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ABSTRACT
Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various
mechanisms have been proposed for their existence, including primordial fields generated
by inflation and amplification and injection by compact astrophysical objects. Separating
the potential impact of each magnetogenesis scenario on the magnitude and orientation of
the magnetic field and their impact on gas dynamics may give insight into the physics that
magnetized our Universe. In this work, we demonstrate that because the induction equation
and solenoidal constraint are linear with B, the contribution from different sources of magnetic
fields can be separated in cosmological magnetohydrodynamic (MHD) simulations and their
evolution and influence on the gas dynamics can be tracked. Exploiting this property, we
develop a magnetic field tracer algorithm for cosmological simulations that can track the
origin and evolution of different components of the magnetic field. We present a suite of
cosmological magnetohydrodynamical RAMSES simulations that employ this algorithm where
the primordial field strength is varied to determine the contributions of the primordial and
supernova-injected magnetic fields to the total magnetic energy as a function of time and spatial
location. We find that, for our specific model, the supernova-injected fields rarely penetrate
far from haloes, despite often dominating the total magnetic energy in the simulations. The
magnetic energy density from the supernova-injected field scales with density with a power-law
slope steeper than 4/3 and often dominates the total magnetic energy inside haloes. However,
the star formation rates in our simulations are not affected by the presence of magnetic fields,
for the ranges of primordial field strengths examined. These simulations represent a first
demonstration of the magnetic field tracer algorithm, which we suggest will be an important
tool for future cosmological MHD simulations.

Key words: magnetic fields – MHD – methods: numerical – galaxies: high-redshift –
galaxies: magnetic fields.

1 IN T RO D U C T I O N

Magnetic fields are ubiquitous throughout our Universe (Widrow
2002). They have been observed in the most compact objects such
as stars (Reiners 2012) and black holes (Johnson et al. 2015), on
galaxy scales such as in our own Milky Way (Davis & Greenstein
1951; Mulcahy et al. 2014), in galaxy groups and clusters (Large,
Mathewson & Haslam 1959; Carilli & Taylor 2002; Govoni &
Feretti 2004), and finally in the intergalactic medium (Kim et al.
1989; Kronberg 1994; Grasso & Rubinstein 2001). Regardless of

� E-mail: harley.katz@physics.ox.ac.uk

their recognized presence and importance in all these environments,
many details regarding their evolution and particularly their origin
remain unknown.

Due to their complexity, numerical simulations have become the
primary tool for improving our understanding of cosmic magnetic
fields. A significant body of literature already exists regarding
the use of numerical simulations to model magnetic fields on
small, sub-galactic (Hennebelle & Iffrig 2014; Evirgen et al.
2017; Gomez, Vazquez-Semadeni & Zamora-Aviles 2018), galaxy
(Wang & Abel 2009; Pakmor et al. 2017), galaxy cluster (Dolag,
Bartelmann & Lesch 1999; Dubois & Teyssier 2008; Marinacci
et al. 2015; Vazza et al. 2015), and cosmological scales (Ryu et al.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/2/2620/5290323 by guest on 02 June 2023

http://orcid.org/0000-0002-4059-9850
mailto:harley.katz@physics.ox.ac.uk


Magnetogenesis at Cosmic Dawn 2621

2008; Alves Batista et al. 2017; Marinacci et al. 2018). These
similar numerical magnetohydrodynamic (MHD) simulations are
also of paramount importance for the study of astrophysical plasma
processes (Schekochihin et al. 2004; Federrath 2016).

Upper and lower bounds on cosmic magnetic field strength
exist from a variety of probes. An upper limit of B � 10−9 G is
placed by studying cosmic microwave background (CMB) B-mode
perturbations (Planck Collaboration XIX 2016; Pogosian & Zucca
2018) and lower limits of B� 10−17 G are available from gamma-ray
particle cascades (Neronov & Vovk 2010). Note that the validity of
these lower limits has been debated (Broderick, Chang & Pfrommer
2012 and subsequent studies).

In the interstellar medium (ISM) of galaxies, the energy contained
in the magnetic field is observed to be in rough equipartition
(B ∼ μG) with the thermal and turbulent energy of the galaxy, even
at high redshifts (Bernet et al. 2008). Current theoretical studies
tend to favour two different models to attain these values above
a weak primordial field: either dynamo amplification (Kulsrud &
Zweibel 2008; Pakmor, Marinacci & Springel 2014; Rieder &
Teyssier 2016; Martin-Alvarez et al. 2018) or magnetized feedback
from stars (Beck et al. 2013; Butsky et al. 2017) or black holes
(Vazza et al. 2017). These two scenarios were already discussed by
Rees (1987), illustrating the longevity of this question. While all
appear individually sufficient to produce realistic magnetization
in galaxies, it is difficult to disentangle the contribution from
primordial magnetic fields, dynamo amplification, and compact
astrophysical sources when all of them operate simultaneously and
to determine which of these mechanisms dominate the magnetic
fields in galaxies.

A similar difficulty persists for galaxy clusters, where debated
origins of magnetic fields range from primordial or plasma dynamo
processes to magnetization through active galactic nucleus (AGN)
feedback. Extensive numerical work addressing possible mecha-
nisms exists (Ryu et al. 2008; Vazza et al. 2018), and of particular
importance are the observational predictions differentiating each
scenario (Donnert et al. 2009; Vazza et al. 2017).

A last meaningful unknown is the provenance of cosmic magnetic
fields. Within the aforementioned observational limits, magnetic
fields in the IGM and on cosmological scales are yet to be
understood (Widrow 2002). Although many theoretical possibilities
exist, the origins of primordial magnetic fields during or after
inflation have yet to be determined (Kandus, Kunze & Tsagas
2011; Subramanian 2016). Furthermore, the different scenarios are
not mutually exclusive and how the different primordial magnetic
fields interact with other magnetic fields such as those escaping
from galaxies (Dubois & Teyssier 2010) and galaxy clusters (Sutter
et al. 2012) to produce the total cosmic magnetic field remains
unknown. Equally, if and how these primordial magnetic fields
could be influencing smaller systems is uncertain and difficult to
constrain due to the plethora of possible models (Marinacci &
Vogelsberger 2016).

