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Abstract:

Background and Objective:

This paper deals with the improvement of parameter estimation in terms of precision and
computational time for dynamical models in a bounded error context.

Methods:

To improve parameter estimation, an optimal initial state design is proposed combined with
a contractor. This contractor is based on a volumetric criterion and an original condition
initializing this contractor is given. Based on a sensitivity analysis, our optimal initial state
design methodology consists in searching the minimum value of a proposed criterion for
the interested parameters. In our framework, the uncertainty (on measurement noise and
parameters) is supposed unknown but belongs to known bounded intervals. Thus guaranteed
state and sensitivity estimation have been considered. An elementary effect analysis on the
number of sampling times is also implemented to achieve the fast and guaranteed parameter

estimation.
Results:

The whole procedure is applied to a pharmacokinetics model and simulation results are given.

Conclusions:

The good improvement of parameter estimation in terms of computational time and precision
for the case study highlights the potential of the proposed methodology.

Keywords: Optimal initial state; Parameter estimation; Nonlinear systems; Contractor;

Bounded noise; Interval analysis

1. INTRODUCTION

Providing models representing physical systems is a com-
mon concern spread over all scientific and engineering
communities. Models are essential to predict the behaviour
of systems, or to control them (for example Van Den
Bosch and Van Der Klauw (1994)). Actual systems are
often described by ordinary differential equations which
can contain unknown parameters to be estimated. State
and/or parameter estimation problems are usually solved
by probabilistic methods (Aster et al. (2005); Keesman
(2011); Walter and Young (2003); Walter and Pronzato
(1994)) when noises and perturbations can be reasonably
assumed to be random variables. However, often in prac-
tice, an explicit characterization of noise and perturbation
variables is not available, making difficult to assess proper
stochastic hypotheses.

An alternative approach consists in assuming that un-
certain variable values belong to sets, hence modeling
bounded uncertainty. Thus, state and/or parameter es-
timation problems are now placed into a bounded-error

context. Bounded-error approaches permit the characteri-
zation of the set of all values of the state/parameter vector
that are consistent with the measured data, the model
structure and the prior known error bounds. Available
methods based on set-membership approaches exist for
linear and nonlinear models. Bounded error parameter
estimation assumes that the uncertainty on the measured
data is bounded but otherwise unknown, which has been
known as a guaranteed estimation by Jaulin et al. (2001b),
Walter et al. (2001).

Numerous approaches have been investigated for the case
of linear models. We can characterize the solution set by a
convex polyhedron. But in practice, this set is very difficult
to obtain. Thus it may be preferable to compute other
geometric shapes, such as for example ellipsoids Durieu
and Walter (2001), Lesecq et al. (2003) or zonotopes
Guerra et al. (2006) guaranteed to contain the exact
solution set. The first work has been done by Schweppe
(1968) on state estimation for linear models. Ellipsoids
have been used in this context.



When the model is nonlinear, the set of values of the state
vector to be characterized is usually non convex and may
consist of several disconnected components. The previous
methods are no longer relevant and other algorithms based
on interval analysis have been developed Jaulin et al.
(2001D).

Interval analysis and an enclosure of the solutions of the
ordinary differential equations allow to compute guar-
anteed solutions to the state estimation problem. Then,
guaranteed numerical methods for solving the ordinary
differential equation are applied. These methods use high-
order interval Taylor models Nedialkov (2010), Raissi et al.
(2004) to compute intervals which are guaranteed to con-
tain the solution of ordinary differential equations.
Concerning parameter estimation and to improve it, exper-
imental design is important for identifying mathematical
models of complex systems. The overall goal is to design
an experiment that produces data from which model pa-
rameters can be estimated accurately.

