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CEA, CNRS, URA 2306, 91191 Gif-sur-Yvette, France

5Center for Gravitational Physics, Yukawa Institute for Theoretical Physics,
Kyoto University, Kyoto 606-8502, Japan

(Received 23 October 2018; published 25 March 2019)

We study the accuracy with which cosmological parameters can be determined from a real space power
spectrum of matter density contrast at weakly nonlinear scales using analytical approaches. From power
spectra measured in N-body simulations and using the Markov chain Monte Carlo technique, the best-
fitting cosmological input parameters are determined with several analytical methods as a theoretical
template, such as the standard perturbation theory, the regularized perturbation theory, and the effective
field theory. We show that at redshift 1, all two-loop level calculations can fit the measured power spectrum
down to scales k ∼ 0.2 h Mpc−1, and cosmological parameters are successfully estimated in an unbiased
way. Introducing the figure of bias (FoB) and figure of merit (FoM) parameter, we determine the validity
range of those models and then evaluate their relative performances. With one free parameter, namely the
damping scale, the regularized perturbation theory is found to be able to provide the largest FoM parameter
while keeping the FoB in the acceptance range.

DOI: 10.1103/PhysRevD.99.063530

I. INTRODUCTION

The primordial density fluctuations, which are believed
to be generated quantum mechanically during the infla-
tionary stage of the Universe, has evolved under the
influence of cosmic expansion and gravity and resulted
in rich structures over the observable scale of the Universe.
Thus, the statistical nature of the large-scale structure of the
Universe, as partly traced by galaxy redshift surveys and
weak lensing surveys, contains rich cosmological informa-
tion. Given the large-scale structure data set, statistical
inference of cosmological parameters as well as the test of
cosmological models are now a routine task, and increasing
the statistical precision, an efficient and unbiased way to
extract the cosmological information, is rather critical.
In particular, the baryon acoustic oscillations (BAO)
imprinted on the spatial clustering pattern of galaxies is
known as the primeval acoustic signature of the baryon-
photon fluid and is used as a standard ruler to constrain the
late-time cosmic acceleration through the precise measure-
ment of the power spectrum or correlation function [1].
While the BAO is thought to be a robust and idealistic

cosmological probe, several systematics in reality come
into play. Accurately modeling or removing those system-
atics is currently the central issue in precision cosmology
with large-scale structure observations.
Over the last decade, there have been survey projects

aimed at detecting BAO via the measurements of the galaxy
power spectrum, e.g., the Baryon Oscillation Spectroscopic
Survey (BOSS) [2,3], 6dF Galaxy Survey [4], and WiggleZ
[5]. In addition, projects which span larger areas and can
detect more objects have been proposed, such as the Dark
Energy Spectroscopic Instrument (DESI) [6], Subaru Prime
Focus Spectrograph (PFS) [7], Large Synoptic Survey
Telescope (LSST) [8], and Euclid [9,10]. Since these
surveys measure the power spectrum at the subpercent
level, we need more accurate and precise modeling of the
power spectrum over a wider range of scales to constrain
the cosmological parameters and test the cosmological
models at high precision.
A standard approach to get an accurate power spectrum

over the wide range of scales is numerical simulations.
Among other numerical methods, N-body simulation, in
which the smooth matter distribution is described approx-
imately by the collections of discrete particles, is a suitable
tool to trace the nonlinear gravitational evolution of the*ken.osato@utap.phys.s.u-tokyo.ac.jp
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matter fluctuation because nonlinear evolution is efficiently
taken into account down to the scales limited by the
resolution. However, running N-body simulations to
explore large parameter spaces is not practical because
of the large computational cost. In many cases, analytical
prescriptions are employed to efficiently compute the
power spectrum with numerous sets of cosmological
parameters in a forward modeling manner and infer the
cosmological parameters from measurements of the power
spectrum. For this purpose, several approaches have been
proposed to accurately predict the power spectrum. The
perturbation theory (PT) has played a central role to
compute the power spectrum analytically (see Ref. [11]
for a comprehensive review). Under the single-stream
approximation, the system to solve is reduced to the cosmic
fluid which follows the continuity, Euler, and Poisson
equations in the expanding Universe, and one can expand
these equations with respect to the linear density contrast.
This naive perturbative approach is called standard pertur-
bation theory (SPT). However, it is known that SPT has
poor convergence properties when higher order correction
is included, and deviates from the results of N-body
simulations from a relatively large scale [12].
In order to improve the convergence and compute the

power spectrum more reliably on small scales, approaches
alternative to SPT have been presented based on resumma-
tion schemes in Lagrangian [13] or in Eulearian [14–16]
space. Analytical approaches have been further extended in
the context of effective field theories (EFT) [17–19], which
incorporate small scale physics, beyond the single stream
regime, by introducing effective interaction terms in the
equation of motions. The scales of validity of those models
obviously vary frommodels to models. Furthermore, impor-
tant effects, e.g., galaxy bias or redshift space distortion, can
be taken into account in some models [20,21]. In Ref. [22],
they investigate how choice of analytical approaches and
models of bias and redshift space distortion affects the
goodness of fit in the case of the power spectrum. The goal
we pursue here is to give first insights into the ability of such
models to not only reproduce N-body results at one repre-
sentative cosmological parameter set but also to effectively
infer cosmological parameters from the matter power spec-
trum measurements. For this purpose, we investigate how
accurately these methods can recover the cosmological
parameters from the full shape measurement of the matter
power spectrum. More specifically, we first generate initial
conditions with a set of cosmological parameters, and then
runN-body simulations to create a matter density field at the
late time Universe. Following analysis similar to that used in
observations, we measure the matter power spectrum from
the simulations and fit it with analyticalmethods based on the
Markov chain Monte Carlo (MCMC) technique. Finally, we
can obtain the constraints on cosmological parameters and
compare themwith the parameters used to generate the initial
condition.With such a test, we can then infer the scales down

to which the analytical methods can be used without biasing
the retrieved cosmological parameters—within the statistical
error bars—and then identify the best performing theoretical
modeling. In addition to commonly used methods like SPT,
we employ the following extended theories. One is the
regularized perturbation theory (RegPT) [23]. In this frame-
work, the expansion based on SPT is reorganized based on
multipoint propagator expansion. Other approaches we test
in this study are based on EFT constructions where one or
several free parameters are introduced to describe the impact
of the small scale physics, such as the effective pressure of
cosmic fluid, on the growth of the large scale modes.
A specific goal of our study precisely lies in investigating
the usefulness of such models with free parameters. The
presence of those parameters extends naturally the validity
range of models but require either their calibration in
simulations or their joint fitting, together with the cosmo-
logical parameters. In this study we test these models by
fitting the free parameters they contain simultaneously with
the set of cosmological parameters we choose. Furthermore,
for reference we also use the response function approach
[24], which is a simulation-aided approach for computing the
nonlinear power spectrum.
This paper is organized as follows. In Sec. II, we review

basics of analytical approaches: SPT, RegPT, IR-
resummed EFT, and the response function approach. We
give details of N-body simulations and parameter estima-
tion in Sec. III. Then, we present analysis of parameter
estimation with the power spectrum measured from sim-
ulations in Sec. IV. We conclude in Sec. V.
Throughout the paper, we assume a flat Λ cold dark

matter Universe model, and fiducial cosmological param-
eters are as follows: scaled Hubble parameter h ¼ H0=
ð100 km s−1 Mpc−1Þ ¼ 0.6727, physical cold dark matter
density Ωch2 ¼ 0.1198, baryon density Ωbh2 ¼ 0.02225,
the amplitude As ¼ 2.2065 × 10−9 and the tilt ns ¼ 0.9645
of scalar perturbation at the pivot scale kpiv ¼ 0.05 Mpc−1.
Then, the total matter density Ωm is the sum of dark matter,
baryon and massive neutrino components and we assume
neutrinos compose of two massless neutrinos and one mas-
sive neutrino with the mass Mν ¼ 0.06 eV, which corre-
sponds to the physical energy density Ωνh2 ¼ 0.000 64.
Note that the effect of massive neutrinos are taken into
account only in the computation of the linear matter power
spectrum at z ¼ 0. Both the simulations and the analytical
calculations are based on the linear power spectrum scaled
to the initial redshift or the redshift at which the nonlinear
spectra are computed assuming a scale-independent linear
growth factor ignoring the masses of neutrinos.

