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Dark energy explained by geometrical considerations

Approximating a real manifold by an idealized one requires to calibrate the parameters characterizing the idealized manifold in function of the real one. This calibration is a purely conventional process and can generally be done in several ways, leading to different fittings. In practice, however, all possible fittings cannot be considered as representative of the real manifold. Approximating the real metric by the FLRW metric would be adequate only if both corresponding structures, defined by the space-time interval, are equivalent on large scales. This requirement puts some constraints on what would be a representative FLRW metric. We show that the way how measurements on SNIa are interpreted to determine the evolution of the scale factor implicitly define the calibration process, and that this one is compatible, on a theoretical point of view, with the aforementionned constraints, indicating that the as fitted FLRW metric would be representative of the real one. On a practical point of view, however, we show that a bias in the measurements could invalidate this conclusion. The bias comes from the fact that SNIa are not randomly distributed over space, but are probably mostly located in regions were matter is largely present, i.e., in overdense regions. We explain how this bias could account for the apparent accelerated expansion of the universe, without needing to introduce the dark energy assumption.

Introduction

Typical cosmological models are based on the postulate that the universe is homogeneous and isotropic in its spatial dimensions. This postulate is generally known as the Cosmological principle. Obviously, at small scales, the universe presents heterogeneities and anisotropies, but we take the Cosmological principle to apply only on the largest scales, where local variations are averaged over. The homogeneity and isotropy of the universe at such scales imply that space would be maximally symmetric, leading to the well-known Friedmann-Lemaître-Robertson-Walker (FLRW) metric. In typical cosmological models, this metric is then used to determine the left part of the Einstein equation of general relativity:

R µν - 1 2 g µν R = 8πGT µν . (1) 
The right part is determined by estimating the average stress-energy tensor of all identified sources. Solving the Einstein equation leads finally to the Friedmann equations, allowing to predict the behavior of the scale factor a(t) of the universe in function of the energy density ρ and the pressure p. In simple words, this approach allows to predict the global evolution of the universe in function of its content. It is known since the beginning of the study of cosmology that space is not perfectly homogeneous and isotropic, but the effects of this characteristic on the evolution of the universe have been investigated seriously since some decades only. As highlighted by [START_REF] Clarkson | Does the growth of structure affect our dynamical models of the universe?[END_REF], considering heterogeneity and anisotropy involves several major difficulties, related in particular to the fitting problem, to the averaging of the Einstein equations, and to the investigation of possible backreaction effects.

Important efforts have been put by several authors on the investigation of backreaction effects, see [START_REF] Buchert | Dark energy from structure: a status report[END_REF], [START_REF] Clifton | Back-reaction in relativistic cosmology[END_REF], [START_REF] Kolb | Backreaction of inhomogeneities can mimic dark energy[END_REF] and many others. In such studies, the accelerating expansion of the universe, as evidenced by [START_REF] Ries | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF] and [START_REF] Perlmutter | Measurements of Omega and Lambda from 42 High Redshift Supernovae[END_REF] from the observations of distant Type Ia supernovae, is explained by the fact that the Einstein equation of general relativity should not be applied as such for the FLRW metric, but should be averaged in some way to take into account the inhomogeneous reality. The non-commutativity of the averaging procedure would lead to new terms in the averaged Einstein equations that would account for the observed acceleration. Also, many discussions have been held on how to best define this averaging process, see for example [7] and [8].

While backreaction effects and the difficulties of averaging the Einstein equations have received significant attention, the fitting problem has regrettably received much less attention. This last one is however a fundamental issue, because the fitting process defines the idealized universe we are studying, and which is supposed to be representative of the real universe. An inadequate fitting would imply that all conclusions drawn from the analysis of the idealized universe could not necessarily be transposed to the real one.

Before observations led to the conclusion that space-time undergoes an accelerated expansion, [START_REF] Ellis | The 'fitting problem' in cosmology[END_REF] studied what would be the best way to fit an idealized homogeneous and isotropic universe to a realistic one. This was an important question, but which was not really taken into consideration when estimating the evolution of the scale factor from the observations on Type Ia supernovae. However, as we will see, the way observations have been interpreted implicitly define how the idealized universe has been fitted on the real universe. So the question would now become: is this fitting adequate? In other words, may we consider that the behavior of the as fitted FLRW universe is representative of the behavior of the real universe viewed at a global scale? This is a fundamental question, and if the answer is no, all other investigations to explain the observed behavior could be irrelevant.

The importance of this question can be illustrated as follows: when approximating a real manifold by an idealized one, the parameters characterizing this idealized manifold have to be calibrated in some way. This calibration is the mathematical description of the fitting process. It is a conventional process, and can be done in several ways, meaning that different approximations of the real manifold by the idealized one could be obtained. Let us consider the simple example of some growing shape that looks like a circle, but which presents locally small perturbations with respect to a perfect circle, see Figure 1. For illustration purposes, the perturbations have been willingly disproportionately enlarged on that figure. When looking how this shape evolves over time, it makes sense, for practical reasons, to approximate it as a simple circle and claim that the evolution of this circle is representative of the evolution of the real shape. However, an infinite number of possibilities exists for this approximation, 4 of which are illustrated on Figure 1. It is not difficult to imagine cases for which approximation A would grow with an decreasing rate, approximation B would grow with a constant rate, whereas approximation C would grow with a increasing rate. The important result of this simple illustration is that for a given shape, different fittings of its approximate circle could lead to different conclusions about the way it expands over time. Moreover, some measurements performed on the real shape and inadequately interpreted could even lead to approximation D, which could hardly be considered as representative of the real shape. In this simple case, it can easily be seen that such a fitting is inadequate, but this is not always as easy for more complex and multidimensional manifolds.