The conventional approach for the experimental design
is based on stochastic models for uncertain parameters
and measurement errors (see for example Rojas et al.
(2007); Wahlberg et al. (2010); Keesman and Stigter (2012,
2002) or Rosenwasser and Yusupov (2000)). However, as
was mentioned above, some sources of uncertainty are
not well-suited to the stochastic approach and are better
modeled as bounded uncertainty. This is the case of
parameter uncertainties that generally arise from design
tolerances and from aging. Some works consider that the
parameters belong to some prior domain, on which no
probability function is defined (for example Pronzato and
Walter (1988), Belforte and Gay (2000)). The first aim
at optimizing is the worst possible performance of the
experiment over the prior domain for the parameters. In
Pronzato and Walter (1988), this maximin approach to
synthesize the optimal input is described and the specific
criteria are developed.

In case of stochastic models the study is based on Fisher
information matrix. Several criteria are taken from this
matrix. For example the A-criterion: this criterion is based
on the trace of the Fisher information matrix inverse which
minimizes, in the linear case, the average variance of the
estimates of parameters. Another criterion widely used is
the D-criterion wich is based on the determinant of the
matrix of Fisher. This criterion minimizes the volume of
the confidence ellipsoid.

In case of bounded but unknown errors, experiment design
has been much less studied. In Li et al. (2015a), the
authors have showed that the search for an optimal input
in nonlinear dynamical systems can be made with the
Gram matrix of sensitivity functions in a context only
bounded intervals : measurement noise and parameters to
be estimated.

This paper is an extended version of Li et al. (2015¢) in
which an optimal initial state design for fast parameter
estimation is proposed in a bounded-error context. This
approach combines a sensitivity analysis and a contractor
based on a volumetric start criterion.

This paper is organized as follows. Section 2 presents some
preliminaries composed of basic tools of interval analysis.

The notions of interval, box, interval matrix and inclusion
function are given. In Section 3, the problem statement
and the design of an optimal initial state are presented. In
Section 4, the parameter estimation method is proposed
and the construction of the contractor is developped. In
Section 5, the case study is presented. It is taken from
pharmacokinetics domain and describes the variation of
enzyme concentration in plasma. The estimation results
obtained on this case study are presented and discussed.
Finally, some conclusions are outlined in Section 6.

2. PRELIMINARIES

Interval analysis provides tools for computing with sets
which are described using outer-approximations formed by
union of non-overlapping boxes. The following results are
mainly taken from Jaulin et al. (2001b).

2.1 Basic tools

A real interval [u] = [u,u] is a closed and connected
subset of R where u represents the lower bound of [u] and
u represents the upper bound. The width of an interval
[u] is defined by w([u]) = @ — u, and its midpoint by
m{{u]) = (7 + ) /2.

The magnitude of an interval [z], noted mag([x]) or | [z] |
is given by the largest absolute value of [z] that means the
absolute value of the real with the largest value in [z].
The mignitude of an interval is mig([u]) = min(|ul, [u|) if
0 ¢ [u], else mig([u]) =0

The set of all real intervals of R is denoted IR.

Two intervals [u] and [v] are equal if and only if u = v
and w = U. Real arithmetic operations are extended to
intervals by Moore (1966).

Arithmetic operations on two intervals [u] and [v] can be
defined by:

oce{t, =%/} [u o ] ={zoy|xeclu, yeclv}

An interval vector (or box) [z] is a vector with interval
components and may equivalently be seen as a cartesian
product of scalar intervals:
[z] = [21] X [22]... X [22].

The set of n—dimensional real interval vectors is denoted
by IR™. The width w(.) of an interval vector is the max-
imum of the widths of its interval components. The mid-
point m(.) of an interval vector is a vector composed of
the midpoint of its interval components. The magnitude
mag(.), respectively mignitude mig(.), of an interval vec-
tor is a vector composed of the magnitude, respectively
mignitude, of its interval components.

Classical operations for interval vectors are direct exten-
sions of the same operations for scalar vectors by Moore
(1966).

Let f : IR™ — IR™, the range of the function f over an
interval vector [u] is given by:

f(lu) = {f(@)|z € [u]}.

The interval function [f] from IR™ to IR™ is an inclusion
function for f if:

Viul € IR™,  f([u]) < [£]([u])-



An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding
interval and by replacing each standard function by its
interval evaluation. Such a function is called the natural
inclusion function. In practice the inclusion function is not
unique, it depends on the syntax of f.