II. THEORY

In this section, we briefly review several PT approaches
to analytically compute the matter power spectrum on
weakly nonlinear scales.
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A. Standard perturbation theory

In this prescription, we begin with fluid equations in the
single-stream approximation (continuity, Euler, and
Poisson equations) and then the density and velocity fields
are expanded with respect to the linear density contrast. It is
useful to expand the fields in Fourier space because it
clarifies how the mode couples with each other. The
resultant expansion of the density field δ is expressed in
powers of linear density field δ0 at the present Universe,

δðkÞ ¼
X
n¼1

DnþδðnÞðkÞ; ð1Þ

δðnÞðkÞ ¼
Z

d3q1 � � � d3qn
ð2πÞ3ðn−1Þ δDðk − q1 − � � � − qnÞ

× FðnÞ
symðq1;…; qnÞδ0ðq1Þ � � � δ0ðqnÞ; ð2Þ

where δD is the Dirac delta function, Dþ is the linear

growth factor, and FðnÞ
sym is the n-th order symmetrized

kernel, which characterizes mode coupling via the
nonlinear evolution. The kernels can be analytically con-
structed [14,25].
A key statistical property for a statistically homogeneous

stochastic density field is its power spectrum PðkÞ
defined as

hδðkÞδðk0Þi≡ ð2πÞ3δDðkþ k0ÞPðkÞ: ð3Þ

The power spectrum depends only on the magnitude of k
due to the statistical isotropy. Assuming that the linear
density field follows the Gaussian statistics, and using the
perturbative expansion in Eqs. (1) and (2), we can express
the power spectrum perturbatively,

PðkÞ ¼ D2þP0ðkÞ þ ΔPSPT
1-loopðkÞ þ ΔPSPT

2-loopðkÞ þ � � � ; ð4Þ

where P0ðkÞ is the linear power spectrum defined as

hδ0ðkÞδ0ðk0Þi≡ ð2πÞ3δDðkþ k0ÞP0ðkÞ: ð5Þ

The first and second terms in Eq. (4) are called one-loop
and two-loop correction terms which involve square and
cubic powers of the linear power spectrum, respectively.
The explicit expressions for correction terms can be found
in Appendix A 1.

B. Regularized perturbation theory

As an extended PT treatment that improves the con-
vergence of PTexpansion by reorganizing the infinite series
of SPTexpansion, we consider a model based on multipoint
propagator expansion, RegPT [23]. Here, we review the
basic formalism of the density power spectrum according to
this framework.

First, we construct (nþ 1)-point propagator ΓðnÞ as an
ensemble average of functional derivatives,

1

n!

�
δnδðk; ηÞ

δδ0ðk1Þ � � � δδ0ðknÞ
�

≡ δDðk − k1…nÞ
1

ð2πÞ3ðn−1Þ Γ
ðnÞðk1;…; knÞ; ð6Þ

where k1…n ¼ k1 þ � � � þ kn,

ΓðnÞðk1;…; knÞ

¼ DnþF
ðnÞ
symðk1;…; knÞ þ

X∞
p¼1

ΓðnÞ
p-loopðk1;…; knÞ; ð7Þ

ΓðnÞ
p-loopðk1;…; knÞ

¼ Dnþ2p
þ cðnÞp

Z
d3q1 � � � d3qp

ð2πÞ3p Fðnþ2pÞ
sym

× ðq1;−q1;…; qp;−qp; k1;…; knÞP0ðq1Þ � � �P0ðqpÞ;
ð8Þ

PRegPTðkÞ ¼
X∞
n¼1

n!
Z

d3q1 � � � d3qn
ð2πÞ3ðn−1Þ δDðk − q1…nÞ

× ½ΓðnÞðq1;…; qnÞ�2P0ðq1Þ � � �P0ðqpÞ; ð9Þ

where cðnÞp ¼ðnþ2pÞ Cnð2p − 1Þ!! and ðnþ2pÞCn is the bino-

mial coefficient.
The propagator ΓðnÞ has an asymptotic form in high-k

limit. It is shown that [16]

lim
k→∞

ΓðnÞðk1;…; knÞ ¼ exp

�
−
k2D2þσ2d

2

�
ΓðnÞ
treeðk1;…; knÞ;

ð10Þ

where k ¼ k1…n. Here, the tree term ΓðnÞ
tree is identical to the

SPT kernelDnþF
ðnÞ
sym, and σ2d is the root-mean-square of one-

dimensional displacement field,

σ2d ≡ 1

3

Z
d3q
ð2πÞ3

P0ðqÞ
q2

¼
Z

dq
6π2

P0ðqÞ: ð11Þ

This quantity controls the damping behavior in high-k
regime and is sensitive to integration range. Ref. [23]
proposed the running UV cutoff to reproduce the spectra
measured from N-body simulations,

σ2dðkÞ ¼
Z

kΛðkÞ

0

dq
6π2

P0ðqÞ; ð12Þ

where the UV cutoff scale is kΛðkÞ ¼ k=2.

PERTURBATION THEORY CHALLENGE FOR … PHYS. REV. D 99, 063530 (2019)

063530-3



Then one can construct the regularized propagators
which approaches the expected asymptotes at both ends,
Eq. (10) at the high-k limit and SPT at the low-k limit. The
expressions for two-loop and one-loop levels are found in
Appendix A 2. The damping factor is crucial to determine
the shape on high-k regime. In addition to the running UV
cutoff case employed in the original RegPT code, we
investigate a simple generalization of this model by treating
σd as a free parameter. In what follows, we call this version
RegPT+.

C. IR-resummed effective field theory

The EFT of the large-scale structure provides a way to
incorporate the effects of small-scale physics, beyond shell-
crossing, by introducing counter terms. It is known that
once parameters are calibrated with N-body simulations,
one can reproduce the measured power spectrum by the
subpercent level up to high-k (≲0.30 hMpc−1). However,
those parameters have explicit cosmological dependence,
and they must be in general treated as free parameters in
practical analysis of cosmological parameter estimation. In
the present study, we examine a simplified treatment of IR-
resummed EFT as presented in Refs. [26,27], where the
damping of the BAO wiggle feature in the power spectrum
due to the large-scale bulk motion is modeled by the so-
called IR-resummation.
First, we split the power spectrum into the smooth and

wiggle part. For the linear power spectrum, the smoothed
part is evaluated using a featureless transfer function as

Pnw
L ðkÞ ¼ PEHðkÞF ½PLðkÞ=PEHðkÞ�; ð13Þ

where PLðkÞ is the linear power spectrum at a given
redshift, i.e., PLðkÞ ¼ D2þP0ðkÞ, and PEHðkÞ is the power
spectrum from the no-wiggle formula given by Ref. [28].
The functional F ½fðkÞ� represents a smoothing operation
defined as