All of the described problems share a common characteristic: It
is extremely complicated to separate contributions from different
physical processes to the resulting magnetic fields. As a conse-
quence, the different possible mechanisms for magnetic field gen-
eration and amplification and the significance to the total magnetic
field currently cannot be studied in a methodical manner. This has
been one of the major obstacles for progress in this field. Since the
origin of magnetic fields can likely be traced to a variety of different
sources, of both primordial and astrophysical nature, ideally one
would be able to differentiate the contribution from each source to
the total B-field and total magnetic pressure/energy at every place

and time in the Universe. Previous works on this topic have generally
taken the approach of turning on and off the different physics in
order to understand how structure, star formation, and magnetiza-
tion evolve differently under changing scenarios (Beck et al. 2013;
Vazza et al. 2017; Martin-Alvarez et al. 2018; Steinwandel et al.
2018). However, the different sources of B-fields are not necessarily
mutually exclusive and each may be dynamically important and
affect either the generation or evolution of the other. Thus, we aim
to develop a method where the total B-field in a simulation can
be affected by a variety of sources, yet the contribution from each
can be tracked in order to better understand different scenarios of
magnetogenesis. In what follows, we develop a new algorithm to
trace the contribution of different classes of sources to the total
B-field in cosmological magnetohydrodynamic simulations.

The paper is organised as follows. Section 2 describes the
theoretical foundations and our implementation in the RAMSES code.
Section 3 describes the different simulations we use to demonstrate
the potential of our new algorithm. We describe the results in
Section 4 with caveats listed in Section 5. A discussion can be
found in Section 6.

2 MAG NETI C FI ELD TRAC ERS

We take advantage of the linearity of the induction equation
and the solenoidal constraint for the evolution of the magnetic
field to develop a method that separately follows the individual
contributions to the total magnetic field from a variety of sources in
cosmological simulations. Note that our implementation is designed
for grid-based codes.

The equations for ideal MHD, written in conservative form, are

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

∂ρv

∂t
+ ∇·(ρvv − BB) + ∇Ptot = 0, (2)

∂E

∂t
+ ∇· [(E + Ptot)v − B(B·v)] = 0, (3)

∂ B
∂t

− ∇ × (v × B) = 0, (4)

where ρ is the gas density, v is the fluid velocity, B is the magnetic
field, Ptot is the total pressure (thermal and magnetic), and E is the
total energy (thermal, kinetic, and magnetic). In order to isolate the
contribution of different sources to the B-field, we allow the total
B-field (B) to be written as

B =
Nsource∑

m

Btm, (5)

where Nsource is the total number of different mechanisms that
generate a B-field. Fig. 1 presents an example where a primordial
magnetic field (red) and one that is injected via supernova (blue)
are traced. Btm can be thought of as the B-field generated by an
individual source that evolves without knowledge of the other Btm

except for the response of the fluid to the presence of the total B-
field in the simulation. In other words, the dynamics of the fluid in
the simulation only respond to the total B-field, B, which then
has a dynamical effect on the evolution of each Btm ; however,
each Btm is not aware of the presence of any other Btm when the
induction equation is solved or the electromotive forces (EMFs) are
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Figure 1. (Top) Maps of the magnetic field strength across the full simulation volume for three different redshifts from our B13 simulation. The red regions
represent the magnitude of the primordial magnetic field while the blue regions indicate the magnitude of the magnetic field injected during SNe explosions.
The dark matter column density is underlaid in grey-scale and the images show a projection along the z-direction of the simulated box. (Bottom) Maps of the
magnetic field around the three most massive haloes at z = 6. The virial radii of the haloes are indicated with the white circles and scaled to be the same size
in all plots.

calculated. The tracer algorithm allows us to trace the amplification
and reduction of each tracer magnetic field separately throughout
cosmic time. This is only possible because the induction equation
(equation 4) and the solenoidal constraint are linear in B.

Beginning with the induction equation, we can expand it in three
dimensions into the following form,

⎡
⎣

∂Bx

∂t
∂By

∂t
∂Bz

∂t

⎤
⎦ −

⎡
⎣

∂
∂y

(vxBy − vyBx) − ∂
∂z

(vzBx − vxBz)
∂
∂z

(vyBz − vzBy) − ∂
∂x

(vxBy − vyBx)
∂
∂x

(vzBx − vxBz) − ∂
∂y

(vyBz − vzBy)

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦. (6)

By placing a subscript of tm on each of the B components in the
previous equation, we can obtain the advection equation for each of
the individual tracer fields. In more detail, if we consider only the
change in the Bx component, we have

∂Bx

∂t
= ∂

∑Nsource
m Bx,tm

∂t

= ∂

∂y

(
vx

Nsource∑
m

By,tm − vy

Nsource∑
m

Bx,tm

)

− ∂

∂z

(
vz

Nsource∑
m

Bx,tm − vx

Nsource∑
m

Bz,tm

)
.

(7)

Considering the simple case of only two tracer groups,

∂Bx

∂t
= ∂(Bx,t1 + Bx,t2 )

∂t

= ∂

∂y

(
vx(By,t1 + By,t2 ) − vy(Bx,t1 + Bx,t2 )

)
− ∂

∂z

(
vz(Bx,t1 + Bx,t2 ) − vx(Bz,t1 + Bz,t2 )

)
=

[
∂

∂y

(
vxBy,t1 − vyBx,t1

) − ∂

∂z

(
vzBx,t1 − vxBz,t1

)]

+
[

∂

∂y

(
vxBy,t2 − vyBx,t2

) − ∂

∂z

(
vzBx,t2 − vxBz,t2

)]

= ∂Bx,t1

∂t
+ ∂Bx,t2

∂t
.

(8)

Hence, the advection term in the induction equation satisfies the
condition required for the total field to be separated into individual
tracer groups.

For our implementation, following Fromang, Hennebelle &
Teyssier (2006), the magnetic field is separated into a two-step
solver, where we first compute the induction due to the generation
of EMFs and we then advect the cell-centred magnetic field. The
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corresponding magnetic induction by the EMFs follows:

Bn+1
x,i−1/2,j ,k − Bn

x,i−1/2,j ,k

�t
− E

n+1/2
z,i−1/2,j+1/2,k − E

n+1/2
z,i−1/2,j−1/2,k

�y

+E
n+1/2
y,i−1/2,j ,k+1/2 − E

n+1/2
y,i−1/2,j ,k−1/2

�z
= 0,

(9)

where n is the time-step, E is the time- and edge-averaged EMF,
and i, j, k represent the edge or face perpendicular to the listed
coordinate direction. For instance, Bn

x,i−1/2,j ,k gives the value of the
magnetic field of the left face in the x-direction at time-step n while
En

z,i−1/2,j+1/2,k gives the EMF at the top edge of the left face in the
z-direction of the same cell at the same time.