In order to perform state estimation, an algorithm gener-
ally based on alternative prediction-correction steps must
be developped.

2.2 State Estimation by using Taylor expansions

This section concerns the integration of ordinary differ-
ential equations as described in Equation (3). Thus, the
objective of this section is to estimate the state vector x
at the sampling times {t1, o, ...,tx} corresponding to the
measurement times of the outputs. We note z; the box
x(t;) where t; represents the sampling time, j = 1,..., N
and x; represents the solution of (3) at ¢;. State estimation
for dynamical nonlinear systems can be solved efficiently
by considering methods based on Taylor expansions, e.g.
Berz and Makino (1998), Moore (1966), Nedialkov et al.
(2001), and Rihm (1994). These methods consist in two
parts: the first one verifies the existence and uniqueness
of the solution by using the fixed point theorem and the
Picard-Lindeldf operator. At a time ¢;41, an a priori box
Z; containing all solutions corresponding to all possible
trajectories between t; and ¢;; is computed. In the second
part, the solution at ¢;4; is computed by using a Taylor
expansion, where the remainder term is ;.

However, in practice, the box [Z;] often fails to contain the
true solution according to Nedialkov et al. (1999). Thus, a
classical technique used consists in inflating this set until
it verifies the following inclusion (Lohner (1987)):

[5] + 10, hy] £ ([25)] < 751, (1)
where h; denotes the integration step and [x;] the first
solution.

This method is performed in the FEnclosure algorithm and
developed by Nedialkov (2002).

2.8 Set inversion via interval analysis

Consider the problem of determining a solution set for the
unknown quantities u defined by:

S={ueU|ou)ey}=2 ()N, 2)

where [y] is known a priori, U is an a priori search
set for u and ® a nonlinear function not necessarily
invertible in the classical sense. Equation (2) involves
computing the reciprocal image of ® and is known as a set
inversion problem which can be solved using the algorithm
Set Inverter Via Interval Analysis (denoted SIVIA). The
algorithm SIVIA proposed in Jaulin and Walter (1993)
is a recursive algorithm which explores all the search
space without losing any solution. This algorithm makes
it possible to derive a guaranteed enclosure of the solution
set S as follows:
Scscs.

The inner enclosure S is composed of the boxes that have
been proved feasible. To prove that a box [u] is feasible it is
sufficient to prove that ®([u]) C [y]. Reversely, if it can be
proved that ®([u]) N[y] = 0, then the box [u] is unfeasible.
Otherwise, no conclusion can be reached and the box
[u] is said undetermined. The latter is then bisected and
tested again until its size reaches a user-specified precision
threshold € > 0. Such a termination criterion ensures that
SIVIA terminates after a finite number of iterations.

2.4 Constraint satisfaction

To solve a problem described as an interval equation
system, we can use constraint propagation Jaulin et al.
(2001a). In fact, the inclusion relations and equations can
be interpreted as constraints and the resolution of such a
system can then be taken into a Constraint Satisfaction
Problem (CSP). Let us recall the basic definitions:

A Constraint Network (CN) H = (X, D, () is defined by:
- a set of variables X = {z1,...,x,},

- a set of value domains D = {Dy, ..., D,,} where D; is the
domain associated to the variable z;,

- a set of constraints C = {C1, ..., C), }, linking the variables
X. The resolution of a CN is a CSP.

The solution S of the CSP : H = (X, D, () is the set of all
the values affected to the corresponding variables at the
same time.

Contraction and consistency of a CSP: The resolution
of a CSP starts from an infinite domain or a bounded
domain. The reduction of the domain is known as a local
consistency problem, which can take the form of node
consistency, arc consistency, or path consistency (Chabert
et al. (2009); Lhomme (1993)). The operation is called
constraint propagation or contraction, which is based on
the equivalent relation below:

Two CSP H; and Hs are equivalent if and only if they
have the same set of solutions.

Remark 2.1. For the same set of variables X and the same

set of constraints C, different sets of variable domains D;
define different CSP H;.

A contractor R for a CSP H; = (X,D1,C) is an operator
that can shrink the domain D; into a domain Dy without
losing any solution, such that:

Dy C Ds.
The new C'SP Hs is equivalent to H;.