The same could happen for space-time. Space-time is not perfectly maximally symmetric, and its metric does not exactly correspond to the FLRW metric. Obviously, since it probably looks like the FLRW metric, it makes sense to approximate it as such, but this approximation can be done in several ways. It is important to know exactly how the approximation is carried out, because this could have an impact on how space-time will be seen evolving. In practice, the approximation is implicitly defined by the way measurements on SNIa are interpreted. The aim of this article is to investigate if this approximation can be considered as representative of the real universe.

A B D C Real shape
In section 2 we first establish relations between the real metric and the FLRW metric, as well as for derived tensors and scalars, by considering a perturbation approach. Such relations will be useful in the investigation. In section 3 we define the best way to approximate the real metric by a FLRW metric, and identify the constraints implicitly imposed by this definition. In section 4 we then use these constraints to determine the evolution laws of the FLRW metric, which are shown to be identical to the Friedmann equations. In section 5 we finally show that the way we interpret the luminosity distance and redshift measurements implies the same constraints as the ones imposed by the definition of an adequate FLRW metric. We explain however that a bias in the measurements could invalidate this conclusion. The bias comes from the fact that SNIa are not randomly distributed over space, but are probably mostly located in regions were matter is largely present, i.e. in overdense regions. We explain how this bias could account for the apparent accelerated expansion of the universe, without needing to introduce the dark energy assumption.

The perturbation approach

Besides the analysis of possible backreaction effects, as highlighted by [START_REF] Clarkson | Does the growth of structure affect our dynamical models of the universe?[END_REF], two major difficulties arise when analyzing the evolution of space-time by considering that it behaves as having a global average metric. The first difficulty is related to the fitting of the FLRW metric. The second difficulty lies in establishing the average of the Einstein equation, which allows determining the evolution law for the scale factor characterizing this FLRW metric, taking into account how the FLRW metric has been calibrated.

Both difficulties require to relate in some sense the real metric to the approximate FLRW metric. Before addressing the two aforementioned difficulties, we will formulate the different scalars and tensors derived from the FLRW metric in function of their equivalent ones derived from the real metric, by using a perturbation method. This is a well-known approach, that will provide useful relations for our investigation.

We will temporarily admit that we are able to define the average FLRW metric, which will be written as g µν . Note that in this article we will only consider the case of a flat FLRW metric.

Therefore, expressed in a (t, x, y, z) referential, we have g tt = -1, g ii = a 2 (t) where i = x, y, z, and all other components are zero.

Locally, the real metric will be written as g µν . The difference between the local metric and this average metric, called the perturbation, is written as δg µν . Hence, at each point of space-time, we have

g µν = g µν + δg µν . (2) 
Generally, δg µν depends on x, y, z and t, whereas g µν only depends on t at most. The inverse g αµ is such that g αµ g µν = δ α ν . Similarly, g αν is the inverse of g µν . We assume that the perturbation δg µν is generally quite small with respect to g µν . It is then easy to convince us that g αµ = g αµδg αµ .
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We have indeed [START_REF] Kolb | Backreaction of inhomogeneities can mimic dark energy[END_REF] since we may neglect δg µν δg αµ which is of second order. For completeness, we also assume that the first and second partial derivatives, δg µν,ρ and δg µν,ρσ , are small with respect to g µν,ρ and g µν,ρσ , respectively.

A useful relation can be derived starting from the following property:

δg µν = (g αµ -δg αµ ) g βν -δg βν δg αβ g αµ g βν δg αβ , (5) 
where in the last equation second order terms have been neglected. Deriving this equation with respect to σ, we find that:

δg µν ,σ = g αµ ,σ g βν δg αβ + g αµ g βν ,σ δg αβ + g αµ g βν δg αβ,σ . (6) 
We may now determine the Christoffel symbols in function of the FLRW metric. At each point of space-time we have

Γ α βγ = 1 2 (g αν -δg αν ) g νγ,β + δg νγ,β + g βν,γ + δg βν,γ -g βγ,ν -δg βγ,ν . (7) 
When developing this expression, we get

Γ α βγ = 1 2 g αν g νγ,β + g βν,γ -g βγ,ν + 1 2 g αν δg νγ,β + δg βν,γ -δg βγ,ν - 1 2 δg αν g νγ,β + δg νγ,β + g βν,γ + δg βν,γ -g βγ,ν -δg βγ,ν , (8) 
For practical reasons, we will write

Γ α βγ = Γ α βγ + δΓ α βγ , (9) 
where

Γ α βγ = 1 2 g αν g νγ,β + g βν,γ -g βγ,ν (10) 
is the part of the Christoffel symbols calculated on the basis of the FLRW metric only, and where

δΓ α βγ = 1 2 g αν δg νγ,β + δg βν,γ -δg βγ,ν - 1 2 δg αν g νγ,β + δg νγ,β + g βν,γ + δg βν,γ -g βγ,ν -δg βγ,ν (11) 
is the perturbation that has to be added to Γ α βγ in order to determine the local Christoffel symbols. Expressed in a (t, x, y, z) referential, we have Γ t ii = a ȧ, Γ i it = ȧ/a, where i = x, y, z, and all other components are zero.