It is clear that the first term in equation (9) is linear in B so that

Bn+1
x,i−1/2,j ,k − Bn

x,i−1/2,j ,k

�t
=

Nsource∑
m

Bn+1
tm,x,i−1/2,j ,k − Bn

ti ,x,i−1/2,j ,k

�t
,

(10)

where Bn+1
tm,x,i−1/2,j ,k is now the value of the magnetic field at the

time n + 1 at the left face in the x-direction for the source tm. The
second two terms have the exact same form as the first, so as long
as the time- and edge-averaged EMFs are linear in B, the induction
equation can be proven to be separable. For the EMFs, we have (for
one specific edge)

E
n+1/2
z,i−1/2,j−1/2,k =

1

�t�z

∫ tn+1

tn

∫ zk+1/2

zk−1/2

Ez(xi−1/2, yj−1/2, z
′, t ′)dz′dt ′ , (11)

and thus

E
n+1/2
z,i−1/2,j−1/2,k (12)

= 1

�t�z

∫ tn+1

tn

∫ zk+1/2

zk−1/2

Nsource∑
m

E(tm, z)(xi−1/2, yj−1/2, z
′, t ′)dz′dt ′

= 1

�t�z

Nsource∑
m

∫ tn+1

tn

∫ zk+1/2

zk−1/2

Etm,z(xi−1/2, yj−1/2, z
′, t ′)dz′dt ′,

if

Ez(xi−1/2, yj−1/2, z, t) =
Nsource∑

m

Etm,z(xi−1/2, yj−1/2, z, t). (13)

Since

En
z,i−1/2,j−1/2,k = v̄x B̄y − v̄y B̄x , (14)

where

v̄x = 1

4
(vn

x,i,j ,k + vn
x,i−1,j ,k + vn

x,i,j−1,k + vn
x,i−1,j−1,k) ,

v̄y = 1

4
(vn

y,i,j ,k + vn
y,i−1,j ,k + vn

y,i,j−1,k + vn
y,i−1,j−1,k) ,

B̄x = 1

2
(Bn

x,i−1/2,j ,k + Bn
x,i−1/2,j−1,k) ,

B̄y = 1

2
(Bn

y,i,j−1/2,k + Bn
y,i−1,j−1/2,k) ,

(15)

it is clear that neither v̄x nor v̄y is dependent on B and both B̄x and
B̄y are linear in B; thus, equation (13) holds, which ensures that
equation (12) is also true. Hence, the induction is entirely linear in
B and therefore separable into the different components, Btm . As
we solve the induction for each of the tracers following the same
algorithm, the inducted contribution to each of the magnetic tracers
is solenoidal by construction (see Fromang et al. 2006). Advection

of magnetic fields in RAMSES is done through cell-centred fluxes.
Each cell-centred flux is extracted from the corresponding two faces
from the advecting cell and added to the two corresponding faces of
the advected cell. Therefore, this contribution is equally divergence-
less. Reproducing this algorithm for the tracers, the computed fluxes
for each tracer fulfil linearity, leading by construction to an equally
solenoidal magnetic field.

In our implementation for this work, we will track the total
field in the normal fashion as well as each individual tracer field.
This is to demonstrate that following the tracer fields individually
exactly conserves all of the properties of the total magnetic field
(see Appendix A). The caveat of following all fields (as is done
in this work so that we can explicitly demonstrate the convergence
properties) is that when reconstructing states on cell faces and edges,
or refining a cell, slope limiters are generally used to ensure that the
reconstruction is second-order total variation diminishing. However,
once a generic slope limiter (e.g. MinMod) is applied, it may no
longer be the case that all magnetic field properties are perfectly
conserved because the slopes may be limited by different amounts.
Thus, in the current implementation, we have removed the slope
limiters for all the magnetic field quantities (note that hydrodynamic
quantities are still slope-limited). However, since one of the tracer
fields can be reconstructed by knowing the total field as well as
the other tracer fields, in future simulations we only need to follow
Nsource − 1 tracer fields. By doing this, we can now apply the slope
limiter to the total field and hence obtain the same exact results
as a simulation that does not include the tracers. By definition, the
reconstruction of the tracer field that is not explicitly followed will
also be divergence-less (since the solenoidal constraint is linear in
B), and the sum of all of the tracer fields will add up to the total.
Furthermore, this method is less computationally expensive as we
can remove one of the fields with the caveat that the reconstruction is
slightly less accurate than following every field individually. Future
work will apply this method to ensure that the simulation is second-
order total variation diminishing.

Note that this issue is not unique to our simulation. In any scenario
where, for instance, two or more quantities must exactly sum to a
third, and each is individually slope-limited (e.g. in computational
chemistry), there is no guarantee that after the calculation, the sum
will be conserved. Ordinarily this is not a major problem as the
quantities can be rescaled but in the case of MHD, the solenoidal
constraint prevents us from using this rescaling.

3 NUMERI CAL SI MULATI ONS

Our MHD tracer algorithm has been implemented into RAMSES

(Teyssier 2002), an open-source, massively parallel, cosmological
adaptive mesh refinement code with a constrained transport (CT,
Evans & Hawley 1988) implementation for ideal MHD (Fromang
et al. 2006; Teyssier, Fromang & Dormy 2006). We employ the
HLLC Riemann solver (Toro, Spruce & Speares 1994) to calculate
the time-centred intercell fluxes and a MinMod slope limiter to
reconstruct the cell-centred hydrodynamic properties at their faces
(for non-B-field quantities). We assume an adiabatic index of γ =
5/3 (that of an ideal monatomic ideal gas) for the relation between
gas pressure and internal energy. Particles (dark matter and stars) are
projected on to the adaptive grid using cloud-in-cell interpolation to
construct the density field needed to calculate gravitational forces.
A multigrid scheme is then used to solve the Poisson equation on
the grid (Guillet & Teyssier 2011).

Initial conditions were generated in a 1.253 Mpc3 comoving box,
discretized into a set of 1283 gas cells and dark matter particles

MNRAS 484, 2620–2631 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/2/2620/5290323 by guest on 02 June 2023



2624 H. Katz et al.

using MUSIC (Hahn & Abel 2011). The simulation was initialized
at z = 150, using the following cosmological parameters: �m =
0.3175, �� = 0.6825, �b = 0.049, σ 8 = 0.83, and Hubble constant
H0 = 67.11 km s−1 Mpc−1, consistent with Planck Collaboration
XIX (2016). All of our simulations include heating and cooling
processes for the gas component. Metallicity-dependent gas-cooling
rates are included at T > 104 K (Sutherland & Dopita 1993) and for
temperatures below 104 K (Rosen & Bregman 1995). An ultraviolet
(UV) background (Haardt & Madau 1996) models photoionization
instantaneously at redshift z = 8.5. We set an initial metallicity
floor of 10−3.5 Z� to mimic early enrichment by Population III stars
(Wise et al. 2012).