A CSP is solvable when it is equivalent to a C'SP in which
the infinite quantity domain is replaced by a larger value
in computation. The contractor aims to reduce the initial
domain into an as small as possible domain. The principle
is to reject the parts of the domain which are not consistent
with the constraints.

A CSP :H = (X,D,C) is globally consistent if and only
if:

Va; € Dy, A1,y Tiy oy ) €D |

VC(X1,y ooy iy ooy ) € C,C(x1, vy T4y ooy Ty,) 18 verified,
in which C(zq, ...
set of variables.

,Tiy .., Ty) 18 & single constraint with a

Global consistency can be interpreted as the correspon-
dance between the defined domain and the variation of the



constraints for all the variables. In such a case, a globally
consistent C'SP gives a minimal exterior estimation of the
equivalent system equation of the solution.

There is a large choice of contractors. Each has its own
advantages and shortcomings, system characteristics and
available information. We use these criteria to classify
different contractors: constraint linearity, constraints, and
size of [z], which is w([z]). The first criterion to consider
is the linearity of the constraints, which defines two cat-
egories, linear C'SPs and nonlinear C'SPs. More informa-
tion on C'SPs can be found in Chabert and Jaulin (2009)
or in Xiong (2013).

3. FORMULATION AND DEVELOPMENT OF
OPTIMAL INITIAL STATE DESIGN

8.1 Problem statement

In this article, we use the notations introduced in Kearfott
et al. (2005). We consider nonlinear dynamical systems
described by the following form:

:t(tvp7 SCO) =f (x(tJO, 550) » D,y -750)7
ymOd(t’pa 370) = h(a?(t,p, .Z'o)), (3)
zo = z(0) € [Xo], p € [Pol,

where z(t,p,z0) € R™ and y™°4(¢,p, 29) € R™ denote
the state variables and the model outputs respectively.
The initial conditions x(0) is supposed to belong to an
initial bounded box [X(]. The parameter vector p € R"r is
constant and is assumed to belong to a bounded box [Py].
Time ¢ is assumed to belong to [0, ,,4,]. The functions f
and h are nonlinear functions. f is real and analytic on
M for every p € [Py] and every z(0) € [Xo], where M
is an open set of R™ such that z(¢,p,x9) € M for every
p € [Po], (0) € [Xo] and t € [0, timaz))-

The model output at sampling time ¢; is denoted
yrod(p, zo) = y™°(tr, p, o), yp°d(p, x0) is a vector with
components yl‘f‘,fd(p, xg) for I = 1,...,ny, & =1,...,N.
The integer N is the total number of sample times. Let
y(tx, o) be the vector of the measurements at sampling

time t;. The output error is assumed to be given by:
v(tk) :y(tkwTO) 7ym0d(tk>p7x0)a k= 13"'3N' (4)
Finally [y*] = [y(ts,z0) — (tx), y(tr, z0) — v(tx)] where
[y*] is a vector with components [yf] for k¥ = 1,...N and
I=1,.n,.
We assume that for each experimental data y(tg, o), v(tx)
and 7(t) are known as lower and upper bounds for the
acceptable output errors. Such bounds may, for instance,
correspond to a bounded measurement noise.

3.2 Optimal initial state design

Consider parameter estimation in a bounded error frame-
work. A parameter vector p is acceptable if and only if the
error between the measured data y and the model output
y™°d is bounded in a known way. To estimate parameters,
we have to get the set P of all parameters p enclosed in the
a priori search set [Pg] such that the error v(tx) between

real data and model outputs belongs to [v(tx), U(tx)]:
P= {p € [Po]aymOd(tk7p7 $0) € [yk}v Vk = 17 e 7N} (5)

In order to obtain the most accurate estimates, the volume
of the set P must be made as small as possible. This volume

may generally depend on the values of the input Li et al.
(2015b), the initial time, sampling times, etc. In this paper
only the initial state is considered. This is a question of
experiment design. We must therefore find a criterion J
solving this issue in the context of bounded errors.
Then the optimal initial state design problem can be stated
as follows:
Find an initial state z§ such that:

xy =arg min J (P, xzg). (6)

0 €[Xo]

In fact, due to the possible non convexity and perhaps
non connectivity of P, the optimal input design problem
is considered in a context more restrictive as follows:
Given [p] such that P C [p] C [Po]

xzy =arg min J([p], zo). (7)
z0€[Xo]

The following part is devoted to the research of such a
criterion.