F ½fðkÞ� ¼ 1ffiffiffiffiffiffi
2π

p
log10λ

Z
dðlog10qÞfðqÞ

× exp

�
−
ðlog10k − log10qÞ2

2ðlog10λÞ2
�
; ð14Þ

where λ determines the smoothing scale and we adopt λ ¼
100.25 hMpc−1 [27]. That is, we adjust the slight difference
in the broadband between the formula by [28] and the linear
power spectrum computed by CAMB, and obtain a smooth
baseline model that traces the overall shape of the linear
power spectrum better than PEHðkÞ. The wiggle part Pw

L is
obtained by subtracting the smooth part Pnw

L from the total
spectrum PL. The higher order correction terms, i.e.,
ΔPnw

1-loop and ΔPnw
2-loop, are obtained by plugging the no-

wiggle linear spectrum Pnw
L into SPT formulas instead of

the linear power spectrum PL. Similarly, the wiggle terms

ΔPnw
1-loop and ΔPnw

2-loop are obtained as the residuals. Finally,
we can compute the matter power spectrum based on IR-
resummed EFT at the two-loop level as

PIR EFT
2-loop ðkÞ ¼ PnwðkÞ þ PwðkÞ; ð15Þ

PnwðkÞ ¼ ð1þ α1k2ÞPnw
L ðkÞ

þ ð1þ α2k2ÞΔPnw
1-loopðkÞ þ ΔPnw

2-loopðkÞ; ð16Þ

PwðkÞ ¼ e−k
2Σ2 ½ð1þ α1k2 þ C1ÞPw

L ðkÞ
þ ð1þ α2k2 þ C2ÞΔPw

1-loopðkÞ þ ΔPw
2-loopðkÞ�;

ð17Þ

where

C1 ¼ k2Σ2ð1þ α1k2Þ þ
1

2
k4Σ4; ð18Þ

C2 ¼ k2Σ2ð1þ α2k2Þ: ð19Þ

Here we introduce three free parameters, α1, α2, and Σ.
The parameters α1 and α2 roughly correspond to the
effective sound speed and Σ controls the damping behavior
at small scales. The explicit formulas are also found in
Appendix A 3.

III. METHODS

In order to test the analytical treatments presented in the
previous section, we conduct a mock cosmological analy-
sis. First, we generate initial conditions with a given set of
cosmological parameters and then run N-body simulations
to obtain matter distribution at the late-time Universe.
With the simulated power spectrum and theoretical
approaches, we infer cosmological parameters and compare
them with the true values, i.e., those used to generate initial
conditions.

A. N-body simulations

In order to carry out the cosmological parameter esti-
mation, we need measured data of the matter power
spectrum, for which we use N-body simulations. We run
N-body simulations to obtain the matter distribution at the
redshift z ¼ 1. We employ 20483 particles and the length
on a side is 2 h−1Gpc. The initial conditions (ICs) are
generated at the redshift z ¼ 28.683. The standard way to
create ICs is generating them as Gaussian random field
according to the linear power spectrum. However, this IC is
subject to the large sample variance at low-k regime, which
might affect the parameter estimation. In order to circum-
vent this effect and improve the convergence, we employ
suppressed variance initial conditions [29], in which the
norm of Fourier modes, jδ0ðkÞj, is fixed to its expectation
value from the linear power spectrum and then two
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simulations with inverted phases are paired. Since the
fluctuations in the measured power spectra are partly
cancelled by taking the mean of the pair, this IC can greatly
reduce the variance. Then, we simulate the gravitational
evolution of the matter distribution with the Tree-PM code
Gadget-2 [30]. Finally, we measure the power spectrum
from the particle distribution with fast Fourier transform.
Our simulation template is based on the average over five
pairs of simulations, and the typical statistical error is at the
subpercent level. The input cosmological parameters used to
generate the IC are h ¼ 0.6727, Ωch2 ¼ 0.1198,
Ωbh2 ¼ 0.02225, Ωνh2 ¼ 0.000 64, ns ¼ 0.9645, and
As ¼ 2.2065 × 10−9. The derived total matter density
parameter is Ωm ¼ Ωc þΩb þΩν ¼ 0.3153.

B. Inference of input cosmological parameters
from the power spectrum

Here, we estimate cosmological parameters with the
methods described in Sec. II and the power spectrum
measured from simulations. To summarize, we consider
four analytical approaches: RegPT, SPT, RegPT+, and IR-
resummed EFT.
The likelihood distribution LðθjP̂Þ is given as the form

of multivariate Gaussian distribution,

LðθjP̂Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detCp exp
�
−
1

2

Xn
i;j

ðP̂ðkiÞ

− Pðki; θÞÞðC−1ÞijðP̂ðkjÞ − Pðkj; θÞÞ
�
; ð20Þ

where C is the covariance matrix of the power spectrum,
P̂ðkÞ is the measured power spectrum from simulations,

and Pðk; θÞ is the prediction based on analytical schemes
with parameters θ, which include cosmological parameters
and also nuisance parameters in cases of RegPT+ and IR-
resummed EFT. We consider three dimensional cosmo-
logical parameter space of ðh;Ωm; AsÞ to get converged
results within reasonable time. The parameter As directly
determines the amplitude of the matter power spectrum and
varying parameters h or Ωm changes the distance scales at
large scale. Furthermore, large Ωm enhances the nonlinear
growth of matter fluctuations at small scales. The meas-
urement of the matter power spectrum is known to give
tight constraints on these parameters and that is why we
focus on these parameters in this study. When varying Ωm,
we fix the ratio between matter and baryon density
Ωb=Ωm ¼ 0.1559. The information about cosmological
parameters is summarized in Table I. We adopt flat prior
for all parameters and varied parameters have reasonable
ranges (see Table I). The prior is zero outside the ranges.
The setting of binning of wave numbers, i.e., the minimum
kmin, maximum kmax, and the interval Δk, is shown in
Table II. Note that all bins are linearly spaced.
For the covariance matrix, we consider only the Gaussian

part along with the shot noise contribution, which is
given by

Cij ¼
2

Nki

�
PðkiÞ þ

1

ngal;eff

�
2

δij; ð21Þ

where we define the effective number density ngal;eff ≡
b2gngal with galaxy bias bg and the number density of
galaxies ngal, Nki is the number of the mode, and δij is the
Kronecker delta. Strictly speaking, due to mode coupling,

TABLE I. Cosmological parameters.

Varied parameters

Symbol Value Explanation Range

h 0.6727 Hubble parameter in the unit of 100 km s−1 Mpc−1 0.3 < h < 1.3
Ωm 0.3153 The matter density at the present Universe 0.01 < Ωmh2 < 0.99
As 2.2065 × 10−9 The amplitude of scalar perturbation at the

scale kpiv ¼ 0.05 Mpc−1
As > 0

Fixed parameters

Symbol Value Explanation Range

Ωb=Ωm 0.1559 The baryon density fraction 0.005 < Ωbh2 < 0.1
ns 0.9645 The tilt of scalar perturbation
Ων 0.000 64 The energy density of massive neutrino

TABLE II. Binning of wave numbers.