Throughout the simulation, cells are allowed to adaptively refine.
We employ a quasi-Lagrangian approach whereby cells that contain
at least integer multiples of eight times the initial dark matter mass
or baryonic mass are allowed to refine into eight children cells. We
set a fixed maximum refinement level of 14, which corresponds to
a physical resolution of 10.9 pc at z = 6.

When gas cells reach the maximum level of refinement, they
are allowed to form star particles. The local properties of the star-
forming clouds are expected to affect the efficiency of star formation
(Hennebelle & Chabrier 2011; Padoan & Nordlund 2011; Feder-
rath & Klessen 2012). Accordingly, our star formation prescription
accounts for the properties of gas clouds in the simulations when
forming stars. In our simulations, regions in the process of collapse
are allowed to subsequently form stars only after this collapse cannot
be further resolved. Our star formation prescription is based on a
magneto-thermo-turbulent (MTT) Jeans length criterion. We define
the MTT Jeans length

λJ,MTT =
πσ 2

V +
√

36πc2
s,effG�x2ρ + πσ 4

V

6Gρ�x
, (16)

where G is the gravitational constant, σ V is the gas turbulent
velocity, and �x is the length of a cell. In this equation, c2

s,eff is
an effective sound speed defined to account for an isotropic small-
scale contribution from magnetic pressure to the support of the
gas.

cs,eff = cs

√
1 + β−1, (17)

where β = Pthermal/Pmag in a given cell. Thus, the generation of star
particles is allowed only in cells where �x > λJ,MTT. In these cells,
gas is converted into star particles employing a Schmidt law, with
star formation rate (SFR)

ρ̇star = εff
ρ

tff
. (18)

The free-fall time of the gas, tff, is defined as

tff =
√

3π

32Gρ
, (19)

and εff corresponds to the local efficiency of star formation. This lo-
cal efficiency is computed based on the magneto-thermodynamical
properties of a parent cell and its close neighbours. We define this
efficiency following the multi-freefall PN (Padoan & Nordlund)
model from Federrath & Klessen (2012),

εff = εcts

2φt

exp

(
3

8
σ 2

s

)[
1 + erf

(
σ 2

s − scrit√
2σ 2

s

)]
. (20)

In this definition, εcts, set to 0.5, represents the maximum amount
of gas that can fall on to stars in the presence of proto-stellar
feedback. σ s is the dispersion of the logarithm of the gas density to

the mean gas density s = ln (ρ/〈ρ〉). scrit is the critical density above
which post-shock gas in a magnetized cloud is allowed to collapse
against magnetic support (Hennebelle & Chabrier 2011; Padoan &
Nordlund 2011). It is defined as

scrit = ln
(
0.067 θ−2αvirM2f (β)

)
, (21)

with M being the Mach number and αvir the virial parameter,
computed as indicated in Kimm et al. (2017). f(β) is a function of
β defined by equation (31) in Padoan & Nordlund (2011). Finally,
we set φt = 0.57 and θ = 0.33, with the values for these parameters
extracted from Padoan & Nordlund (2011) best-fitting values for
multiscale models of star formation in magnetized giant molecular
cloud simulations. This star formation prescription has already
been introduced in various studies (Trebitsch et al. 2017; Mitchell
et al. 2018; Rosdahl et al. 2018) and in particular by Kimm et al.
(2017), and will be analysed in more detail in Devriendt et al. (in
preparation).

A fraction of the star particle mass is expected to explode
via supernova (SN; Kroupa 2001). We take this into account by
employing a model for SN explosions presented in Kimm & Cen
(2014) and Kimm et al. (2015). For each SN, the model computes
the amount of momentum that would be injected by the Sedov–
Taylor blast wave solution dictated by the local spatial resolution
of the simulation. This is related to the phase of the SN resolved
by the simulation. Accordingly, each SN event injects mass and
momentum into its host cell and the neighbours of that cell. Each
SN occurs 3 Myr after the formation of its host star particle and
returns a mass fraction ηSN = 0.213 with a metallicity of ηZ =
0.075 back to the ISM. We assume an average mass of 19.135 M�
for a typical SN, consistent with a Kroupa (2001) stellar initial mass
function. Furthermore, each SN also injects back into its immediate
8 neighbouring cells a coiled, divergence-less magnetic field. We
illustrate the method in Fig. 3. For a SN located in cell (i, j +
1, k), we identify the epicentre of the magnetic field injection at
position (i + 1/2, j + 1/2, k + 1/2). As can be seen in Fig. 3,
each of the 6 cell edges emerging from this vertex is surrounded
by 4 cells and is at the intersection of 4 cell faces. A closed loop
defined by a line traversing these and only these 4 interfaces has
an inherent null divergence. We take advantage of this fact to inject
a constant magnetic field of Binj = 10−5 G into each of these cell
faces, divergence-less by construction. As an example, for edge (i
+ 1/2, j + 1/2, k), the magnetic fields of the 4 cell faces adjacent to
this edge are modified following

Bi+1/2,j+1,k
x = Bi+1/2,j+1,k

x ± Binj,

Bi+1,j+1/2,k
y = Bi+1,j+1/2,k

y ∓ Binj,

Bi+1/2,j ,k
x = Bi+1/2,j ,k

x ∓ Binj,

Bi,j+1/2,k
y = Bi,j+1/2,k

y ± Binj.

(22)

This process is repeated for the other 5 edges, modifying the
faces with magnetic components perpendicular to the direction of
the edge. The choice of sign for the injected field is selected to
align with the majority of the local magnetic field, maximizing
the local injection energy. We note that regardless of the injection
configuration, every compact divergence-less injection mechanism
will in most cases oppose some part of the previously existing
magnetic field. This implies that for a fixed Binj, each group of 4
cells can increase its magnetic energy density in a range within
εmag = 0.5–1.5 × 10−10 erg cm−3. Only in the case of the local
magnetic field having the exact same configuration as the injection
will the efficiency of the injection be maximized. In terms of energy,
each SN injects E

mag
SN ∼ 1048−1049 erg to the simulation, once
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again depending on the local configuration of the field and the
volume of the injected cells. The subsequent expansion of the SN
explosions will slowly erase the topological configuration of the
injection. This magnetic injection procedure will be reviewed in
more detail together with alternative SN injection mechanisms in
Martin-Alvarez et al. (in preparation). Magnetic field injections are
added to the total and the SN-tracer magnetic fields.