To obtain a contractor similar to the contractor proposed
in Kieffer and Walter (2011), we use a centered form for
[y™°d(t, [p], 20)] as inclusion function. For all [p] such that
P C [p] C [Py] and m € [p], we have for the I component

of [ymOd (tkh Lp]7 :Eo)]:
ypi

yi (m, zo) + Z ([pj] = m;) l%] ([} o) < [yr].

Thus, for all [ = 1,...,ny, [p;] —m; is a subset of:
] =yt (m, x0) — 35,4 ([pj] — my) [

mod
[ay““] (Ip) o)

Opi

Now by taking m equal to the middle of [p], then the
interval [p;] — m; is a symmetric interval.

The aim of parameter bounding is to find the smallest
possible domain for parameter under estimation, thus we
have to maximize the denominator and to minimize the
numerator of (9).

If we note:

mod
la?pﬁ] ([p), z0) = [Siki] = [Siks» Siwil- (10)

For the sensitivities such as 0 ¢ [S4;, Six:], we have:

— 1 1
S B~ = |5 5] (11)
And:
o If S;;;, > 0 and we have to maximize |S;;|=
mig(Siki), SO we can minimize ——.
o If Siui < 0, we have to maximgiekzﬁlki\: mig(Siki),

1

lki

SO we can minimize

If 0 € [S;:, Siki), so we implement an extended interval
algorithm to calculate separately the positive part and the
negative part of this interval.



For the numerator, we minimize the magnitude of the sum

£ pales] = m) | 2 (o),

but [p;] —m; is symmetric, then we minimize the magni-
tude of the sensitivities [Syx;] for all j # i.

Then, for the denominator, we maximize the mignitude
of the sensitivities [Sjg;] for all I = 1,...,ny, k = 1,...N,
j=1,..,npandi=1,..,n,.

Then the following Theorem leads.

Theorem 3.1. A criterion J for optimal initial state design
may be defined as follows:

N Ty np np
J([p], xo) = 2ok=1 2 2it1 25t s a9 ([St])

Sy i ity mig([Sual)
(12)

mod

3yz,k
Op;

Then this leads to the following definitions:

with Sy =

Definition 3.1. The criterion J is called the set-membership-
MIGMAG-optimality criterion.

Definition 3.2. An initial state xf is said to be set-
membership-MIGMAG-optimal when:
xy =arg min J([p], zo).
w0 €[x0]

4. PARAMETER ESTIMATION WITH
CONTRACTOR

4.1 Proposed contractor

The differential contractor which is proposed in Kieffer
and Walter (2011) is obtained with formula (9). Using
simplified expressions, the interval parameter given by this
contractor is equal to the intersection of [p;] with:

a mod
[r] =yt (m, o) = 32 ,45([ps] — my) l?};’;] ([p], o)
o mod
[gp] (Ip), o)
+m1‘.

(13)
This expression uses the computation of the sensitivity for
each parameter. If the parameter interval widths are large,
a lot of sets are eliminated by this contractor with one
computation. If the widths are close to the stop criterion,
the contractor is not sufficiently efficient to eliminate
unfeasible boxes. In this last case, we should not use
the contractor all the time long. Thus, we propose the
following criterion to decide when the contractor needs to
be used.
The criterion CondContract is true when the following
formula described by a volumetric product is verified:

Hw([pi}) > H(Ci X €).

where ¢; is a bissection parameter for the parameter p;
(i = 1,..,np) and each element of C' = (Cj)i=1,... n, is
chosen bigger than 2.

(14)

In the following algorithm, for starting the contractor, the
criterion CondContract is proposed.

