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Abstract: In this short note, we present two new concepts. On a com-
plete probability space, we consider two σ-algebras H ⊆ F and a F-
graph-measurable random set Γ ⊆ Rd. We show the existence of a largest
H-measurable open set contained in X, we call conditional interior and
a smallest H-measurable closed set containing X, we call conditional
closure. We then deduce that a conditional essential supremum of real-
valued random variables is actually a pointwise supremum over a closed
random set.
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1. Introduction

On a complete probability space (Ω,F ,P), let H be a sub σ-algebra of F .
In this section, we generalise the concept of conditional support of a random
variable to random sets, i.e. we construct the conditional closure of a F -
measurable random set Γ as the smallest closed H-measurable set cl (Γ|H)
which contains Γ a.s. When Γ is a singleton {X} composed of a F -measurable
random variable X, cl (Γ|H) coincides with the conditional support of X.
To do so, we first construct the conditional interior o(Γ|H) of Γ such that
cl (Γ|H) is the complement of o(Γc|H).

2. Random set conditionning

Definition 2.1. Let (T, T ) be a topological space. A random set Γ is a set-
valued mapping that assigns to each ω ∈ Ω a subset Γ(ω) of T . We say that
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Γ is H-measurable if

graph Γ := {(ω, x) : x ∈ Γ(ω)} ∈ H ⊗ T .

When Γ is closed (resp. open) almost surely, we say that Γ is closed (resp.
open).

Definition 2.2. Let (T, T ) be a topological space and Γ : Ω � T , be a
random set. We say that the F-measurable random variable ξ : Ω → T is
an F-measurable selection of Γ if ξ(ω) ∈ Γ(ω) for almost all ω ∈ Ω. The set
of such selections is denoted by L(Γ,F).

We recall that any non empty H-measurable closed random set Γ admits a
Castaing representation (γn)n≥1 ⊆ L0(Γ,H) such that Γ(ω) = cl {γn(ω) : n ≥
1} a.s., see [1].

In the following, if x ∈ Rd and r ≥ 0, B(x, r) denotes the open ball in Rd

of center x and radius r while B̄(x, r) is its closure. For any A ⊆ Rd and
λ ∈ R, we use the convention that λ × A = {λa : a ∈ A}. In particular,
0× A = {0}. Recall the following definition, see [1]:

Definition 2.3. The H-core (also called conditional core), m(Γ|H), of a
set-valued mapping Γ is the largest H-measurable random set Γ′ such that
Γ′ ⊆ Γ a.s.

In the case where Γ is closed, then the conditional core m(Γ|H) exists [1]
and L(m(Γ|H),H) = L(Γ,H) in the case where L(Γ,H) 6= ∅. If γ ∈ L(Rd,H)
and r ∈ L(R+,F), it is easy to see that m(B̄(γ, r)|H) = B̄(γ, ess infHr) where
ess infHr designates the conditional essential infinimum of r knowing H. Up
to a negligible set, this is the largest H-measurable random variable which is
smaller than r, see [1]. Notice that the conditional core does not depend on
the σ-algebra F so that we may choose F as the largest one composed of all
the subparts of Ω. We introduce an open version of the conditional core:

Definition 2.4. The H-measurable interior o(Γ|H) of a set-valued mapping
Γ is the largest open and H-measurable random set Γ′ such that Γ′ ⊆ Γ a.s.
if existence holds.

Recall the following:

Lemma 2.5. Let O be an open set in a normed space. For every x ∈ O,
B(x, d(x, ∂O)) ⊆ O.

Proof. Let us consider r∗ = supR where R is the non empty set of all r > 0
such that B(x, r) ⊆ O. It is trivial that B(x, r∗) ⊆ O. So, for all o ∈ ∂O,
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d(x, o) ≥ r∗ hence r∗ ≤ d(x, ∂O). Moreover, by definition of r∗, for all n there
exists zn ∈ B(x, r∗+n−1) such that zn /∈ O hence r∗ ≤ ‖zn− x‖ ≤ r∗+n−1.
As the sequence (zn)n is bounded, we deduce by a compactness argument that
for a subsequence zn → z as n→∞. Then, ‖z − x‖ = r∗ hence z ∈ clO. In
the case where z ∈ O, zn ∈ O for n large enough since O is open, which yields
a contradiction. Therefore, z ∈ ∂O. This implies that r∗ = d(x, z) ≥ d(x, ∂O)
and finally r∗ = d(x, ∂O). 2

Theorem 2.6. Let us consider a F-measurable open random set O. Then,
the H-graph-measurable interior of O exists.