In total, four sets of initial conditions were generated, varying
only in the strength of the primordial B-field. In all simulations, this
primordial magnetic field was set to a simple uniform value with di-
rection along the z-axis. This primordial magnetic field is initialized
for the total magnetic field and the primordial-tracer magnetic field.
We note, however, that the configuration of the primordial magnetic
field could have some potential impact on the results (Marinacci
et al. 2015; although see Dolag, Bartelmann & Lesch 2002) and
more sophisticated configurations should be explored. Our four
simulations have corresponding comoving primordial magnetic
fields B0 = 10−14 G (B14), B0 = 10−13 G (B13), B0 = 10−12 G
(B12), and B0 = 10−11 G (B11). These strengths are well within the
aforementioned observational constraints of the present-day cosmic
magnetic field and lead to magnetic fields of the order of μG in
the simulated galaxies shortly after their collapse. Whenever used,
haloes are identified in the simulations with the AMIGA HALO FINDER

(Gill, Knebe & Gibson 2004; Knollmann & Knebe 2009), using the
spherical top-hat collapse model to determine the overdensity at a
given redshift that will collapse.

4 R ESULTS

Here we present the first results of our magnetic field tracer
algorithm, reviewing its numerical accuracy and its potential to
uncover the properties of magnetic fields with different origins.
The goal of this work is to demonstrate the capabilities of our new
MHD tracer algorithm and here we focus on separating the magnetic
contribution from a primordial magnetic field, and the magnetic field
injected back into the gas when stars explode. Each of these fields
operates in different locations and in this first work, we focus on
the difference between these two contributions. All four simulations
with different primordial magnetic seed strengths are evolved until
z = 6 and in what follows, we study the magnetic fields from the
largest scales resolved by our simulation to the smallest scales in
the ISM of galaxies.

4.1 Tracing the topology of the large-scale magnetic field

In the top panel of Fig. 1, we show the redshift evolution of the
large-scale magnetic field from z = 8 to 6. The primordial magnetic
field, shown in red, traces the large-scale filamentary structure of
the matter distribution while blue regions, representing the SN-
injected magnetic field, emanate from the most massive galaxies
and penetrate into the IGM perpendicular to the filaments. At high
redshifts, the magnetic field is initialized in the z-direction with a
constant magnitude. As the Universe expands, the energy density
of the primordial field decreases in the IGM while being increased
as gas condenses into filaments and galaxies. This process will
continue as filaments accrete gas and become denser and more
massive. However, towards z = 6, the strength of the UV back-
ground drastically increases (Bolton & Haehnelt 2007; Calverley
et al. 2011; Wyithe & Bolton 2011). This is modelled as a uniform
heating term in our simulation and has the effect of evaporating
the filaments that are not self-shielded (Pawlik, Schaye & van
Scherpenzeel 2009). Comparing the snapshot at z = 7 with that

at z = 6, the most diffuse filaments that appear red at z = 7 are
missing at z = 6 as the UV background has efficiently reduced their
density, thus reducing the magnetic field strength. By z = 6, the vast
ensemble of filaments have yet to be significantly impacted by the
SN-injected magnetic fields, retaining memory of the configuration
of primordial magnetic fields in the simulation.

While the large-scale filamentary structure of the Universe is
beginning to take shape, the first generation of stars begin to form
in the earliest collapsing objects and the total magnetic energy in
the SN-injected component increases with decreasing redshift, as
more SNe occur. Repeated starbursts allow for the magnetic energy
to build up around galaxies from the inside out. SN winds push
magnetized gas out of the halo and into the IGM, where it then
expands, leading to an adiabatic decrease of the magnetic field.

The bottom panel of Fig. 1 shows the magnetic field around the
three most massive galaxies at z = 6. In the left-hand column,
three dense filaments are feeding a halo with Mvir = 109 M�h−1.
These filaments appear bright red in the image and the intensity
increases towards the galaxy as magnetic fields are frozen in the
gas in ideal MHD and this gas becomes denser. The magnetic field
injected from SNe is clearly visible in this image, emanating from
the galaxy into the low-density regions between the filaments. At
the centre of the halo, the red and blue colours appear blended as
there is a contribution from both the primordial field and the SN-
injected field in the same spatial location. When these fields have a
similar orientation, the total field is amplified; however, in certain
regions, the SN-injected field opposes the primordial field, which
reduces the overall magnetization in the region. This effect is further
explored in Section 4.2.

The second most massive halo appears very similar to the
first, as dense, red filaments are feeding the galaxy, while blue
magnetized gas emanates from the central regions of the system. In
contrast, the third most massive system has a magnetic environment
that is completely dominated by the SN-injected component as
the filaments feeding the galaxy have likely been disrupted by a
combination of an increasing UV background and SN feedback. The
environment around this galaxy is almost entirely blue. Because this
region is less dense compared to the other two, the magnetic winds
driven by SNe more easily penetrate into the low-density regions of
the IGM.

4.2 Global properties

The energy contained in the tracer fields (Etrace) within a given cell
is

Etrace = 1

2
Vcell

[
	B2

SN + 	B2
Primordial + 2

(
	BSN · 	BPrimordial

)]
, (23)

where Vcell is the volume of the cell, BSN is the magnetic field
in the SN-injected component, and BPrimordial is the magnetic field
contained in the primordial component. The key aspect of this
equation is that by splitting the total magnetic field into multiple
components, cross-terms between these components appear in the
energy calculation. These terms are not positive in the case where
magnetic tracer fields are oriented in opposite directions.

In Fig. 2, we show the fraction of the total energy contained
in the primordial field, the SN-injected field, and the cross-term
as a function of redshift for each of the four simulations. In the
B14 simulation (right-hand panel), which contains the weakest
primordial magnetic field, as soon as the first generation of stars
explode at z ∼ 16, the total energy contained within the SN-injected
field is nearly equal to the total magnetic energy in the primordial
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Figure 2. Fraction of the total magnetic energy in the box contained in the primordial field, the SN-generated field, or the cross-term between the two
components as a function of redshift for each simulation. The solid regions of the cyan line indicate redshifts at which the cross-term is positive while the
few dashed regions indicate that the cross-term is negative. The simulations were designed to sample the parameter space where the primordial component
dominates the energy at z = 6 (B11) to where the SN component dominates at z = 6 (B14). The B12 simulation exhibits approximately equipartition of the
total magnetic energy at z = 6.

field. As these SN bubbles expand, the energy in the SN-injected
magnetic field quickly dissipates. However, by z = 14 much more
sustained star formation occurs in the simulation and the energy
in the SN-injected magnetic field quickly dominates that of the
primordial field such that in the redshift range 13 ≥ z ≥ 6, the total
magnetic energy in the simulation is completely dominated by that
from SN injections.