Algorithm 1 Contractor start condition (p, C, €)

Require: p(0);
Ensure: true, false;

1: Condl := [[}2, w([pi]);
2: Cond2 = [[;2, Cie;

3: if Condl > Cond2 then
4:  CondContract := true;
5: else

6:  CondContract := false;
7: end if

4.2 Parameter estimation algorithm

Based on contractor properties, we propose the following
algorithm as a tradeoff between the precision and efficiency
when applying a contractor. Added in a parameter esti-
mation algorithm, this kind of indicator for application of
contractor could be summarized as follows:

Algorithm 2 Parameter estimation with contractor con-
trol (y, Padmis, C, €)
Require: z(0), p(0);
Ensure: Padmisv uncertains “rejected;
1: initialization: Pys := p(0), z.(0) := (x(0), p(0)), C;
2: while Pj;; :# () do
3: p:= Pop(Piist);

4:  CondContract := Contract(p,C,¢)

5 if CondContract = true then

6: Contract(p);

7. end if

8 1:=1;

9: while i <= N do

10: 2(1) :==VNODE — LP(z.(i — 1));
11: Ji=1

12: 1:=1+1;

13:  end while

14:  if h(ze(1:7)) Cy(1:j) then

15: Padmis = Padmis U p;

16:  else if h(z.(1:7)) Ny(1:7):=0 then
17: Prejected = Prejected U p;

18:  else if w(p) < € then

19: uncertain — Puncertain U D3

20: else

21: bisect Box(p) — {p1,p2 | p1 Ups = p};
22: Prist := Plist Up1, Prist = Prist U p2;
23:  end if

24: end while

In the previous algorithm, we note VNODE — LP the call
to the guaranteed state estimation package. VNODE-LP is
a C package for computing bounds of solutions in initial
value problem for ordinary differential equation. This
package implements particularly algorithms corresponding
to high order enclosure and Hermite- Obreschkoff method
by Nedialkov (2011) which gives a way to obtain tighter
enclosure.

The following section is dedicated to the application. We
use the package VNODE-LP to generate the guaranteed



results with uncertain variables. Many initial state can-
didates are calculated with their sensitivities. Only the
largest one is used in the next parameter estimation
process. Besides, the total number of sampling times is
searched to reduce the computation time of set inversion.

5. APPLICATION

This section is devoted to parameter estimation of a case
study including optimal initial state design. The case study
is a pharmacokinetics model (15) developped below.

5.1 Case study

The case study considered in this paper is a model of
glucose-oxydase pharmacokinetics developped in Verdiere
et al. (2005). Intracellular infections are an important
worldwide health problem. For instance, it is estimated
that tuberculosis, caused by the optional intracellular bac-
terium Mycobacterium tuberculosis, kills 2-3 million peo-
ple each year. Macrophage lifetime is much longer than the
lifetime of granulocytes, the latter cells forming the body
first line of defense against infectious organisms. Thus,
bacteria which evolved resistance against the macrophage
defense mechanisms can survive for a long time in the
body, being protected from the immune responses. More-
over, antibiotic concentrations are often lower inside cells
than in extracellular fluids. Consequently, intracellular
infections determine diseases difficult to cure. Targeting
anti-infectious drugs toward macrophages could bring the
drugs in close contact with intracellular bacteria and thus
help to fight the diseases they determine. In order to reach
this goal, macromolecular carriers bearing the drug and a
homing device directed toward the mannose receptor of
macrophages were used.
Before synthesizing macromolecular conjugates and study-
ing their in vivo efficacy, it was necessary to explore the
capacity of the macrophage mannose receptor to endocy-
tose soluble macromolecules and to quantify the different
aspects of such a process. Glucose oxidase, a mannosy-
lated enzyme easily detected in biological samples through
spectrophotometric, potentiometric or immunologic tech-
niques, was used for a first pharmacokinetic study of man-
nose receptor activity in vivo Demignot and Domurado
(1987). After bolus intravenous administration of glucose
oxidase, its pharmacokinetic behavior is represented by the
following system in which to simplify the description we
omit the variables ¢, p and x¢:
. T

&y = k(w2 — 1) kvl—l—a:l’