Model kmin ½hMpc−1� kmax ½hMpc−1� Δk ½hMpc−1�
RegPT and SPT 0.004 ½0.15; 0.18; 0.21; 0.24; 0.27; 0.30� 0.004
RegPT+, IR-resummed EFT, and RESPRESSO 0.004 ½0.15; 0.18; 0.21; 0.24; 0.27; 0.30; 0.33; 0.36� 0.004
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off-diagonal terms appear in the covariance matrix.
However, the impact of these terms on our interested scales
can be ignored [31]. Note that the galaxy bias is introduced
only to adjust the relative contribution of the shot noise to
the survey setting that we consider. The matter power
spectrum, not the galaxy power spectrum, is considered
throughout the analysis. The shot noise term regulates the
available scales, where information can be extracted.
Otherwise, the constraints on parameters are determined
only from the power spectrum on small scales. We count
the number of modes Nk in the simulations where the
periodic boundary condition is adopted. In our case, we
adopt the survey volume V ¼ 8.0 ðh−1 GpcÞ3, the galaxy
bias bg ¼ 1.41, and the galaxy number density
ngal ¼ 8.4 × 10−4 ðh−1 MpcÞ−3, which gives the effective
number density ngal;eff ¼ 1.67 × 10−3 ðh−1 MpcÞ−3. These
parameters are chosen to match the Euclid survey in the
specific redshift bin 0.9 < z < 1.1 [10].
We use an Affine invariant Markov chain sampler

emcee [32] to obtain the posterior distribution. For the
burn-in process, we compute the auto-correlation time tc of
parameters for each chain and discard the first 2tc steps. For
convergence, the sampler is run until the total steps is 50
times larger than auto-correlation time for all parame-
ters [33].

C. Response function approach

In order to validate our whole procedure we consider a
hybrid approach recently proposed in Refs. [24,34], which,
by construction, gives unbiased estimates of the parameters
with computable error bars. In this approach, the nonlinear
matter power spectrum is expanded by the linear power
spectrum, instead of the linear density contrast, around a
fiducial cosmology at which accurate simulation data are
available. We then make use of the response function which
describes the way the nonlinear power spectrum responds
to the variation of the linear power spectrum:

Kðk; qÞ ¼ q
δPðkÞ
δPLðqÞ

: ð22Þ

The function Kðk; qÞ was studied with numerical simu-
lations and perturbation theory in detail in Ref. [24] and it
was found that while the function is well described by SPT
at linear to weakly nonlinear scale (in wave number q), it
exhibits a strong damping behavior at large q, and this is
even true when the other wave number k stays in a very
large scale. Then, the follow-up paper [34] presented an
analytical model based on a regularized PT and SPT with
damping tail motivated by results of numerical simulations,
which performs well over a wide dynamical range in q for a
given k in the mildly nonlinear regime.
Once a reasonable model for the response function

Kðk; qÞ is constructed, one can compute the nonlinear
matter power spectrum via

Pðk;θÞ¼Pðk;θ0Þþ
Z

dðlnqÞKðk;qÞ½PLðq;θÞ−PLðq;θ0Þ�;

ð23Þ

where we denote by θ the cosmological parameters in the
target cosmology and by θ0 those in the fiducial cosmo-
logical model in which the simulation data for the nonlinear
power spectrum are available. The RESPRESSO code
developed in Ref. [34] follows this equation to compute
the power spectrum in the target cosmology. Equation (22)
is valid as long as the difference in the two linear power
spectra is small, but the code takes into account possible
higher order corrections by considering multiple-step
reconstruction with an appropriate cosmology-dependence
in the Kðk; qÞ function, when the target cosmology is quite
far from the fiducial one [35].
In this paper, the power spectrum template for the

fiducial cosmology, i.e., the first term in the right-hand
side of Eq. (22), is the same as the simulation data used in
this study. This model should therefore provide, by con-
struction, an unbiased estimate of the cosmological param-
eters when fitted to the simulation data, no matter what
wave number is considered in the fitting.
The response function approach provides also a natural

way to estimate the Fisher matrix forecast as will be
discussed in Sec. IV D. We thus employ this model to
discuss the consistency between the MCMC analysis and
the Fisher matrix forecast. Also, the model provides the
best-case scenario for the figure of merit assessment, where
no nuisance parameter is introduced and the best-fit
parameters are unbiased for the reason discussed above.
As a consequence, this model can be used to validate our
numerical procedure and be used as referential perfomance
for the analytical approaches we use in the following.

IV. RESULTS

In this section, we show results of the parameter inference
based on the various methods presented in Sec. II. All of the
results presented in the subsequent sections are based on
two-loop level calculations. For comparison, the results with
one-loop level calculations are presented in Appendix B.

A. Fiducial and best-fit power spectra

In Fig. 1, power spectra computed with input cosmo-
logical parameters and the power spectrum measured
from the simulations are shown. RegPT can accurately
fit the power spectrum up to moderate k ∼ 0.2 hMpc−1, but
for higher k≳ 0.20 hMpc−1, it fails to fit the power
spectrum. At a first glance, SPT seems to reproduce the
power spectrum at the wide range of scales, but the
small discrepancy can be seen even at large scales
∼0.15 hMpc−1. In RegPT and SPT, there are no free
parameters, but RegPT+ and IR-resummed EFT models
contain free parameters, which are fitted by the least
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squares method using spectrum up to 0.27 hMpc−1. The
free parameters help to reproduce the spectrum at small
scales, and the fitting results are improved compared with
the cases without free parameters. In Fig. 2, power spectra
with best-fit parameters estimated from MCMC chains
with the maximum wave number kmax ¼ 0.27 hMpc−1

and the spectrum measured from simulations are shown.
For RegPT, the fitting works well at small scales
≳0.20 hMpc−1, where errors are small, at the expense

of the agreement at large scales. On the other hand, SPT can
reproduce the overall shape of the power spectrum.
Furthermore, with the help of the introduction of free
parameters, RegPT+ and IR-resummed EFT can com-
pletely capture the feature up to kmax. However, even if the
best-fitting power spectra are consistent, the best-fit cos-
mological parameters do not always match with the input
parameters. This aspect is discussed in detail in Sec. IV C.
In Figs. 1 and 2, the results with RESPRESSO are not

FIG. 1. Predictions of the power spectrum for each analytical
method with fiducial cosmological parameters. For RegPT+ and
IR-resummed EFT models, nuisance parameters are determined
by the least-squares method using the power spectrum up to
kmax ¼ 0.27 hMpc−1. The arrow shows the maximum wave
number in the least-squares method. Note that spectra with these
two models for wave numbers larger than kmax are shown as
dashed lines.

FIG. 2. Power spectra with each analytical method with best-fit
parameters with kmax ¼ 0.27 hMpc−1. Note that spectra for wave
numbers larger than kmax are shown as dashed lines and the arrow
shows kmax. The best-fit cosmological parameters and nuisance
parameters are estimated from MCMC chains.

FIG. 3. Best-fitting power spectra for RegPT at the two-loop
level with best-fit parameters with different maximum wave
numbers from 0.15 hMpc−1 to 0.30 hMpc−1. The arrows show
corresponding maximum wave numbers kmax. Note that spectra
for wave numbers larger than kmax are shown as dashed lines. The
best-fit cosmological parameters are estimated from MCMC
chains.

FIG. 4. Best-fitting power spectra for SPT at the two-loop level
with best-fit parameters with different maximum wave numbers
from 0.15 hMpc−1 to 0.30 hMpc−1. The arrows show corre-
sponding maximum wave numbers kmax. Note that spectra for
wave numbers larger than kmax are shown as dashed lines. The
best-fit cosmological parameters are estimated from MCMC
chains.
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shown because this method by construction gives the
identical power spectrum measured from simulations.
We also show results of fitting with different kmax in

Figs. 3–6. In the case of RegPT, for kmax ≲ 0.24 hMpc−1,
the fitting works well but for larger kmax, it starts to fail and
discrepancy appears at large scales because the fitting is
determined by small-scale spectra where errors are small
but predictions at these scales are no longer reliable, as we
have seen in Fig. 2. SPT can fit the power spectrum well at

FIG. 5. Best-fitting power spectra for RegPT+ at the two-loop
level with best-fit parameters with different maximum wave
numbers from 0.15 hMpc−1 to 0.36 hMpc−1. The arrows show
corresponding maximum wave numbers kmax. Note that spectra
for wave numbers larger than kmax are shown as dashed lines. The
best-fit cosmological parameters are estimated from MCMC
chains.