By increasing the strength of the primordial magnetic field, the
redshift at which the SN-injected field dominates the total magnetic
energy occurs later. For the B13 and B12 simulations, equipartition
occurs at z ∼ 10 and z ∼ 6, respectively, while for the B11
simulation, the energy in the primordial field completely dominates
the total magnetic energy in the box at all redshifts simulated.

The cyan lines in each of the panels of Fig. 2 represent the
magnetic energy contained in the cross-term. Interestingly, regard-
less of the simulation, the energy in this component rarely reaches
more than a few per cent of the total. This component can be both
positive and negative depending on the exact orientation of the
tracer fields near galaxies; however, in neither case does it ever
represent a significant fraction of the total in our simulations. This
is to be expected, as the relevance of this term severely depends
on the correlation between the magnetic fields being traced: The
cross-term between two tracers becomes most important when
the two magnetic fields are comparable. For the ones employed
in this manuscript, one tracer typically dominates over the other.
However, primordial and SN-generated magnetic fields can develop
a non-negligible cross-term energy component at later stages in the
evolution of galaxies, once other mechanisms like their large-scale
rotation become important.

Even though the energy contained in the SN-injected magnetic
field dominates the total magnetic energy by z = 6 in both the
B13 and B14 simulations, this does not necessarily mean that the
majority of the volume of the simulation is affected by this magnetic
component. Based on the images shown in the top row of Fig. 1,
the regions magnetized by SN injections rarely extend more than
∼100 kpc from their host galaxies and most of the volume of the
simulation is only aware of the presence of the primordial magnetic
fields. We quantify this in Fig. 4 by plotting the volume filling
factor of the energy contained in the SN-injected magnetic field as
a function of redshift for each of the four simulations. We define
this quantity to be the fraction of the simulation volume where
at least 1 per cent of the local magnetic energy comprises the SN-
injected component. This quantity may give insight into where in the

Figure 3. Illustration of the magnetic injection prescription employed
during SN explosions on the neighbouring 8 cells. Coordinates in black
show cell-centred positions. The position of a supernova event occurring in
cell (i, j + 1, k) is labelled by the black circle. The six rings represent the
magnetic loops injected in association with the SN. These rings increase
the magnetic field of each cell face they traverse by Binj, with the direction
of the loop determined as explained in the text. Each ring is centred on a
unique cell edge, to which it is associated, and which is depicted by a thick
line of the same colour. In the text, we describe in more detail the injected
loop around the cell edge (i + 1/2, j + 1/2, k), differentiated in blue.

Universe to look in order to detect the effects of primordial magnetic
fields. By z = 6, the volume filling factor of SN-injected magnetic
energy is only ∼2.7 per cent for the B14 simulation, decreasing to
∼0.5 per cent for the B11 simulation. Thus in all simulations, the
volume of the simulation filled by SN-injected magnetic energy is
essentially negligible compared to the total. Primordial magnetic
fields are expected to dominate a majority of the cosmic volume,
even in the presence of strong astrophysical sources (Vazza et al.
2017).

As the redshift decreases, the rate at which the SN-injected
magnetic energy is filling the volume is accelerating. Thus if we
were to run this simulation for another ∼13 Gyr to z = 0, it is likely
that SN-injected fields may be able to fill a significant portion of
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Figure 4. Volume filling factor of the regions where at least 1 per cent of the
total magnetic energy in the cell has come from SN explosions as a function
of redshift. Different colour-codings indicate the runs with different initial
magnetic field strength. Even though the SN magnetic energy dominates the
total magnetic energy in the B13 and B14 simulations, less than 3 per cent of
the total volume is significantly affected by this component of the magnetic
field.

the IGM. The exact volume filling fraction however is very subject
to how star formation and SN injections are modelled and this is
further discussed in Section 5. The SFR density is expected to turn
over at z ∼ 2 (Madau & Dickinson 2014) and thus the volume
filling factor cannot grow indefinitely. Nevertheless, magnetized
winds emanating from galaxies may provide a plausible channel for
magnetizing the IGM by z = 0 (e.g. Dubois & Teyssier 2010; Beck
et al. 2013; Vazza et al. 2017).

Although the majority of the volume of the simulation is not
affected by the SN-injected magnetic field, one of the main
advantages of the MHD tracer algorithm is that we can separate
the effects of each tracer field both in time (as we have shown)
and based on environment. In Fig. 5, we plot the fraction of
total magnetic energy density at a given gas density, �b = ρb/ρ̄b

where ρ̄b is the mean baryon density at a given redshift, for the
four simulations at z = 6. The total magnetic energy density at a
fixed density is well described by a power law in all simulations,
except at �b � 0.1, where SNe dominate the energy density
in the B12, B13, and B14 simulations and strong deviations
from the mean trend can be seen. This density represents a very
small fraction of the total volume of the simulation and can
rapidly change with time depending on when the most recent SN
occurred.

The blue lines in each panel of Fig. 5 represent the energy
density in the primordial magnetic field as a function of density.
For adiabatic compression, the magnetic energy density is expected
to scale as �

4/3
b . Blue lines exhibit power-law slopes consistent with

this value. The red lines exhibit steeper slopes than �
4/3
b because

they are injected at a higher strength than the local primordial field
at a fixed density and then they cascade to lower densities as the
SN bubbles expand (see Vazza et al. 2017, who also find a steeper
slope for the injected field). The B13 and B14 simulations (third
and fourth panels) are dominated by SN-injected magnetic energy
at all densities and thus the global line has a steeper slope than
4/3. In contrast, the B11 (first panel) simulation is dominated by

the primordial magnetic field at all densities and thus exhibits a
slope of 4/3. The B12 simulation (second panel), which exhibits
equipartition in total magnetic energy at z = 6 between the two
tracer fields, shows the most interesting behaviour in the magnetic
energy density as a function of gas density. At �b � 1000 and
�b � 0.1 the SN-injected energy density dominates while at
densities between these two regimes, the primordial component
dominates. Thus, in this simulation, although there is energy
equipartition between the two MHD tracer fields at z = 6, the
SN-injected field only dominates well inside of galaxies and in SN
remnants.

4.3 Magnetic fields in haloes

In the previous section, we analysed the global properties of
each component of the magnetic field across the entire simulation
volume. In this section, we study the properties of each component
of the magnetic field inside of virialized haloes.