Proof. By [1, Proposition 2.6], clO and ∂O := clO \ O are closed F -
measurable random sets. When ∂O = ∅, we set d(x, ∂O) = ∞. Otherwise,
since ∂O admits a Castaing representation on {∂O 6= ∅}, we deduce that the
random continuous mapping x 7→ d(x, ∂O) is F -measurable. We deduce that
the sets F n := {x : d(x, ∂O) ≥ 1/n}∩ clO are closed F -measurable random
subsets of O and we have O = ∪nF n. Let us define the H-measurable open
random set

o(O|H) = int (∪n m(F n|H)) ⊆ O,
and let us show that this is the largest H-measurable open set of O. To do
so, let OH ⊆ O be a H-measurable open subset of O. As previously, we
may write OH = ∪nHn where Hn := {x : d(x, ∂OH) ≥ 1/n} ∩ clOH are
H-measurable closed subsets of OH.

We claim that Hn ⊆ F n. Indeed, if x ∈ Hn, it suffices to show that
d(x, ∂OH) ≤ d(x, ∂O) a.s. In the contrary case, on a non null set, there
exists o ∈ ∂O such that o ∈ B(x, d(x, ∂OH)). By Lemma 2.5, this implies
that o ∈ OH ⊆ O hence a contradiction.

As Hn is H-measurable and closed, Hn ⊆ m(F n|H) for all n. We deduce
that OH ⊆ ∪n m(F n|H) hence OH ⊆ o(O|H). 2

Corollary 2.7. For any F-measurable random set Γ, the H-measurable in-
terior of Γ exists and o(Γ|H) = o(int Γ|H).

Corollary 2.8. For any F-measurable random set Γ, there exists a smallest
H-measurable closed random set containing Γ a.s. denoted by cl (Γ|H) and
called the H-measurable conditional closure of Γ. We have

cl (Γ|H) = Rd \ o(Rd \ Γ|H).

Moreover, for all γ ∈ cl (Γ|H) and ε ∈ L((0,∞),H), for all H ∈ H such that
P(H) > 0, P({Γ ∩B(γ, ε) 6= ∅} ∩H) > 0.
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Proof. The first part is a direct consequence of Corollary 2.7. Suppose that
P({Γ ∩ B(γ, ε) 6= ∅} ∩ H) = 0. Therefore, by definition of the conditional
support as a smallest element,

cl (Γ|H) = cl (Γ|H)1Ω\H + cl (Γ|H) ∩
(
Rd \B(γ, ε)

)
1H .

Indeed, the H-measurable set above contains Γ by assumption hence it con-
tains cl (Γ|H). We get a contradiction since γ ∈ L(cl (Γ|H),H) a.s. by as-
sumption. 2

Corollary 2.9. Let X ∈ L(Rd,F). There exists a smallest H-measurable
closed random set denoted by suppH(X) with P(X ∈ suppH(X)) = 1. This
is the H-conditional support of X. It is given by suppH(X) = cl ({X}|H).
Moreover, for all γ ∈ L(suppH(X),H) and ε ∈ L((0,∞),H), for all H ∈ H
such that P(H) > 0, P({X ∈ B(γ, ε)} ∩H) > 0.

Notice that the conditional closure of a non empty set is necessarily non
empty a.s. hence admits a measurable selection. In the following, we adopt
the following notation kA = {ka : a ∈ A} for any subset A ⊆ Rd and k ∈ A.

Lemma 2.10. Let H ∈ H. Then, for every F-measurable set Γ, cl (Γ1H |H) =
1Hcl (Γ|H).