Next, the Ricci tensor becomes

R αβ = Γ µ αβ,µ + δΓ µ αβ,µ -Γ µ αµ,β -δΓ µ αµ,β + Γ µ αβ + δΓ µ αβ Γ ν µν + δΓ ν µν -Γ ν αµ + δΓ ν αµ Γ µ νβ + δΓ µ νβ . ( 12 
)
Developing this expression, we get

R αβ = R αβ + δR αβ , (13) 
where

R αβ = Γ µ αβ,µ -Γ µ αµ,β + Γ µ αβ Γ ν µν -Γ ν αµ Γ µ νβ (14)
is the part of the Ricci tensor calculated on the basis of the FLRW metric only, and where

δR αβ = δΓ µ αβ,µ -δΓ µ αµ,β + Γ µ αβ δΓ ν µν + Γ ν µν δΓ µ αβ + δΓ µ αβ δΓ ν µν -Γ ν αµ δΓ µ νβ -Γ µ νβ δΓ ν αµ -δΓ ν αµ δΓ µ νβ (15)
is the perturbation that has to be added to R αβ in order to determine the local Ricci tensor. Expressed in a (t, x, y, z) referential, we have R tt = -3 ä/a, R ii = a ä + 2 ȧ2 where i = x, y, z, and all other components are zero. Finally, the Ricci scalar becomes

R = g αβ -δg αβ R αβ + δR αβ . ( 16 
)
We then write

R = R + δR , (17) 
where

R = g αβ R αβ (18)
is the part of the Ricci scalar calculated on the basis of the FLRW metric only, and where

δR = g αβ δR αβ -R αβ δg αβ -δg αβ δR αβ (19)
is the perturbation that has to be added to R in order to determine the local Ricci scalar. For the FLRW metric we have R = 6 ä/a + ȧ2 /a 2 . At each point of space-time, the Einstein equation reads

R µν - 1 2 g µν R = 8πGT µν . ( 20 
)
Using the expressions developed above, this last relation becomes

R µν + δR µν - 1 2 g µν + δg µν R + δR = 8πGT µν , (21) 
which can be written as

G µν + δG µν = 8πGT µν , (22) 
where G µν = R µν -1/2g µν R is the Einstein tensor defined on the basis of the FLRW metric, and where we defined

δG µν = δR µν - 1 2 g µν δR + δg µν R + δg µν δR . ( 23 
)
Expressed in a (t, x, y, z) referential, we have G tt = 3 ȧ2 /a 2 , G ii = -2a ä -ȧ2 where i = x, y, z, and all other components are zero.

The representative FLRW metric

The manifold defined by the FLRW metric is such that

ds 2 = g µν dx µ dx ν . ( 24 
)
On the other hand, the manifold defined by the real metric is such that

ds 2 = g µν + δg µν dx µ dx ν . ( 25 
)
Approximating the real manifold expressed by Eq. ( 25) by the idealized one expressed by Eq. (24) would be meaningless if, over large scales, both were not equivalent. This equivalence means that on large scales, the integration of Eq. (25) on some path should converge to the integration of Eq. (24) on the same path. If this was not the case, the FLRW metric would not constitute a representative approximation of the real metric, in particular because spatial distances or time intervals would globally be different between the two manifolds. Spatial distances and time intervals are important notions when measuring the time evolution of the scale factor. If distances or time intervals as calculated from the FLRW metric would not converge to the ones as calculated from the real metric on large scales, the approximate manifold (and its temporal evolution) could hardly be considered as representative of the real one.

Let us consider a spatial path that follows the x-axis (dt = dy = dz = 0), and let us integrate Eq. (25) along that path. This leads to

x ds = x √ g xx dx = x g xx + δg xx dx , (26) 
where x means that the integration is performed along the x-axis. The limits of the integration are not written for convenience, but it is assumed that the integration path is sufficiently large so that perturbations are averaged over. On large scales, we expect that:

x

√ g xx dx -→ x g xx dx . ( 27 
)
On a theoretical point of view, if we knew the metric g µν at each point, this would directly allow to deduce the scale factor. Indeed, equating Eq. (26) and Eq. (27) simply leads to

a = x √ g xx dx x dx . ( 28 
)
Obviously, given the isotropy of space, a same value would be obtained by considering an integration path in a different direction.