FIG. 6. Best-fitting power spectra for IR-resummed EFT at the
two-loop level with best-fit parameters with different maximum
wave numbers from 0.15 hMpc−1 to 0.36 hMpc−1. The arrows
show corresponding maximum wave numbers kmax. Note that
spectra for wave numbers larger than kmax are shown as dashed
lines. The best-fit cosmological parameters are estimated from
MCMC chains.

FIG. 7. Parameter confidence regions with RegPT at the two-
loop level and kmax ¼ 0.21 hMpc−1. The light, normal, and dark
blue lines correspond to the 1-σ, 2-σ, and 3-σ limits, respectively.
The median and 16% and 84% percentiles are also shown on the
top of each histogram. The black dashed lines correspond to 16%
and 84% percentiles. The red lines show the input parameters.

FIG. 8. Parameter confidence regions with SPT at the two-loop
level and kmax ¼ 0.21 hMpc−1. The light, normal, and dark blue
lines correspond to the 1-σ, 2-σ, and 3-σ limits, respectively. The
median and 16% and 84% percentiles are also shown on the top
of each histogram. The black dashed lines correspond to 16% and
84% percentiles. The red lines show the input parameters.
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large scales, but the small scale feature cannot be captured
even with best-fit parameters for large kmax. As we have
seen, RegPT+ and IR-resummed EFT can reproduce the
power spectrum even for kmax > 0.3 hMpc−1 with the help
of the free parameters.

B. Parameter estimation with MCMC analysis

In Figs. 7–11, the confidence regions of cosmological
parameters with RegPT, SPT, RegPT+, and IR-resummed
EFT at the two-loop level and RESPRESSO for kmax ¼
0.21 hMpc−1 are shown. At this scale, all prescriptions
give the precise predictions of the power spectrum and we
can safely recover the input cosmological parameters.
However, for example, the constraints with RegPT are
tighter than those with IR-resummed EFT because free
parameters introduced in this model degrade the resultant
constraints. In addition, these parameters also affect
parameter degeneracy between cosmological parameters.
This effect will be addressed later in Sec. IV E. For other
models which contain no nuisance parameters, i.e., SPT
and RESPRESSO, the constraints are almost the same as
those with RegPT. On the other hand, for RegPT+, the
constraints are weaker than those with RegPT as this model
also introduces a free parameter.
Next, we show the estimated cosmological and nuisance

parameters with analytical models at the two-loop level in

Figs. 12 and 13. The values plotted in these figures are
medians, which are robust to outliers, instead of means.
However, for cosmological parameters, since the posterior
distributions are symmetric, the median and mean are
almost the same. On the other hand, for some of nuisance
parameters (see, e.g., the parameter Σ in Fig. 10), the
posterior distribution is far from symmetric, the median can
be different from the sample mean. The range of error bars
corresponds to 16% and 84%, which correspond to the
1-σ range when the posterior distribution is completely
Gaussian. For RegPT at the two-loop level, this model
gives unbiased estimates up to kmax ≲ 0.24 hMpc−1, where
the calculations are supposed to be accurate. As a general
trend, the errors become small by increasing kmax because
more information become available. However, at high
k≳ 0.25 hMpc−1, this model is not supposed to compute
the spectrum accurately (see Fig. 1). As a result, the fitting
process itself breaks down, and then errors increase and
estimated parameters deviate from the true values.RegPT+,
IR-resummed EFT, and RESPRESSO can all reproduce the
input cosmological parameters up to high kmax. However,
RegPT+ and IR-resummed EFT contain free nuisance
parameters and thus they have more degrees of freedom
(d.o.f.) to fit the power spectrum. Thus, that leads to
degradation of constraints.

C. Figure of bias

Here, we quantify how close to the input cosmological
parameters estimated parameters are for each template with
respect to the statistical errors. For this purpose, first we
compute the correlation matrix of all parameters S, i.e.,
cosmological parameters and nuisance parameters (σd for
RegPT+ and α1, α2, and Σ for IR-resummed EFT), which
can be estimated from MCMC chains:

Sαβ ¼
1

N − 1

XN
k

ðθkα − θ̄αÞðθkβ − θ̄βÞ; ð24Þ

where θk is a parameter vector at the k-th step, N is the
number of total steps in chains, and θ̄ is the sample mean of
the parameters. We are interested only in cosmological
parameters and marginalize the posterior distribution over
the nuisance parameters. Under the assumption that the
parameters follow the multivariate Gaussian distribution,
this operation simply corresponds to taking submatrix,
which is denoted by S̃. Then, we define the figure of bias
(FoB) as

FoB≡
�X

α;β
δθαðS̃Þ−1αβ δθβ

�
1=2

; ð25Þ

where δθ is the difference between the estimated and
input cosmological parameters [36]. FoB corresponds to
the distance between true and estimated cosmological

FIG. 9. Parameter confidence regions with RegPT+ at the two-
loop level and kmax ¼ 0.21 hMpc−1. The light, normal, and dark
blue lines correspond to the 1-σ, 2-σ, and 3-σ limits, respectively.
The median and 16% and 84% percentiles are also shown on the
top of each histogram. The black dashed lines correspond to 16%
and 84% percentiles. The red lines show the input parameters.
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parameters normalized by their variances. In Fig. 14, we
show FoBs with different models and kmax along with 1-σ,
2-σ, and 3-σ critical values, which correspond to 68%,
95%, and 99.7% percentiles, respectively, in the case of
three parameters, when the parameter deviation δθ follows
multivariate Gaussian. These critical values are derived
from cumulative distribution function for the chi-squared
distribution. The d.o.f. is 3 regardless of the choice of the

model because the nuisance parameters have already been
marginalized. FoBs of SPT and RegPT exceed the 1-σ
critical value from relatively small kmax while FoBs of
RegPT+ and IR-resummed EFT are kept small even for
high kmax. This fact means that we can employ RegPT+
and IR-resummed EFT up to scales ≳0.30 hMpc−1 with-
out having a substantial biased parameter estimation.
However, there is a caveat about the small FoBs. Since

FIG. 10. Parameter confidence regions with IR-resummed EFTat the two-loop level and kmax ¼ 0.21 hMpc−1. The light, normal, and
dark blue lines correspond to the 1-σ, 2-σ, and 3-σ limits, respectively. The median and 16% and 84% percentiles are also shown on the
top of each histogram. The black dashed lines correspond to 16% and 84% percentiles. The red lines show the input parameters.
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FoB is normalized by the variance of parameters, if power
of constraining parameters is weak, the resultant FoB will
be also small. In the cases of RegPT+ and IR-resummed
EFT, the nuisance parameters degrade constraints and that
leads to large variances. Though these models can provide
us with the accurate prediction even at small scales, their

small FoBs should be taken with cautions. The FoB of
RESPRESSO is not shown in Fig. 14 because, as stated
before, the simulations used in the analysis is also used to
calibrate the response function in RESPRESSO and thus
the FoB of RESPRESSO should always be zero.
So far, we have presented FoBs with power spectra at the

two-loop level, but as a whole, those with spectra at the
one-loop level show similar behavior qualitatively.
However, FoBs are generally larger and exceed 1-σ limit
even for smaller kmax. We present detailed discussions for
results at the one-loop level in Appendix B.