Proof. First observe that P (Γ1H ⊆ 1Hcl (Γ|H)) = 1 as 1Hcl (Γ|H) = {0} on
Ω\H. We deduce that cl (Γ1H |H) ⊆ 1Hcl (Γ|H) a.s. and cl (Γ1H |H) = {0} on
Ω\H. Let us define Z = cl (Γ1H |H)1H +cl (Γ|H)1Ω\H . As Γ ⊆ Γ1H on H, we
deduce that Γ ⊆ Z a.s. hence cl (Γ|H) ⊆ Z a.s. Therefore, cl (Γ|H)1H ⊆ Z1H
and finally cl (Γ|H)1H ⊆ cl (Γ1H |H) as the latter set is {0} on Ω \H. 2

3. Application: Essential supremum as a pointwise supremum

Definition 3.1. We say that a function f is sequentially lower semi-continuous
(s.l.s.c.) on a domain D ⊆ Rd if for all convergent sequence (xn)n≥1 of D,
we have f(lim infn xn) ≤ lim infn f(xn).

Definition 3.2. We say that a function f is sequentially upper semi-continuous
(s.u.s.c.) on a domain D ⊆ Rd if for all convergent sequence (xn)n≥1 of D,
we have f(lim supn xn) ≥ lim supn f(xn).

Lemma 3.3. Let f be sequentially lower semi-continuous (s.l.s.c.) on a do-
main D ⊆ Rd. Let x0 ∈ D and ε > 0. Then, there exists r > 0 such that for
all x ∈ D in the closed ball B(x0, r), we have f(x0)− f(x) ≤ ε.
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Proof. Suppose by contradiction that for all r > 0, there exists x ∈
B(x0, r) ∩ D such that f(x0) − f(x) > ε. Then, for all n ≥ 1, there ex-
ists xn ∈ D with |x0 − xn| ≤ n−1 such that f(x0) > f(xn) + ε. Therefore,
f(x0) ≥ lim infn f(xn) + ε. As limn xn = x0, this contradicts the lower semi-
continuity of f . 2

Corollary 3.4. A function f is s.l.s.c. on a domain D ⊆ Rd if and only if it
is lower semi continuous, i.e. for every x ∈ D, we have f(x) = lim infy→x f(x),
where lim infy→x f(x) = supr>0 infz∈B(x,r)∩D f(z).

Proof. Suppose that f is s.l.s.c. We have infz∈B(x,r)∩D f(z) = limn ↓ f(zn)
where we may assume by a compactness argument that zn → ẑr ∈ B(x, r). By
the assumption, f(ẑr) ≤ lim infn f(zn) ≤ infz∈B(x,r)∩D f(z). We deduce that
infz∈B(x,r)∩D f(z) = f(ẑr). Similarly, with r = k−1 and k ∈ N, we may assume
ẑk−1 → ẑ = x as k →∞. Therefore, lim infy→x f(x) = limr→0 ↑ f(ẑr) ≥ f(x)
by assumption. Moreover, it is clear that infz∈B(x,r)∩D f(z) ≤ f(x) hence
lim infy→x f(x) ≤ f(x) so that the equality holds. Reciprocally, suppose that
f is l.s.c. Then, consider a sequence xn ∈ D which converges to x ∈ D.
By assumption, we know that f(x) = limr→0 infz∈B(x,r)∩D f(z) for all r > 0.
Moreover, for each r > 0, there exists nr large enough such that xn ∈ B(x, r)
if n ≥ nr. Therefore, infz∈B(x,r)∩D f(z) ≤ infn≥nr f(xn) ≤ lim infn f(xn). We
conclude that f(x) ≤ lim infn f(xn). 2

Remark 3.5. Consider the function f = 1(1,∞). This function is contin-
uous at any point x 6= 1. Moreover, if xn → 1, then lim infn f(xn) ≥
f(1) = 0. Therefore, f is l.s.c. Nevertheless, xn = 1 + n−1 → 1 but f(1) <
lim infn f(xn) = 1, i.e. the equality f(lim infn f(xn)) = lim infn f(xn) does
not hold in general for a countable sequence (xn)n∈N.

Remark 3.6. Recall that the l.s.c. convex envelope co(f) of a function f
dominating an affine function is defined as the largest function smaller than
f which is both convex and l.s.c. It is well known that co(f) coincides with
the supremum of the affine functions smaller than f , see [].