The knowledge of the scale factor completely determines the FLRW metric, which in some sense can be considered as the average of the real metric. A lot of discussions have been held about the difficulties related to how tensors (and in particular the metric tensor) should be averaged, see [7] for example. However, imposing the structure of real space, as defined by the space-time interval, to be identical on large scales as the one determined by the FLRW metric provides a simple definition of this average FLRW metric. It is important to note that this definition is not based on the volume integration of some tensor, which is a questionable operation, but on the integration of the interval s which is a scalar. It is thus well defined and frame invariant.

Before going further, let us deduce some useful consequences from this definition. First, subtracting Eq. ( 26) and (27), we find that

x g xx + δg xx -g xx dx = 0 . ( 29 
)
Using a Taylor expansion to approximate the first square root, we have

g xx + δg xx g xx + δg xx 2 g xx , ( 30 
)
and Eq. (29) simplifies as

x δg xx 2 g xx dx = 0 . ( 31 
)
But since g xx = a 2 (t) does not depend on x, Eq. (31) simply implies

x δg xx dx = 0 . ( 32 
)
Strictly speaking, this identity will in general not be verified exactly, and it should be considered as an approximation. The meaning of Eq. (32) is that if δg xx can sometimes be positive or negative, on average over space it is zero.

It is important to highlight that Eq. (32) is valid at each time:

x δg xx (t)dx = x δg xx (t + δt)dx = 0 , ( 33 
)
where for convenience we did only specify the temporal dependence of g xx , its dependence on x, y and z being implicitly assumed. Since we can approximate

δg xx (t + δt) δg xx (t) + δg xx,t (t)δt , (34) 
we find that

x [δg xx (t) + δg xx,t (t)δt] dx = 0 . ( 35 
)
Subtracting Eq. (32) from Eq. (35), we deduce that

x δg xx,t (t)dx = 0 . ( 36 
)
Since this relation once again holds for all times, we may in a similar way deduce that

x δg xx,tt (t)dx = 0 . ( 37 
)
Finally, space being assumed to be homogeneous, it is also important to highlight that Eq. (32) is valid for a path in the x direction that would start at a different location. For example, we would also have

x δg xx (y)dx = x δg xx (y + δy)dx = 0 , ( 38 
)
where for convenience we did only specify the dependence of g xx on y, its dependence on x, z and t being implicitly assumed. Using once again a Taylor approximation to decompose δg xx (y + δy), we show in a similar way as above that

x δg xx,y dx = 0 . ( 39 
)
Still using the same approach, we show that

x δg xx,x dx = x δg xx,z dx = 0 . ( 40 
)
Since space is assumed to be isotropic, all relations established above for a path integration along the x direction are valid for paths integrations in the y and z directions also.

As explained above, from Eq. (28) we deduce the scale factor a, which hence completely determines the FLRW metric tensor. Strictly speaking, the FLRW metric is defined by two parameters, namely the scale factor a(t), and the value of the component g tt , but in practice, this latter one is constrained to be g tt = -1, and this is done at the expense of a modification of the time scale. The second parameter is hence replaced by the function defining this time scale modification. After this time scaling, we expect that, similarly as for the spatial path, the integration of the interval along a time path calculated from the real metric converges to the one calculated from the FLRW metric. Let us hence consider a path that follows the t-axis (dx = dy = dz = 0), and let us integrate Eq. (25) along that path. This leads to

t ds = t g tt + δg tt dt , (41) 
where t means that the integration is performed along the t-axis. On large scales, we thus expect that

t g tt + δg tt dt -→ t g tt dt . ( 42 
)
Following a similar approach as for a spatial path, we deduce that

t δg tt dt = 0 . ( 43 
)
4. Evolution laws for the scale factor of the representative FLRW metric

At large scales, we generally assume that space presents a maximal symmetry, leading us to expect that the metric globally corresponds to the FLRW metric. This approximation is motivated by the fact that when analyzing the global evolution of the universe, we only want to consider the behavior of the metric tensor at large scales, from which all local perturbations that could exist are ignored. At large scales, we also consider that it makes sense to define some global stress-energy tensor. Standard cosmological models then assume that the FLRW metric, its derived tensors and the global stress-energy tensor are simply related by the Einstein equation of general relativity, i.e., Eq. (1), allowing to deduce a simple evolution law for the scale factor. This assumption should however be considered cautiously, because the metric and all related tensors as well as the stress-energy tensor are defined locally, at each point, but not globally. It is in fact not straightforward that Eq. ( 1) is generally valid on a global scale, regardless of the fitting process we used. Reminding the simple example considered in the introduction, we should on the contrary expect that the evolution law of the scale factor depends on how the FLRW metric has been fitted on the real metric. It is thus of paramount importance to clearly derive, in function of the fitting process, this evolution law of the scale factor.

To derive this evolution law, we will proceed in two steps. In a first step, we will define the averaging process for the Einstein equation. In a second step, from the averaged Einstein equation, we will determine the evolution laws of the scale factor for the fitting process that has been presented in section 3.

Step 1

Averaging the Einstein equation of general relativity requires to integrate them in some way over some sub-manifold of space-time. As pointed out by several authors (see for example [START_REF] Buchert | Dark energy from structure: a status report[END_REF]), integrations over curved manifolds are in general well-defined for scalars only. Integrating tensors is indeed a questionable operation. Although we could argue that the Einstein equation itself could be integrated without worrying about issues related to the integration of tensors (see discussion further), we will proceed in a different way, by performing scalar integrations only.