&g = koi(z1 —x2), 22(0) =0,

Yy= Ti.
In this model, x; is the enzyme concentration in plasma,
T9 its concentration in compartment 2, and ko is the rate
constant of the transfer from compartment 1 (or the cen-
tral compartment), practically plasma, to compartment 2
(or the peripheral compartment), which represents in the
model the part of extravascular extracellular fluid acces-
sible to glucose oxidase. Concretely, this transfer occurs
through the capillary walls, more or less rapidly depending
on the different permeabilities of the capillary beds in
the different organs. Therefore k15 is the sum of all the
transcapillary transfers in all the organs. Furthermore, ko

x1(0) = 10,
(15)

is the rate constant of the transfer from compartment 2
to compartment 1. For a macromolecule such as glucose
oxidase, this transfer corresponds to return from extracel-
lular fluid to blood through lymphatic circulation. k, is
the maximum rate of an uptake by macrophages through
the mannose receptor. The receptor-mediated uptake is a
cellular process taking place at the level of the macrophage

k
membrane. The ratio k—lz of these two parameters is equal

to the ratio of the volufxlle of the peripheral compartment
to the volume of the central compartment. From the equa-
tions of system (15), it is possible to calculate the amount
of a mannose receptor ligand taken up by macrophages at
any given time after intravenous injection.

The parameters to be estimated are k12, k21 k, which are
assumed to be uncertain. Parameter and state estimation
is conducted in simulation with the exact values of param-
eters given by p = (k12, k21, k») = (0.011,0.02,0.1). The
total number of sampling times N is fixed as 117 (by using
a sampling period of 1s).

5.2 Optimal initial state design

To implement the calculus of MIGMAG criterion, esti-
mation of Equation (15) is coupled with estimation of
sensitivities. Sensitivities of each parameter are calculated
and the sensitivity functions are written as (16):

) ke
$11 = -3 klg s11 + k12521 + (1‘2 - ml)a
(331 + 1)

591 = ko1511 — k215021,

. ky

S12= | —————= — k12
(21 +1)

S99 = ko1S12 — ko1522 + (21 — 22),

. kv I
S513= | ————= — k12 | s13 + k12523 —
(21 + 1) 14z’

893 = k21513 — k21523.

s12 + k12522,

(16)

The initial condition is supposed to belong to [0.1,1.0]
(only the state x7 is measured). Equation (12) is used to
calculate every possible value influence S = Si, where

o =1,---,n,. The initial parameter box is given by:
0.0099, 0.0121
[Po] = [ 0.018, 0.022 1 . (17)
0.09, 0.11

To see which initial state minimizes the criterion, we take
a discretization of the interval for 1(0) (21(0) € [0.1,1])
with a sampling period fixed at 0.01s. The influence of
initial state value is represented in Figure 1.

Through this figure, we can see that the set-membership
MIGMAG criterion is a decreasing function with respect
to 1(0). This result indicates that if we can increase
the initial enzyme concentration, this model will be more
informative for parameter estimation.
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Initial state x1

Fig. 1. Influence of initial state value of ;.

Then for the numerical results, two initial conditions are
considered: the worst case x1(0) = 0.1 and z1(0) = 0.9
which is close to z1(0) = 1, in order to avoid the problems
of boundary conditions.

5.8 Elementary effect analysis

A problem of parameter estimation by using set inversion
is the number of measurements used in the estimation
procedure. It is well-known that an estimation algorithm
based on set-inversion is a time consuming process. Thus
an elementary effect analysis on the number of sample
points is carried out. The proposed method has been intro-
duced to evaluate whether a quantity of measurements is
sufficient to implement our parameter estimation Saltelli
et al. (2008).

The variation of MIGMAG criterion with different sam-
pling time period is represented in Figure 2.

MIGMAG
N
)
o

. . .
0 5 10 15 20
Sampling period T

Fig. 2. Variation of MIGMAG criterion with different
sampling time period T,.

This Figure indicates that the results of the set-membership
MIGMAG criterion are closed enough when the sampling
period T, is given by 1 second or 3 seconds and for larger
periods (T, > 10) the results are deteriorating. Then two
sampling periods are considered : 1 second (thus N = 117)
and 3 seconds (thus N = 39).