Theorem 3.7. Let h(ω, x), x ∈ Rd, be a real-valued mapping such that h is
H⊗B(R)-measurable and is l.s.c in x and let Γ be a closed F-measurable set
of Rd. Then,

ess supH{h(γ) : γ ∈ L(Γ,F)} = sup
x∈cl (Γ|H)

h(x) = sup
n
h(γn), a.s.,

= ess supH{h(γ), γ ∈ L(cl (Γ|H),H)}, a.s.,
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where (γn)n∈N is a Castaing representation of cl (Γ|H).

Proof. As cl (Γ|H) is H-measurable and closed, it admits a Castaing rep-
resentation cl (Γ|H) = cl{γn : n ∈ N} where γn ∈ L(cl (Γ|H),H) for all n.
We first prove that

sup
x∈cl (Γ|H)

h(x) = sup
n
h(γn).

Let (γn)n ⊂ cl{γn : n ∈ N} = cl (Γ|H), then h(γn) ≤ supx∈cl (Γ|H) h(x) and
thus supn h(γn) ≤ supx∈cl (Γ|H) h(x). Let x ∈ cl (Γ|H). Then by lower semi-
continuity, h(x) ≤ lim infk h(γnk

) for some random subsequence (γnk
) such

that γnk
→ x. Thus h(x) ≤ supn h(γn) and supx∈cl (Γ|H) h(x) ≤ supn h(γn)

hence the equality holds.
Therefore, since h isH⊗B(R)-measurable, supx∈cl (Γ|H) h(x) = supn h(γn) is
H-measurable. Moreover, as Γ ⊆ cl (Γ|H) a.s., for every γ ∈ L(Γ,F), h(γ) ≤
supx∈cl (Γ|H) h(x) hence ess supH{h(γ) : γ ∈ L(Γ,F)} ≤ supx∈cl (Γ|H) h(x) a.s.
To show the reverse inequality, we first show the equality

sup
x∈cl (Γ|H)

h(x) = ess supH{h(γ), γ ∈ L(cl (Γ|H),H)}.

To see it, notice that

sup
x∈cl (Γ|H)

h(x) = sup
n
h(γn) ≤ ess supH{h(γ), γ ∈ L(cl (Γ|H),H)}.

Moreover, it is trivial that h(γ) ≤ supx∈cl (Γ|H) h(x) for all γ ∈ L(cl (Γ|H),H).
Since supx∈cl (Γ|H) h(x) is H-measurable, we deduce that ess supH{h(γ), γ ∈
L(cl (Γ|H),H)} ≤ supx∈cl (Γ|H) h(x). Since the family {h(γ), γ ∈ L(cl (Γ|H)}
is directed upward, we also deduce that supx∈cl (Γ|H) h(x) = limn ↑ h(γn)
where γn ∈ L(cl (Γ|H),H).

At last, consider any H-measurable selection γ of cl (Γ|H) and a determin-
istic sequence εn > 0 with limn εn = 0. By Corollary 2.8, Λn = {Γ∩B(γ, εn) 6=
∅} ∈ F satisfies P (Λn|H) > 0 a.s. Indeed, otherwise, on a non null H-
measurable set Λ̃n ⊆ Λ̃n, we have P (Λ̃n ∩Λn|H) = 0 hence P ((Λ̃n ∩Λn) = 0,
i.e. a contradiction with Corollary 2.8. By a measurable selection argument,
it is possible to construct γ̂n ∈ L0(Γ,F) such that γ̂n ∈ B(γ, εn) on Λn. We
define Λ̂n = {γ̂n ∈ B(γ, εn)}. Since Λn ⊆ Λ̂n, we have P (Λ̂n|H) > 0 a.s.

Therefore,

ess supH{h(γ) : γ ∈ L(Γ,F)}1Λ̂n
≥ h(γ̂n)1Λ̂n

,

ess supH{h(γ) : γ ∈ L(Γ,F)}P(Λ̂n|H) ≥ E
(
h(γ̂n)1Λ̂n

|H
)

(3.1)
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The last inequality holds on a set An ∈ H such that P(An) = 1. Moreover,
there exists Bn ∈ H such that P (Bn) = 1 and

E
(
h(γ̂n)1Λ̂n

|H
)

=

∫
Rd

h(x)1x∈B(γ,εn)P(γ̂n ∈ dx|H).