The first question we aim to address is what percentage of the total
magnetic energy within the virial radius of haloes is represented
by the primordial and SN-injected fields. In Fig. 6 we plot the
ratio of total energy in each tracer field to the total energy within
a halo as a function of halo mass at z = 6. In all simulations
most of the haloes with Mvir � 108 M� have magnetic energy
completely dominated by the primordial component. These systems
are extremely inefficient in forming stars (e.g. Kimm et al. 2017) and
thus the amount of magnetic energy injected during SN is limited in
these galaxies. However, for more massive haloes in the B12, B13,
and B14 simulations, the SN-injected magnetic energy becomes
very important and at Mvir ∼ 109 M�, most of the energy contained
within the haloes is dominated by the SN-injected component. The
mass at which the crossover occurs between SN-injected-dominated
and primordial-dominated shifts to progressively larger mass for
increasing primordial magnetic field strength. For the B12 and B13
simulations, there is considerable scatter at intermediate masses
between which tracer field dominates the total energy and this is
due to the exact star formation history for an individual halo. In no
simulation does the cross-term contribute on average a significant
fraction of the total energy, consistent with the results of Fig. 2.
In certain haloes, the cross-term can contribute up to ∼40 per cent
of the total energy; however, these cases are rare. SKA will have
the potential of observing magnetic fields in the surroundings of
galaxies and clusters, which could probe primordial magnetic fields
(Johnston-Hollitt et al. 2015; Taylor et al. 2015). Our results allow
us to constrain in our simulations a maximal halo mass below
which, for a given primordial magnetic field strength, the magnetic
energy budget of a halo is dominated by the primordial component.
Upcoming applications of this algorithm have the potential to
determine the regions around galaxies where future observations
should aim to detect magnetic fields of primordial nature, and
which halo masses are still dominated by primordial magnetic
fields.

A natural question is whether the energy contained within the
magnetic field in a halo is in equipartition with the thermal and
kinetic energy of that halo. In Fig. 7, we plot the total thermal energy,
kinetic energy, and energies in each of the MHD tracer fields as a
function of halo mass at z = 6 for each of the four simulations.
In no simulation is the total magnetic energy comparable with
either the thermal or kinetic energy. At the grid resolutions obtained
in our dark matter haloes, turbulent amplification in the halo is
expected to be negligible if at all existent, compared with the
magnetic energies expelled from the galaxies. Typical morphologies
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Figure 5. Total magnetic energy density (summed over all cells in the simulation) and magnetic energy density in each of the tracer components as a function
of baryonic overdensity at z = 6 for each simulation. For low values of the primordial magnetic field, the SN field dominates the total energy over the whole
box at all overdensities while the reverse is true of high values of the primordial magnetic field. When the total magnetic energy is in approximate equipartition
(B12), SN magnetic energy dominates at the highest and lowest overdensities (i.e. inside galaxies and SN heated regions) while the primordial magnetic field
dominates at mean density (i.e. the IGM).
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Figure 7. Total thermal energy (magenta), kinetic energy (green), magnetic energy in the SN-injected field (red) and magnetic energy in the primordial field
(blue) within the virial radius of individual haloes in each of the four simulations at z = 6. The thermal energy dominates for low-mass haloes while the kinetic
energy is dominant for haloes with log10(Mvir/M�) > 8.0. The total primordial magnetic energy within haloes decreases with the strength of the primordial
magnetic field. In no simulation is the magnetic energy in the entire halo in equipartition with its thermal or kinetic energy.

of observed magnetic fields in haloes are also consistent with being
driven by galactic outflows (Dahlem et al. 1997). For the B11
simulation, with the highest primordial magnetic field, only for
the lowest mass galaxies does the total magnetic energy approach
values of 10 per cent of the kinetic energy. For most other mass
systems, the magnetic energy is far below equipartition.

4.4 The effects of magnetic fields on star formation

Because of the variations in total strength of the magnetic fields
within haloes of different masses (see Fig. 7), it is interesting to
understand whether the magnetic fields have an impact on star
formation in galaxies. In the left-hand and central panels of Fig. 8,
we show the star formation rate and total stellar mass formed as a
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Figure 8. (Left) Star formation rate as a function of the age of the Universe for each simulation. (Centre) Total stellar mass as a function of the age of the
Universe. (Right) Stellar mass–halo mass relation for central galaxies in each of the four simulations. The grey shaded region shows the local extrapolated
stellar mass–halo mass relation from Behroozi et al. (2013).

function of the age of the Universe for each of the four simulations
with varying primordial seed strengths. In all simulations, by z =
6, the total mass in stars formed is nearly identical, as are the SFRs.
Stochasticity in our star formation algorithm means that at a fixed
time, the SFR is expected to deviate between the simulations by a
small fraction; however, it is clear that the general trend is the same
between all four simulations.

Since the relationship between stellar mass and halo mass is
expected to be reasonably steep such that more massive haloes are
expected to form stars much more efficiently ( Behroozi, Wechsler &
Conroy 2013; Moster, Naab & White 2013), total stellar mass
formed, and total SFR in the simulation may only be representing the
high-mass haloes in the simulation. Thus, in the right-hand panel of
Fig. 8, we plot the stellar mass–halo mass relation at z = 6 for each
of the four simulations. We find no systematic offsets in stellar mass
for a given halo mass between the simulations, even for the lowest
mass haloes, indicating that the magnetic fields in our simulation
have a negligible effect on the resulting stellar masses, regardless of
the primordial seed strengths that we have chosen to model. This is
true even for the B11 simulation, which has a magnetic field strength
at the highest gas densities that is larger than the strengths that our
SN injection can obtain (see Fig. 5). Note that we overpredict the
expected stellar mass for a given mass halo compared to predictions
from abundance matching (Behroozi et al. 2013). No change in the
global SFR may be expected because our primordial seed strengths
are not high enough to prevent accretion of gas on to haloes. For
this one needs a primordial seed strength of ∼10−9 G (Marinacci &
Vogelsberger 2016).

5 C AV EATS

Our algorithm is an effective tool to better understand the amplifi-
cation and evolution of magnetic fields with different origins. All
of the limitations that come with numerical MHD are also found in
our simulations. Astrophysical MHD simulations have numerical
viscosities and resistivities significantly higher than their physical
counterparts in nature, which limits our capabilities to accurately
model various processes of critical importance (e.g. small-scale
dynamo, grid-driven diffusion, turbulent cascade). Note that a
turbulent dynamo is expected to be capable of rapidly amplifying
primordial magnetic fields within galaxies on time-scales as low
as τ ∼ 25–300 Myr (Schober, Schleicher & Klessen 2013). This is
not seen in our current simulations. With the primordial magnetic
field serving as a seed for this dynamo, this process could naturally

increase the importance of primordial magnetic fields in haloes
in our simulation. Our simulations do resolve the amplification
of magnetic fields in compact objects. Thus, the strength of the
magnetic field that we inject, how often we inject (based on
uncertain SN rates), and the properties of the injected fields are
assumptions. Furthermore, the feedback in our simulation is not
strong enough to regulate star formation, so we may overpredict the
amount of injected magnetic energy. Nevertheless, we intend our
simulations to be a demonstration of the new algorithm rather than
a complete physical model.