5.4 Parameter estimation

In the following part, we consider parameter estimation for
the pharmacokinetics model. The bounded measurement
error is fixed at v € [-5,5] x 1073 for z;. The initial

parameter domain is given with 5% relative error over the
true parameters. To estimate parameter, Algorithm 2 is
used.

The bissection coefficient for the set inversion algorithm is
given by € = [2,2,5] x 107°.

We have got the two following Figures in which the ac-
ceptable boxes are in black color.

By using a sampling period fixed at T, = 1s and
x21(0) = 0.1, the estimation procedure leads to kip €
[0.0099,0.0121], k2; € [0.018,0.022], k,, € [0.0974,0.1026].
These intervals contain the true values. The acceptable
boxes are represented in Figure 3.

0.115
0.11

0.105

kv

0.1

0.095.

0.09.1.
0.025

Fig. 3. Acceptable boxes x1(0) = 0.1 and T, = 1s.

By using a sampling period fixed at T, = 1s and
21(0) = 0.9 the estimation procedure leads to kijo €
[0.0107,0.0113], k2; € [0.0187,0.0213] and

k, € [0.0995,0.1005]. These intervals contain the true
values of parameters. The acceptable boxes are represented
in Figure 4.

e 0.013
T 0.012

0.011
0.01

k12

k21 0.015  0.009

Fig. 4. Acceptable boxes with z1(0) = 0.9 and T, = 1s.

By using a sampling period fixed at T, = 3s and x;(0) =
0.9, the acceptable box range is the same that those
obtained with T, = 1s.

Thus, we propose the following Table in which the estima-
tion results are proposed:

Through this table, we see that the width of interval
estimates are divided by about 4 for two parameters when



Table 1. Width of interval estimates for param-
eter of pharmacokinetics model.

width of width of width of

Te (s) 21(0) estimate estimate estimate
for k12 for koi for ky
1 0.1 0.0022 0.0040 0.0052
1 0.9 6*10—4 0.0026 0.0010

an optimal initial state is used and is divided by 2 for the
other parameter.

In Table 2, the computational time of each configuration
for parameter estimation is given. The time consuming is
given in second.

Table 2. Computational time for parameter
estimation process

Contractor
Without with
Te (S) o (0) contractor Contractor volumetric
criterion
1 0.1 42373 132773 32454
1 0.9 11013 9325 1507
3 0.9 4508 3501 621

The fastest method consists in combining the volumetric
condition contractor and less sampling times. With the
volumetric condition contractor, for all cases, we reduce
the computational time of the parameter estimation pro-
cess. The contractor accelerates the speed of elimination
of non acceptable boxes, but an inappropriate use makes
this tool not useful. Reducing the number of measurements
and choosing the right time to launch the contractor are
two important ways to minimize the computational time.

The previous simulation have not been made in a real-time
context. But the computational requirement is compatible
with the real-time constraints for the case study. Same al-
gorithms were successful employed for example in robotics
like in Walter et al. (2001) or in Braems et al. (2000).

6. CONCLUSION

In this contribution, original tools in a bounded-error con-
text have been proposed to improve parameter estimation
for a large class of nonlinear dynamical models. An optimal
initial state criterion: the set-membership MIGMAG crite-
rion has been highlighted. Then an algorithm based on an
original criterion called CondContract has been proposed
to reduce the use of contractors and consequently we re-
duce the computational time. Finally to increase efficiency
in parameter estimation, the elementary effect analysis has
been used.

Our tools have been tested on an example taken from the
pharmacokinetics domain and they showed their efficiency.

We note that the set-membership MIGMAG criterion can
also be used in the context of bounded errors for the input
optimization of nonlinear controlled dynamical models.

This parameter estimation method has potential for be-
ing used for fault detection and diagnosis problems in
continuous-time systems or hybrid systems. Fault de-
tection mechanisms using bounded uncertainty models

present the advantage to guarantee absence of false alarms
Armengol et al. (2000).
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