D. Figure of merit

Next, we quantify the precision of parameter estimation
for each model using figure of merit (FoM). We define FoM
as the inverse of volume of the parameter space determined
by iso-posterior density surface [37], i.e.,

FoM≡ 1ffiffiffiffiffiffiffiffiffiffi
det S̃

p : ð26Þ

Roughly speaking, FoM is an indicator of constraining
power for each model. We also introduce an analytical way
to estimate the upper limit of FoM for RESPRESSO. With
the response function approach, we can compute the Fisher
information matrix. Since the covariance matrix does not
depend on parameters, the Fisher matrix can be given as

Fαβ ¼
X

ki;kj<kmax

∂PðkiÞ
∂θα ðC−1Þij

∂PðkjÞ
∂θβ : ð27Þ

The derivatives of the power spectrum can be obtained via
the response function [Eq. (22)],

FIG. 11. Parameter confidence regions with RESPRESSO at the
two-loop level and kmax ¼ 0.21 hMpc−1. The light, normal, and
dark blue lines correspond to the 1-σ, 2-σ, and 3-σ limits,
respectively. The median and 16% and 84% percentiles are also
shown on the top of each histogram. The black dashed lines
correspond to 16% and 84% percentiles. The red lines show the
input parameters.

FIG. 12. Medians of cosmological parameters estimated fromMCMC chains with errors, shown as the fractional ratios with respect to
the fiducial values. The lower (upper) limits of error bars correspond to 16% (84%) percentile.
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∂PðkÞ
∂θα ¼

Z
dq

δPðkÞ
δPLðqÞ

∂PLðqÞ
∂θα ¼

Z
dðlnqÞKðk;qÞ∂PLðqÞ

∂θα :

ð28Þ

Then the Fisher matrix estimate of the FoM is given by,

FoMF ¼
ffiffiffiffiffiffiffiffiffiffi
detF

p
: ð29Þ

From the Cramér-Rao bound [38], FoMs for RESPRESSO
can not exceed FoMF. If the likelihood distribution
[Eq. (20)] follows Gaussian with respect to parameters,
FoMF coincides with FoM computed from correlation
matrix [Eq. (26)].

In Fig. 15, we show FoMs with different models and
kmax and Fisher matrix approach with RESPRESSO.
Generally, FoM increases with kmax because more informa-
tion becomes available. As a whole, RegPT, SPT, and
RESPRESSO work quite well. However, shown in Fig. 14,
FoBs ofRegPTand SPT soon exceed the1-σ limit leading to
biased estimated parameters. On the other hand, FoMs of
RegPT+ and IR-resummed EFT are significantly sup-
pressedwith respect toRESPRESSO results. Clearly though
free parameters contained in these models help to fit the
power spectra down to small scales, the presence of extra
d.o.f. degrades the constraining power of these models.

FIG. 13. Medians of nuisance parameters, σd for RegPT+ and α1, α2, and Σ for IR-resummed EFT, estimated from MCMC chains.
The lower (upper) limits of error bars correspond to 16% (84%) percentile.

FIG. 14. Figure of bias for different models estimated from
MCMC chains. The black dashed lines show the 1-σ, 2-σ, and 3-σ
critical values 1.88, 2.83, and 3.76, respectively. The open (filled)
symbols represent that the figure of bias exceeds (falls below) the
1-σ critical value.

FIG. 15. Figure of merit for different models estimated from
MCMC chains. The result with RESPRESSO is shown as a
dashed line since it is different from other methods in the sense
that it relies on the simulation-aided approach, not completely the
analytical prescription. The cyan line shows figure of merit from
Fisher matrix with RESPRESSO. The open (filled) symbols
represent that the corresponding figure of bias exceeds (falls
below) the 1-σ critical value (see Fig. 14).
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E. Correlations between parameters

Generally, nuisance parameters help to improve fitting
the power spectrum even at small scales. Simultaneously,
if cosmological parameters are taken far from the true
value, nuisance parameters can adjust spectra and thus
constraints on cosmological parameters will be degraded.
This effect can be observed in the parameter degeneracy
between cosmological and nuisance parameters. The
degeneracy means that the effect due to the cosmological
parameter can be compensated by changing the nuisance
parameter. On the other hand, when there is no degeneracy,
the nuisance parameter simply enhances the prediction
capability of the model or has almost no effects in the
interested ranges. In order to address this effect, we
quantify the degeneracy between parameters from corre-
lation coefficients defined as

Rαβ ≡ Sαβffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p : ð30Þ

In Figs. 16–20, the correation coefficients for all pairs of
parameters with RegPT, SPT, RegPT+, IR-resummed EFT,
and RESPRESSO for kmax ¼ 0.18; 0.24 hMpc−1 are shown.
We observe that changing kmax does not alter significantly the
structure of the correlation matrix. However, if kmax is higher
than the scalewhere eachmodel is reliable or equivalently the
corresponding FoB is high, the correlations might be altered.
In RegPT+ model, the nuisance parameter σd is moderately
degenerate with cosmological parameters, and for IR-
resummed EFTmodel, the parameters α1 and α2 are strongly
correlated with cosmological parameters though the param-
eter Σ does not show strong correlation. This degeneracy
reduces the constrainingpower and leads to the suppressionof
FoM. Since there exists stronger degeneracy in IR-resummed

FIG. 16. Correlation coefficients for RegPT at the two-loop
level. The upper left (lower right) triangle shows results with
kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts correspond to
positive (negative) correlations.

FIG. 17. Correlation coefficients for SPT at the two-loop level.
The upper left (lower right) triangle shows results with
kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts correspond to
positive (negative) correlations.

FIG. 18. Correlation coefficients for RegPT+ at the two-loop
level. The upper left (lower right) triangle shows results with
kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts correspond to
positive (negative) correlations.

FIG. 19. Correlation coefficients for IR-resummed EFT at the
two-loop level. The upper left (lower right) triangle shows results
with kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts corre-
spond to positive (negative) correlations.
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EFTmodel, the suppression of FoM ismore appreciable. The
parameter degeneracy also changes the degeneracy between
cosmological parameters, and the resultant correlation
becomes different from no nuisance parameter case via
marginalization (see Figs. 16 and 17 in the cases of
RegPT and SPT, respectively).

V. CONCLUSIONS

The measurement of the matter power spectrum or the
BAO feature imprinted on it has been considered to be one
of the most fundamental observables in precision cosmol-
ogy. But in order to efficiently constrain cosmological
models or parameters, observables such as the power
spectrum should be analytically modeled beyond the linear
theory. In this work, we explore the efficiency with which
such models could constrain the cosmological parameters
focusing our analysis on what could be derived from the
real space power spectrum. The latter is obtained from an
N-body simulation for a specific set of cosmological
parameters. The performances of analytical models can
then be scrutinized in terms of precision and accuracy.
The analytical approaches we employ are
(i) Standard perturbation theory, (SPT), based on a

direct expansion of the Euler fluid equations with
respect to linear density contrast;

(ii) Regularized perturbation theory, (RegPT), based on
a reorganization of the series expansion with the
help of the multipoint propagators;

(iii) An extension of RegPT (RegPT+) in which the
damping scale is taken as a free parameter to account
for the fact that it not predictable from first principle
calculations;

(iv) An IR-resummed effective field theory (EFT) model
in which non-PT parameters are introduced to ac-
count for the impact of the small scale physics on the
growth of spectra, such as the effective pressure, etc.