6 C O N C L U S I O N S

The goal of this manuscript is to present a first demonstration of the
MHD tracer algorithm. We presented the mathematical foundation
for the employed decomposition of the physical magnetic fields in
the simulations in Section 2 and then described our implementation
in the CT MHD code RAMSES. We performed four different high-
resolution cosmological MHD simulations with RAMSES using
different strengths of a primordial magnetic field combined with
an additional magnetic component that is injected when SNe
explode. We used these simulations to showcase the accuracy of
our new algorithm (see Appendix A) and demonstrate the first
results regarding the importance of primordial magnetic fields
versus supernova-injected magnetic fields in small cosmological
volumes at high redshifts. The main conclusions of this work are
the following.

(i) The equations for ideal MHD can be linearly decomposed
so that individual contributions to the total magnetic field from
different sources can be tracked.

(ii) Our method conserves the total energy and the total B-field
on each cell face and maintains the solenoidal constraint so that it is
neither dynamically important nor affecting the induction equation.

(iii) The dominant component of the total magnetic energy
depends on the strength of the primordial magnetic fields (as well
as how much is injected during each SN). The relevance of the
primordial magnetic field is expected to decrease with time due to
cosmic expansion, unless it can be significantly amplified in haloes.
In contrast, SN-injected fields become more important with cosmic
time as more stars are formed.

(iv) Primordial magnetic fields and those injected from SNe pos-
sess different topologies in the context of the large-scale structure.
Primordial magnetic fields are found to dominate the majority of
the volume of the simulations, whereas SN-injected magnetic fields
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are confined to galaxies and the vicinity of their dark matter haloes
by z = 6. The volume filling factors of SN-injected magnetic fields
are expected to increase as a function of decreasing redshift.

(v) Within dark matter haloes, there exists a lower limit on
the virial mass (Mvir ∼ 108–108.5 M�) below which SN-injected
magnetic fields lose relevance compared to primordial magnetic
fields. This mass limit is found to depend on the strength of the
primordial magnetic field, and is also expected to be dependent on
numerical resolution and the filtering mass due to reionization.

(vi) Consistent with other work (Marinacci & Vogelsberger
2016), we find the global cosmic star formation properties to be
unchanged within the range of primordial magnetic field strengths
probed in this work.

These results are subject to the caveats discussed in Section 5.
Nevertheless, they represent the first demonstration of separating the
contribution of primordial magnetic fields versus SN-injected fields
in the same simulation, providing a methodology for future, more
detailed studies of magnetogenesis. Future work will encompass a
more comprehensive list of sources of magnetic fields (e.g. AGNs,
turbulence, cosmic rays) as well as studying different seeding
mechanisms such as in intergalactic ionization fronts or various
primordial fields that may be generated by inflation.
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A P P E N D I X A : EN E R G Y A N D M AG N E T I C
FIELD CONSERVATION

In this appendix, we demonstrate the robustness of our algorithm
by directly measuring the conservation of the total magnetic energy,
the magnetic field on the faces of individual cells, and the solenoidal
constraint.

In the left-hand panel of Fig. A1 we plot the fractional difference
between the sum of the total energy contained within each of the
tracer fields and the total magnetic field in each of the four simula-
tions (B11–B14). The total energy contained in the tracers is defined
by equation (23). The total energy within the simulation volume is
conserved nearly precisely with a fractional difference that does not
exceed 10−14 throughout the course of the simulation. This value
fluctuates when magnetic energy is injected with SN explosions;
however, it is clear that the energy within the total magnetic field is
well captured even if it is split into multiple components.

In the central panel of Fig. A1, we plot the maximum difference
between the magnetic field contained within the tracers and the
total magnetic field on all cell faces within the simulation for all four
simulations. We divide this difference by the average local magnetic
field strength across all six cell faces to avoid local X- and O-points.
Over the course of the simulation, the deviation in the total magnetic
field contained in the tracers from the total magnetic field in any of
the faces never reaches more than 10−5 of the local magnetic field
strength. The maximum error does increase sightly with time before
tapering off as more SN injections occur; however, these errors are
negligible compared to the local field strength. Hence, the algorithm
conserves the local magnetic field strength in addition to the total
energy to high precision.

As shown in Section 2, each individual tracer field must satisfy
the solenoidal constraint. Because we use constrained transport,
for both the total and each tracer field, the divergence should be
constrained to near-machine precision. In the third panel of Fig. A1,
we plot the average and maximum divergence in the total magnetic
field as well as in each individual tracer field as a function of
redshift. The average divergence in the simulation never increases
to more than 10−12 of the local B-field and is thus well controlled
by the constrained transport algorithm. The same is true for each
of the tracer fields. With this precision, the divergence is neither
dynamically important nor affecting the induction equation. See
Hopkins & Raives (2016) for a comparison of MHD schemes
that use ‘divergence-cleaning’, where the divergence errors are
considerably higher. Also shown in the right-hand panel of Fig. A1
are the maximum divergences with respect to the local magnetic
field as a function of redshift for each simulation. This value
rarely surpasses 10−4, once again indicating that, even in the
least controlled environments, the divergence is both negligible
for the dynamics and the induction equation. Based on the three
convergence tests described in this section, we have shown that
the MHD tracer algorithm conserves all the relevant quantities
necessary for numerically modelling ideal MHD.
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Figure A1. (Left) Fractional energy difference (|Etrace − EB|/EB) between the sum of the energies stored in the tracer components and the total magnetic
energy in the box as a function of redshift. The total magnetic energy is conserved to nearly machine precision regardless of the strength of the primordial

magnetic field. (Centre) Maximum difference between the total magnetic field and the sum of the tracer fields (max
( |BSN+Bprimordial−Btotal|

|Btotal|
)

) in all cell faces

and all directions in the simulation as a function of redshift. The maximum difference between the magnetic field stored in the tracer components never deviates
more than 0.001 per cent for any cell face over the course of the simulation. (Right) Average (solid lines) and maximum (dashed lines) divergence with respect
to the local B-field (|∇ · B|dxcell/|B|) in the total magnetic field. The thin dashed and dot–dashed lines show the same quantities for the SN and primordial
magnetic field, respectively. Neither the total nor the individual tracer fields exhibit divergences that represent more than 1 per cent of the total magnetic field
at any point in the simulation. On average the divergences remain below 10−13 of the local B-field.
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