Given the FLRW metric, we note that together with the Einstein equation, we can produce two independent scalar relations. A first possibility consists in multiplying Eq. (1) by g µν :

G µν g µν = 8πGT µν g µν . ( 44 
)
This indeed constitutes a scalar relation. We may hence integrate it over space:

V G µν g µν |g ij |dV = V 8πGT µν g µν |g ij |dV , (45) 
where |g ij | is the magnitude of the determinant of the spatial part of g µν , V means an integration over a spatial volume, and where dV = dxdydz. Once again, for convenience, the limits of the integrations are not identified, but it is assumed that the domain over which the integration is performed is sufficiently large such that perturbations are averaged over. Assuming that space is globally isotropic, we admit that on average the different spatial diagonal components of G µν are identical. Developing Eq. (45), we then get

V 3 a 2 G xx -G tt |g ij |dV = V 8πG 3 a 2 T xx -T tt |g ij |dV . (46) 
A second possibility to obtain a scalar relation from the Einstein equation of general relativity and from the FLRW metric consists in multiplying Eq. (1) by g µα g νβ R αβ . Integrating this scalar relation over space leads to:

V G µν g µα g νβ R αβ |g ij |dV = V 8πGT µν g µα g νβ R αβ |g ij |dV , (47) 
Developing this equation gives

V 3 ä a 3 + 2 ȧ2 a 2 G xx -3 ä a G tt |g ij |dV = V 8πG 3 ä a 3 + 2 ȧ2 a 2 T xx -3 ä a T tt |g ij |dV , (48) 
Since the scale factor does not depend on the spatial coordinates, it can be considered as a constant in the integrations. We then multiply Eq. (46) by 3 ä/a and subtract Eq. (48) from it:

V 6 ä a 3 - ȧ2 a 2 G xx |g ij |dV = V 6 ä a 3 - ȧ2 a 2 8πGT xx |g ij |dV , (49) 
where δρ and δp are perturbation terms such that

V δρ |g ij |dV = V δp |g ij |dV = 0 . ( 84 
)
Using the above definitions, Eq. ( 77) and (78) become

-2a ä -ȧ2 -Da 2 = 8πGpa 2 , ( 85 
)
3 ȧ2 a 2 = 8πGρ . ( 86 
)
Combining these equations adequately, we get

ä a = - 4πG 3 (ρ + 3p) - D 2 , ( 87 
) ȧ2 a 2 = 8πG 3 ρ . ( 88 
)
We notice that Eq. ( 88) is identical to the first Friedmann equation. This is an important result that confirms that using the Einstein equation to study the global behavior of space-time is allowed if the FLRW metric has been fitted according to the constraints derived in section 3. This also shows that, according to this theory, no backreaction effects are expected.

On the other hand, Eq. (87) differs from the second Friedmann equation due to the presence of D. This equation provides information on the average perturbation δg tt , but it can be presented in a more useful manner. We will first simplify Eq. (87). Therefore, we derive Eq. (88) with respect to the temporal variable:

ä a = 8πG 3 ρ + 4πG 3 a ȧ ρ . ( 89 
)
To further simplify this expression, we will make use of the conservation equation:

0 = g σµ ∇ σ T µν = g σµ ∂ σ T µν -Γ λ σµ T λν -Γ λ σν T µλ . ( 90 
)
This is a vectorial relation of the form B ν = 0. As previously, together with the FLRW metric, we could make from this two independent scalar relations, by multiplying it first by g νξ B ξ , then by g να g ξβ R αβ B ξ . These scalar relations could be adequately combined, and then integrated to obtain a useful relation. However, as argued above, since B ν is a null tensor, its integration over space is well defined. We can hence proceed in a much easier way (but the same result would be obtained by the first method). So, integrating the t component of Eq. (90) over space, developing the terms in function of their average and perturbation parts and dividing by V |g ij |dV, we obtain

0 = V (g σµ + δg σµ ) ∂ σ T µt -Γ λ σµ + δΓ λ σµ T λt -Γ λ σt + δΓ λ σt T µλ |g ij |dV V |g ij |dV . ( 91 
)
Proceeding as before, by neglecting higher order terms, by taking into account the properties expressed by Eq. (32) and (84), and using the definitions (79) and (80), we can simplify Eq. ( 91)

as ρ = -3 ȧ a (ρ + p) . ( 92 
)
Using then this last relation into Eq. (89), we get

ä a = - 4πG 3 (ρ + 3p) . ( 93 
)
Comparing finally Eq. (93) with Eq. (87) we deduce that D = 0. This provides information on the evolution of the perturbation δg tt . Let us investigate this. We notice that D can also be written as

D = 1 a 2 ȧ V ∂ ∂t a ȧ2 δg tt dV V a 3 dV = 8πG 3a 2 ȧ ∂ ∂t V a 3 ρδg tt dV V a 3 dV , ( 94 
)
where we made use of Eq. (88). The fact that D = 0 implies that the derivative in Eq. (94) cancels, and hence that the expression that is derived is equal to some constant. Obviously, this constant is proportional to the volume over which the integration is performed. We thus have