Those models, all considered up to two-loop order, are
more precisely described in Sec. II. Our whole procedure is
checked and calibrated with the help of RESPRESSO which
can accurately predict how the nonlinear power spectrum are
deformed, in the whole range of modes of interest, when the
cosmological parameters are varied. Taking advantage of a
simulatedmockobservationof the real space power spectrum,
cosmological parameters are then fitted using the analytical
models described above with the MCMC technique.
In order to precisely quantify the performances of the

codes we used the figure of bias (FoB), which is the
difference between estimated and input parameters nor-
malized by the variances, and the figure of merit (FoM),
which roughly corresponds to the inverse of the volume of
the confidence region. Our findings from the analysis with
the power spectrum at the redshift z ¼ 1 can be summa-
rized as follows,

(i) RegPT and SPT give unbiased estimates of the
cosmological parameters when the range of modes
used to fit the parameters is limited to kmax ¼
0.24 hMpc−1. They fail for higher kmax. RegPT+
and IR-resummed EFT are accurate up to kmax ¼
0.30 hMpc−1 thanks to the extra d.o.f. they contain.

(ii) On the other hand, as expected, FoMs of a given
model monotonically increase as a function of kmax as
the amount of available information increases. And as
expected the resulting precision in the cosmological
parameters is all the more sensitive to kmax that the
number of useful modes scales like k3max.

(iii) FoMs of models with extra free parameters, RegPT+
and IR-resummed EFT, are significantly reduced, by
a factor respectively about 2 and 10, compared with
those frommodels that are entirely predictive such as
SPT and RegPT in our case. This effect is roughly
independent of kmax.

In order to address more precisely the origin of the latter
reduction, we investigate how nuisance parameters correlate
with cosmological parameters taking advantage of the fact
that such correlation coefficients can be coherently extracted
from the MCMC chains. Our results are presented in
Sec. IV E. We find that some of the nuisance parameters
are degenerate with cosmological parameters degrading the
precision with which the latter are determined. This effect is
all the more important that the number of free parameters is
large. It is, on the other hand, quite independent of kmax. We
are then put in a situation where a trade-off should be found
between accuracy, which calls for more free parameters, and
precision, which calls for fewer. The best performing pre-
scription of those we consider here is the RegPT+ model,
having only one free nuisance parameter while still being able
to provide unbiased estimates up to kmax about 0.33 hMpc−1.
This is unlikely however to be a definitive results: other
prescriptions could probably be as effective and this validity
range depends in effect on the detailed covariance properties
of the mock data.

FIG. 20. Correlation coefficients for RESPRESSO. The upper
left (lower right) triangle shows results with kmax ¼
0.18ð0.24Þ hMpc−1. The red (blue) parts correspond to positive
(negative) correlations.
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Note that in this exercise, we were forced to restrict the
chains to a three dimensional cosmological parameter space
(six dimensional space in total for EFT models). The reason
is that the code we used here was not fast enough to cope
with larger dimensional space [39]. Needless to say, the
larger the number of parameters, the slower the conver-
gence of the MCMC procedure is. For exploring larger
parameter spaces, it is then crucial to implement fast
methods for computing the power spectrum. Several
methods have already been proposed to speed up two-loop
level calculations [40–42]. Other aspects which should
eventually be incorporated are modified gravity, which is
addressed in the context of EFT in Ref. [43], galaxy bias,
and redshift space distortions effects. They also lead to a
further increase of the number of parameters to use. These
will be subjects of subsequent papers.
We are planning to release a set of numerical codes to

compute the power spectrum perturbatively based on the
fast scheme originally proposed by Ref. [23]. The code
suite will handle redshift space distortions and galaxy bias
with the fast scheme consistently up to the two-loop level.
We have made an initial version of this code available on
the repository (https://github.com/0satoken/Eclairs). The
current version supports computation of the matter power
spectrum in real space based on analytical approaches
presented in this paper. The codes are written in C++ with
the python wrapper, which is designed to be easily
combined with MCMC samplers.
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APPENDIX A: EXPLICIT FORMULAS OF
ANALYTICAL APPROACHES

In this appendix, we present explicit formulas
for the power spectrum based on SPT, RegPT, and IR-
resummed EFT.

1. SPT

The correction terms of the power spectrum based on
SPT at one-loop and two-loop levels are

ΔPSPT
1-loopðkÞ ¼ D4þ½2P13ðkÞ þ P22ðkÞ�; ðA1Þ

ΔPSPT
2-loopðkÞ ¼ D6þ½2P15ðkÞ þ 2P24ðkÞ þ P33ðkÞ�: ðA2Þ

Each correction term is given as

P13ðkÞ ¼ 3P0ðkÞ
Z

d3q
ð2πÞ3 F

ð3Þ
symðk; q;−qÞP0ðqÞ; ðA3Þ

P22ðkÞ ¼ 2

Z
d3q
ð2πÞ3 ½F

ð2Þ
symðq; k − qÞ�2P0ðqÞP0ðjk − qjÞ;

ðA4Þ

P15ðkÞ ¼ 15P0ðkÞ
Z

d3q1
ð2πÞ3

d3q2
ð2πÞ3 F

ð5Þ
symðk; q1;−q1; q2;−q2ÞP0ðq1ÞP0ðq2Þ; ðA5Þ

P24ðkÞ ¼ 12

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 F

ð2Þ
symðq1; k − q1ÞFð4Þ

symðq1; k − q1; q2;−q2ÞP0ðq1ÞP0ðq2ÞP0ðjk − q1jÞ; ðA6Þ

P33ðkÞ ¼ 9P0ðkÞ
�Z

d3q
ð2πÞ3 F

ð3Þ
symðk; q;−qÞP0ðqÞ

�
2

þ 6

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½F

ð3Þ
symðq1; q2; k − q1 − q2Þ�2P0ðq1ÞP0ðq2ÞP0ðjk − q1 − q2jÞ: ðA7Þ

Eventually, the power spectra at one-loop and two-loop levels are given as

PSPT
1-loopðkÞ ¼ PLðkÞ þ ΔPSPT

1-loopðkÞ; ðA8Þ

PSPT
2-loopðkÞ ¼ PLðkÞ þ ΔPSPT

1-loopðkÞ þ ΔPSPT
2-loopðkÞ: ðA9Þ
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2. RegPT

The expression of the power spectrum of RegPT at two-loop level should be

PRegPT
2-loop ðkÞ ¼ ½Γð1Þ

regðkÞ�2P0ðkÞ þ 2

Z
d3q
ð2πÞ3 ½Γ

ð2Þ
regðq; k − qÞ�2P0ðqÞP0ðjk − qjÞ

þ 6

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½Γ

ð3Þ
regðq1; q2; k − q1 − q2Þ�2P0ðq1ÞP0ðq2ÞP0ðjk − q1 − q2jÞ; ðA10Þ

where the regularized propagators are expressed as

Γð1Þ
regðkÞ ¼ Dþ

�
1þ αk þ

1

2
α2k þD2þΓ

ð1Þ
1-loopðkÞð1þ αkÞ þD4þΓ

ð1Þ
2-loopðkÞ

�
expð−αkÞ; ðA11Þ

Γð2Þ
regðk1; k2Þ ¼ D2þ½ð1þ αkÞFð2Þ

symðk1; k2Þ þD2þΓ
ð2Þ
1-loopðk1; k2Þ� expð−αkÞ; ðA12Þ

Γð3Þ
regðk1; k2; k3Þ ¼ D3þF

ð3Þ
symðk1; k2; k3Þ expð−αkÞ; ðA13Þ

where αk ¼ ð1=2Þk2D2þσ2d, and Γð1Þ
1-loopðkÞ, Γð1Þ

2-loopðkÞ, and
Γð2Þ
1-loopðk1; k2Þ are defined in Eq. (8).
The power spectrum at the one-loop level is given as

