneto-hydrodynamics (MHD).
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