V a 3 ρδg tt dV = α V dV , ( 95 
)
where α is a constant. Since a and ρ do not depend on the spatial coordinates, we deduce

V δg tt dV V dV = α a 3 ρ . ( 96 
)
The left hand side represents the spatial average of δg tt . Let us show that for a representative FLRW metric we necessarily have α = 0. We therefore start from Eq. (43) and integrate this over space:

V t δg tt dt dV = 0 , ( 97 
)
which can be written as

t V δg tt dV dt = t α a 3 ρ V dV dt = 0 . ( 98 
)
Since ρ and a are positive variables, the previous equation will be verified only if α = 0. We thus conclude that a representative FLRW metric is also characterized by the fact that

V δg tt dV = 0 . (99) 

Redshift and luminosity distance measurements

We verify in this section that the interpretation of the measurements performed to determine the evolution of the scale factor implicitly lead to a fitting of the FLRW metric according to the constraints identified in section 3. Such measurements consist in redshift and luminosity measurements.

Redshift measurements

Let us consider a source emitting light with a known temporal characteristic. A first signal is emitted at time t 1 by such a source located at x = x 1 and reaches at time t 2 an observer located at x = x 2 . A second signal is emitted from the same source at time t 1 + ∆t 1 and reaches the observer at time t 2 + ∆t 2 .

Light follows a null geodesic. Integrating Eq. (25) along such a geodesic by considering the real metric yields for the first signal

t 2 t 1 -g tt g xx dt = x 2 x 1 dx . ( 100 
)
Considering the equivalent relation for the second signal we show that

t 1 +∆t 1 t 1 -g tt g xx dt = t 2 +∆t 2 t 2 -g tt g xx dt . ( 101 
)
For a small variation in time, the components of the metric may be considered as constant, and we deduce that -g tt (x 1 , t 1 )

g xx (x 1 , t 1 ) ∆t 1 = -g tt (x 2 , t 2 ) g xx (x 2 , t 2 ) ∆t 2 . (102) 
We define λ 1 = -g tt (x 1 , t 1 )∆t 1 and λ 2 = -g tt (x 2 , t 2 )∆t 2 . These quantities represent the proper time between two signals as measured at the source and the observer, respectively. Then Eq. (102) becomes

a 2 (t 1 ) + δg xx (x 1 , t 1 ) = λ 1 λ 2 a 2 (t 2 ) + δg xx (x 2 , t 2 ) . ( 103 
)
This equation is the one that should be used to determine the scale factor from measurements. However, in practice, we use the following equation:

a(t 1 ) = λ 1 λ 2 a(t 2 ) . (104) 
By imposing that Eq. (104) is equivalent to Eq. (103) we implicitly impose some constraint, that contributes to defining the fitting process. Let us first consider the left hand side of Eq. (103).

Obviously, at the source of the signals (position x 1 ), δg xx could be everything, meaning that we cannot know its value for a specific source. But if redshift measurements are carried out for several sources occurring at the same temporal variable t, statistics apply. If we thus assume that on average over space δg xx = 0, the left hand side of Eq. (103) reduces to the one of Eq. (104). This assumption exactly correspond to the constraint expressed by Eq. (32). This means that the way we interpret redshift measurements is compatible with the expectations of a representative FLRW metric.

On the other hand, since measurements are performed by the observer at one single position, δg xx (x 2 , t 2 ) has a fixed value which cannot be ignored in general. The correction related to δg xx (x 2 , t 2 ) would obviously slightly modify the results for a(t 1 ) as obtained by the usual practice, by multiplying them by a constant factor, but it would not alter the global trend of its evolution (except maybe for SNIa in the local void region around our galaxy, see [START_REF] Alexander | Local void vs dark energy: confrontation with WMAP and type Ia supernovae[END_REF] for example), meaning that it could not explain the observed accelerated expansion.

Luminosity distance measurements

The luminosity distance d L is defined as

d 2 L = L 4πF , ( 105 
)
where L is the absolute luminosity of the source (supposed to be known) and F is the flux measured by the observer. As for the redshift measurements, we should take into account local perturbations at the position of the observer to correctly determine the flux. But again, this would constitute a constant correction only, and this would not alter the global trend of the evolution of the scale factor. Also, the absolute luminosity represents an amount of energy per unit time. This parameter is expressed in function of the proper time of the source. So, in theory, we should take into account the local perturbation δg tt to correctly express L in Eq. (105). But here also, when performing luminosity distance measurements on a large sample, statistics apply, and if we assume that on average over space δg tt = 0, the correction that has to be applied on L cancels. It happens that this assumption is also verified by a representative FLRW metric, see Eq. (99). We hence conclude that Eq. (105) together with Eq. (104) are coherent with the constraints expected for a representative FLRW metric.