To obtain this equality, it suffices to use a regular version of the conditional
law of γ̂n. Moreover, we obtain the following pointwise inequality satisfied
for each ω ∈ Cn = An ∩Bn:∫
Rd

h(x)1x∈B(γ,εn)P(γ̂n ∈ dx|H) ≥ inf
z∈B(γ,εn)

h(z)

∫
Rd

1x∈B(γ,εn)P(γ̂n ∈ dx|H)

≥ inf
z∈B(γ,εn)

h(z)P(Λ̂n|H).

Note that we do not need for the infinimum infz∈B(γ,εn) h(z) to beH-measurable
as the integral above is considered for each fixed ω with respect to x and, pre-
cisely, infz∈B(γ,εn) h(z) does not depend on x. Since P(Λ̂n|H) > 0, we then de-
duce by (3.1) that ess supH{h(γ) : γ ∈ L(Γ,F)} ≥ infz∈B(γ,εn) h(z) for every
n ≥ 1 a.s. Therefore, ess supH{h(γ) : γ ∈ L(Γ,F)} ≥ limn infz∈B(γ,εn) h(z)
a.s. Since, by compactness and lower semi-continuity, infz∈B(γ,εn) h(z) = h(zn)
where zn ∈ B(γ, εn) converges pointwise to γ as n → ∞, we finally deduce
that ess supH{h(γ) : γ ∈ L(Γ,F)} ≥ lim infn h(zn) ≥ h(γ) by lower semi-
continuity. This inequality holds for any H-measurable selection of cl (Γ|H).
Therefore, ess supH{h(γ) : γ ∈ L(Γ,F)} ≥ ess supH{h(γ), γ ∈ L(cl (Γ|H),H)}.
The conclusion of the lemma follows. 2

Recall that a set Λ of measurable random variables is said F -decomposable
if for any finite partition (Fi)i=1,··· ,n ⊆ F of Ω, and for every family (γi)i=1,··· ,n
of Λ, we have

∑n
i=1 γi1Fi

∈ Λ. In the following, we denote by Σ(Λ) the F -
decomposable envelop of Λ, i.e. the smallest F -decomposable family contain-
ing Λ. Notice that

Σ(Λ) =

{
n∑
i=1

γi1Fi
: n ≥ 1, (γi)i=1,··· ,n ⊆ Λ, (Fi)i=1,··· ,n ⊆ F s.t.

n∑
i=1

Fi = Ω

}
. (3.2)

The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not
decomposable. By [1, ?], there exists a F -measurable closed random set σ(Λ)
such that Σ(Λ) = L0(σ(Λ),F) is the set of all measurable selectors of σ(Λ).
If Γ is a F -measurable random set, then Λ = L0(Γ,F) is F -measurable.
Therefore, Σ(Λ) = L0(Γ,F) by [1, ?].
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Corollary 3.8. Let h(ω, x), x ∈ Rd, be a real-valued mapping such that
h is H ⊗ B(R)-measurable and is l.s.c in x. Let us consider a family Λ of
measurable random variables so that Σ(Λ) = L0(σ(Λ),F) is the set of all
measurable selectors of some F-measurable closed random set σ(Λ). Then,

ess supH{h(γ) : γ ∈ Λ} = ess supH{h(γ) : γ ∈ Σ(Λ)} = sup
x∈cl (σ(Λ)|H)

h(x).

Proof. Notice that for any finite partition (Fi)i=1,··· ,n ⊆ F of Ω, n ≥ 1, and
for every family (γi)i=1,··· ,n of Λ, we have

h(
n∑
i=1

γi1Fi
) =

n∑
i=1

h(γi)1Fi
.

Therefore, as ess supH{h(γ) : γ ∈ Λ} ≥ h(γ) a.s. for any γ ∈ Λ, we deduce
that ess supH{h(γ) : γ ∈ Λ} ≥ h(γ) a.s. for any γ ∈ Σ(Λ), and finally for
all γ ∈ Σ(Λ) since h is l.s.c. We deduce that ess supH{h(γ) : γ ∈ Λ} ≥
ess supH{h(γ) : γ ∈ Σ(Λ)} and the equality holds since Λ ⊆ Σ(Λ). The last
statement is deduced from Theorem 3.7. 2
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