PRegPT
1-loop ðkÞ ¼ ½Γð1Þ

regðkÞ�2P0ðkÞ

þ 2

Z
d3q
ð2πÞ3 ½Γ

ð2Þ
regðq;k− qÞ�2P0ðqÞP0ðjk− qjÞ;

ðA14Þ

with the corresponding regularized propagators Γð1Þ
reg and

Γð2Þ
reg,

Γð1Þ
regðkÞ ¼ Dþ½1þ αk þD2þΓ

ð1Þ
1-loopðkÞ� expð−αkÞ; ðA15Þ

Γð2Þ
regðk1; k2Þ ¼ D2þF

ð2Þ
symðk1; k2Þ expð−αkÞ: ðA16Þ

3. IR-resummed EFT

In the following, we give expressions for the matter
power spectrum at the two-loop and one-loop levels based
on the IR-resummed EFT approach. At the two-loop level,
the matter power spectrum is given as

PIR EFT
2-loop ðkÞ ¼ PnwðkÞ þ PwðkÞ; ðA17Þ

PnwðkÞ ¼ ð1þ α1k2ÞPnw
L ðkÞ þ ð1þ α2k2ÞΔPnw

1-loopðkÞ
þ ΔPnw

2-loopðkÞ; ðA18Þ

PwðkÞ ¼ e−k
2Σ2 ½ð1þ α1k2 þ C1ÞPw

L ðkÞ
þ ð1þ α2k2 þ C2ÞΔPw

1-loopðkÞ þ ΔPw
2-loopðkÞ�;

ðA19Þ
where

C1 ¼ k2Σ2ð1þ α1k2Þ þ
1

2
k4Σ4; ðA20Þ

C2 ¼ k2Σ2ð1þ α2k2Þ: ðA21Þ
Here, we have introduced three free parameters α1, α2, and
Σ, which are usually calibrated with N-body simulations.
For no-wiggle linear spectra Pnw

L ðkÞ, we smooth the linear
power spectrum as described in Eqs. (13) and (14), i.e.,

Pnw
L ðkÞ ¼ PEHðkÞ

1ffiffiffiffiffiffi
2π

p
log10λ

Z
dðlog10qÞ

PLðqÞ
PEHðqÞ

× exp

�
−
ðlog10k − log10qÞ2

2ðlog10λÞ2
�
; ðA22Þ

where we adopt the smoothing scale as λ ¼ 100.25 hMpc−1

and PEHðkÞ is the power spectrum without wiggle feature
[28]. The residual corresponds to the wiggle part Pw

L ðkÞ,
i.e.,

Pw
L ðkÞ ¼ PLðkÞ − Pnw

L ðkÞ: ðA23Þ
Then, we plug the smoothed spectrum Pnw

L ðkÞ, instead of
linear spectrum PLðkÞ, into the SPT formulas [Eqs. (A1)
and (A2)] to obtain no-wiggle correction terms at the one-
loop and two-loop levels (ΔPnw

1-loop and ΔPnw
2-loop). The

wiggle parts of correction terms are also obtained as
residuals,

ΔPw
1-loopðkÞ ¼ ΔPSPT

1-loopðkÞ − ΔPnw
1-loopðkÞ; ðA24Þ

ΔPw
2-loopðkÞ ¼ ΔPSPT

2-loopðkÞ − ΔPnw
2-loopðkÞ: ðA25Þ

For the one-loop level, the matter power spectrum is
given as

PIR EFT
1-loop ðkÞ ¼ PnwðkÞ þ PwðkÞ; ðA26Þ

PnwðkÞ ¼ ð1þ α1k2ÞPnw
L ðkÞ þ ΔPnw

1-loopðkÞ; ðA27Þ
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PwðkÞ¼ e−k
2Σ2 ½ð1þα1k2þk2Σ2ÞPw

L ðkÞþΔPw
1-loopðkÞ�:

ðA28Þ
In this case, there are two free parameters, α1 and Σ, which
are also calibrated against N-body simulations.

4. EFT

We have considered IR-resummed EFT so far but there is
a simpler description of EFT. For the one-loop level, we can
write down the expression for EFT as

PEFT
1-loopðkÞ ¼ PSPT

1-loopðkÞ − 2ð2πÞc2sð1Þ
�

k
kNL

�
2

PLðkÞ; ðA29Þ

where kNL is the nonlinear scale and csð1Þ is the effective
sound speed [19]. We treat the combination csð1Þ=kNL as a

free parameter. The EFT prescription is based on the similar
idea for IR-resummed EFT, and roughly speaking the
parameter α1 in IR-resummed EFT corresponds to the
sound speed in EFT. Thus, these two models should
provide us with similar results. However, IR-resummed
EFT introduces another free parameter Σ which regulates
the damping feature at small scales and when Σ is zero, the
expression can be reduced to that of EFT.

APPENDIX B: RESULTS WITH POWER
SPECTRA AT THE ONE-LOOP LEVEL

For comparison, we present results with methods at the
one-loop level. In Figs. 21 and 22, cosmological and
nuisance parameters estimated with one-loop level calcu-
lations are shown. The results look mostly similar to the

FIG. 21. Medians of cosmological parameters estimated from MCMC chains with errors as the fractional ratios with respect to the
fiducial values. All of estimates are based on one-loop level calculations. The lower (upper) limits of error bars correspond to 16% (84%)
percentile.

FIG. 22. Medians of nuisance parameters, σd for RegPT+, α1 and Σ for IR-resummed EFT, and csð1Þ=kNL for EFT, estimated from
MCMC chains. The lower (upper) limits of error bars correspond to 16% (84%) percentile.
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two-loop cases. However, the estimated parameters start to
deviate from true values from smaller kmax. We can see a
similar trend in FoB and FoM shown in Figs. 23 and 24.
According to FoM, the constraining power is almost the
same as that at the two-loop level. On the other hand, in all
cases, FoBs are higher than the counterpart in the two-
loop case. The two-loop level calculations outperform the
one-loop calculations though they are computationally

more expensive. The FoM of EFT is slightly larger than that
of IR-resummed EFT but the effect is subdominant. In
order to investigate the reason, we show correlation
coefficients for IR-resummed EFT and EFT in Figs. 25
and 26. In IR-resummed EFT model, the parameter Σ has
almost no correlations with cosmological parameters. That
results in no degradation of parameter constraints due to Σ.
On the other hand, α1 in IR-resummed EFT and csð1Þ=kNL
in EFT correlates with cosmological parameters to similar
extent, and thus FoMs for these two models are almost
the same.

FIG. 23. Figure of bias for different models at the one-loop
level estimated fromMCMC chains. The black dashed line shows
the 1-σ, 2-σ, and 3-σ critical values 1.88, 2.83, and 3.76. The open
(filled) symbols represent that the figure of bias exceeds (falls
below) the 1-σ critical value.

FIG. 25. Correlation coefficients for IR-resummed EFT model
at the one-loop level. The upper left (lower right) triangle shows
results with kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts
correspond to positive (negative) correlations.

FIG. 24. Figure of merit for different models at the one-loop
level estimated from MCMC chains. The cyan line shows figure
of merit from Fisher matrix with RESPRESSO. The open (filled)
symbols represent that the corresponding figure of bias exceeds
(falls below) the 1-σ critical value (see Fig. 23).

FIG. 26. Correlation coefficients for EFT at the one-loop level.
The upper left (lower right) triangle shows results with
kmax ¼ 0.18ð0.24Þ hMpc−1. The red (blue) parts correspond to
positive (negative) correlations.
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