Discussion

On a theoretical point of view, from our investigation, it appears that the way measurements are interpreted is appropriate to determine the FLRW metric that correctly approximates the real one. Indeed, the as fitted FLRW metric would be such that on large scales, spatial dimensions and time intervals would be equivalent to the respective ones determined from the real metric. On a practical point of view, however, this conclusion could potentially be invalidated for the following reason: for the redshift measurements, Eq. (104) was shown to be equivalent to Eq. (103) by imposing that on average over space δg xx = 0 at the source. Similarly, for the luminosity measurements, Eq. (105) was obtained by imposing that on average over space δg tt = 0 at the source. Both conditions would indeed be verified if measurements were carried out on sources being equally distributed over space. But are they?

We should remind that the fact that space is not perfectly homogeneous is precisely due to an inhomogeneous distribution of matter. Matter is mainly concentrating in overdense regions, leaving other underdense regions of almost void. Statistically, we would expect that most of the SNIa happen where matter is present, hence in the overdense regions. The more matter is present, the more stars we will have, and the more chances we have to observe a SNIa. We could thus fear that most of the SNIa that have been observed are located in overdense regions. If this was the case, that would mean that we are fitting the FLRW metric in a biased manner, by considering only information coming from these overdense regions, and excluding the one from the underdense regions. Since the average scale factor is calculated from the spatial average of the g xx , see Eq. (28), excluding the large underdense regions from the calculation could indeed lead to a significant bias.

This can be expressed mathematically as follows. As derived above, the average scale factor should be determined from Eq. (28):

a = x √ g xx dx x dx , ( 106 
)
but in practice, we determine it as

a * = x ρ √ g xx dx x ρdx . (107)
Indeed, the average is performed by using a weight factor corresponding to the density, such that more importance is given to regions having a large density (where we expect that more SNIa can happen). Regions having a negligible density have on the other hand a small contribution in this averaging process. Now, since a depends only on t, Eq. (107) can be written as

a * = x ρ √ g xx dx x ρadx a , (108) 
and using the fact that

√ g xx ≈ g xx + δg xx 2 g xx , (109) 
we obtain

a * = a + δa , (110) 
where δa = 1 2a

x ρδg xx dx x ρdx .

The term x ρδg xx dx in δa expresses the cross-correlation between ρ and δg xx at time t. If there is absolutely no correlation between these two variables, this means that matter is equally distributed between regions for which δg xx > 0 and regions for which δg xx < 0. In such a case, δa vanishes and we get a * = a. However, if there's some correlation, then δa does not vanish, and a difference exists between a * and a. In other words, the observed evolution of the scale factor, as determined from a * , is not representative of the one of the real average scale factor a.

Let us investigate in which way δa could explain the observed trend of the evolution of the scale factor. For illustration purposes, the explanation will be supported by Figure 2, which is purely qualitative.

For some reason (probably quantum fluctuations during an inflationary era), inhomogeneities developed at early times in the history of the universe. These inhomogeneities led to the existence of overdense and underdense regions. The overdense regions were characterized by a larger density than for the underdense regions. Due to their larger density, the expansion of overdense regions (depicted by curve A on Figure 2) was more decelerated than the one of underdense regions (depicted by curve B on Figure 2). The average expansion rate of space-time lies between both of them, see curve C on Figure 2. Since the overdense regions correspond to the regions were most of the matter is located, most of the SNIa that we observe from those early times are located in these regions, and are hence characterized by an expansion rate corresponding to the one of the overdense region, which is slower than the average one. Reminding Eq. (111), here δg xx < 0 (because of a slower expansion rate than the average one) in the regions where ρ is the largest, such that indeed δa < 0. We have thus a strong correlation between ρ and δg xx . Now, matter is not completely static, and will not indefinitely remain at the same position (with respect to comoving coordinates). Matter has some motion, quite slow, and it will take some time to diffuse, but after a while, a part of the matter will move to the neighboring underdense regions. Some regions that were initially overdense will become underdense, and vice versa. The overdense regions at later times will hence progressively differ from the initial ones. As a consequence, more and more of the SNIa of those later times will be located in regions that were initially underdense, and the SNIa will be characterized by the expansion rate of those latter regions. At their turn, these regions will be more decelerated due to their larger matter content, while regions in which matter has left will be less decelerated. But due to its slow but continuous motion, matter progressively mixes between the initial underdense and overdense regions. There is no region anymore that has undergone the same expansion rate since the origin: on average over time, all regions tend to have the same expansion rate (it this was not the case, the FLRW metric would maybe not be the best one to approximate the real universe). Overdense regions are still existing, but they dot necessarily correspond to regions which have always undergone a stronger deceleration. The correlation that initially existed between ρ and δg xx progressively disappears. SNIa still mostly occur in overdense regions, but they are now characterized by the average expansion rate. Over time, the expansion rate as observed from SNIa will thus tend from curve A to curve C. It happens that we are currently in this transition period, and this gives us the illusion that the expansion is accelerating. Also, as illustrated on Figure 2, in this transition period, the real scale factor would be larger than the measured one, and the real temporal derivative of the time scale would be smaller than the measured one. This means that the real Hubble parameter would be smaller than the observed one, and this implies that the critical density is also smaller. A flat space would need less matter/energy than currently thought.

The explanation has been given on the basis of a very schematic and qualitative view. Obviously, this explanation should be validated by a more quantitative approach. A more detailed model should therefore be developed, taking into account, amongst others, a density distribution of matter, as well as its motion trough space, and adequate initial conditions should be established.

Conclusion

In a first step, by using a perturbation approach, we have defined what would be a representative FLRW metric. We defined it such that on large scales the integration of the interval over some path by using the FLRW metric tends to the integration of the interval over the same path by using the real metric. From the application of this definition on a spatial path as well as on a time path, important constraints have been derived for the diagonal components of the FLRW metric. Using these constraints, we have then verified that the average Einstein equation led indeed to the Friedmann equations.

In a second step, we have shown that the way measurements on SNIa are interpreted imply the same constraints as the one mentioned above, indicating that such measurements lead to implicitly fit the FLRW metric such that it corresponds to the representative one. However, we identified a bias in the measurements, related to the fact that SNIa are not randomly distributed over space, but are probably mostly located in regions were matter is largely present, i.e., in overdense regions. We explained how this bias could account for the apparent accelerated expansion of the universe, without needing to introduce the dark energy assumption. Further investigations are required to validate this hypothetical explanation.
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 1 Figure 1: Illustration of different fittings of a circle on an approximative circular shape.
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 2 Figure 2: Evolution of the scale factor for different regions. Curve A corresponds to overdense regions, curve B corresponds to underdense regions, and curve C represents the average evolution. The continuous line represents the apparent evolution as observed from SNIa.
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	= g αµ g µν + δg α ν -δg α ν + δg µν δg αµ
	δ α ν

which can be simplified:

Using then this latter relation together with Eq. (46), we deduce that

The Eq. (50) and (51) represent the averaged Einstein equation for general relativity we propose to use.

It is important to stress that if Eq. (50) and (51) could give the impression that we integrate tensor components over space, this is in fact not the case: they are truly scalar relations, as can be seen from the way we derived them. Their scalar nature is hidden by the simplifications we made. So, these relations are well defined and completely frame invariant.

Writing finally G µν in function of its average part and its perturbation part, we get

and

In fact, the averaged Einstein equation could have been obtained more directly. As pointed out by [7], an averaging process involves the integration (i.e., the summation) of tensors located at different points. Adding a tensor located at point x to another tensor located at point x requires to parallel transport one of them to the other one along some curve. Unfortunately, in general, the value of the tensor after being parallel transported is dependent upon the selected curve, meaning that the result of the summation is not well defined. We could thus fear conceptual issues when integrating G µν in the left hand side and T µν in the right hand side of the Einstein equation. There is however one exception to this: if the tensor is null, parallel transporting it from one point to another does not depend on the curve: it remains always zero. This suggest to define the averaging process by integrating only null tensors. Hence, by defining

which is a null tensor, we may integrate it over space without worrying on parallel transport issues, and thus

is a frame invariant, well defined expression.

Step 2

We will now use the relations derived in section 3 to simplify as much as possible Eq. (52) and (53), and deduce the evolution law of the scale factor for the considered fitting process. First, using Eq. ( 19) and (23) to further develop Eq. (52) and (53), we get

and

Concerning the determinant |g ij |, neglecting high order terms, and admitting that on average over space δg xx = δg yy = δg zz , we have

Using a Taylor approximation, we then deduce that

However, according to (32), the integration of terms involving δg xx cancel (provided that the terms multiplying δg xx in the integration do not depend on x, which is the case here), and so the second term in the right hand side of Eq. (59) may be ignored. We thus still have to calculate V δR xx dV and V δR tt dV. According to Eq. (15), and neglecting second order terms, we have

By using Eq. ( 10) and (11), as well as the relations derived in section 3, the different terms appearing in Eq. (60) can then be further decomposed in function of g µν , δg µν , and their respective derivatives. To illustrate how we can easily simplify these terms, let us consider for example the expression

Since spatial derivatives vanish, this means that necessarily µ = t. Since µ = t, it is necessary that σ = t also, otherwise we would have g σµ = 0. Moreover, we must have ρ = β and α = t, otherwise we would have g ρβ,α = 0. We finally deduce that ν = β, otherwise we would have g νρ = 0. Performing this calculation for all terms appearing in Eq. (60), we get

We hence find that

Next, still according to Eq. (15):

Proceeding in the same manner as above, we get

Using Eq. ( 68) and (76), replacing |g ij |, neglecting second order terms, and reminding that the integration of terms involving δg xx cancel according to (32), Eq. (56) and (57) become, respectively,

and

We now define the following quantities:

V a ȧδg tt,t + ȧ2 + 2a ä δg tt a 3 dV V a 3 dV

All these quantities are time dependent, but do not depend on the spatial coordinates. In fact, ρ simply corresponds to the spatial average of the first diagonal component of the stress-energy tensor, while a 2 p corresponds to the spatial average of the other diagonal components. These definitions imply that we may write T tt (t, x, y, z) = ρ(t) + δρ(t, x, y, z) ,

T xx (t, x, y, z) = p(t) + δp(t, x, y, z) , (83)