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Introduction

Agriculture is an important pressure on water resources, especially in arid and semi-arid regions where irrigation can consume more than 80% of the available water [START_REF] Chehbouni | An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED programme[END_REF][START_REF] Jarlan | Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: the joint international laboratory TREMA[END_REF]. Accurate estimation of evapotranspiration (ET), which critically depends upon the root-zone soil moisture (RZSM), is hence paramount to determine the crop water requirements and consequently to optimize the on-farm irrigation management.

The FAO-56 dual crop coefficient (FAO-2Kc, [START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF] model has been extensively used at the field scale to estimate the crop water requirements by means of the simulated ET. In FAO-2Kc, the total ET is partitioned between the soil evaporation (E) and the plant transpiration (T) by using a daily water balance for the topsoil layer and the root-zone, respectively. This model is often chosen for its simplicity and operational basis as it requires few input data comprised of phenological, standard meteorological and irrigation data. In addition, FAO-2Kc provides quite acceptable ET estimates when compared to more physically based -but often over-parameterized models [START_REF] Allen | Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study[END_REF][START_REF] Er-Raki | Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET[END_REF][START_REF] Kite | Comparing evapotranspiration estimates from satellites, hydrological models and field data[END_REF]. To better constrain the phenological stages in the FAO model, the basal crop coefficient (Kcb) has been related to satellite based vegetation index (VI) [START_REF] Er-Raki | Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region[END_REF], 2007;[START_REF] González-Dugo | Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops[END_REF][START_REF] Hunsaker | Wheat basal crop coefficients determined by normalized difference vegetation index[END_REF], showing a significant improvement. However, its operational application to large scales (e.g. irrigation perimeter) still faces two critical issues: 1) the unavailability (over most irrigated areas) of real-or near-real time irrigation data at the field scale, and 2) the difficulty in modeling RZSM from meteorological data alone.

In other hand, land surface temperature (LST) derived in the thermal infrared has been widely used for estimating ET and water stress indices (e.g. [START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF][START_REF] Li | A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[END_REF]. LST has been also assimilated into the FAO method [START_REF] Er-Raki | Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET[END_REF], and more recently, used in FAO-2Kc to retrieve the water stress coefficient (Ks) [START_REF] Dejonge | Comparison of canopy temperature-based water stress indices for maize[END_REF][START_REF] Ihuoma | Recent advances in crop water stress detection[END_REF][START_REF] Kullberg | Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients[END_REF]. Among the variety of available approaches, the so-called contextual approach is quite attractive for operational applications, as it requires few input data. Contextual ET models estimate the ratio of actual ET to either potential ET [START_REF] Moran | Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index[END_REF] or available energy by using the remotely sensed LST -VI [START_REF] Long | A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[END_REF] and/or LST -albedo space [START_REF] Merlin | An original interpretation of the wet edge of the surface temperaturealbedo space to estimate crop evapotranspiration (SEB-1S)[END_REF][START_REF] Roerink | S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[END_REF]. In addition to the demonstrated utility of LST for estimating ET, its use has been extended to the retrieval of other components of the water budget, including RZSM [START_REF] Calvet | Retrieving the Root-Zone Soil Moisture from Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Measurements[END_REF][START_REF] Crow | Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model[END_REF].

The relationship between RZSM and LST is explained by the link of the canopy temperature to the T rate under water-stress conditions, that is when RZSM is not sufficient to maintain a potential T rate [START_REF] Boulet | Monitoring water stress using time series of observed to unstressed surface temperature difference[END_REF][START_REF] Hain | Retrieval of an Available Water-Based Soil Moisture Proxy from Thermal Infrared Remote Sensing. Part I: Methodology and Validation[END_REF][START_REF] Moran | Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index[END_REF]. Several studies have hence derived RZSM through the assimilation of LST or thermal-based proxy variables into land surface models [START_REF] Calvet | Retrieving the Root-Zone Soil Moisture from Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Measurements[END_REF][START_REF] Crow | Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model[END_REF][START_REF] Hain | An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model[END_REF][START_REF] Li | Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals[END_REF]. Moreover, with Landsat and ASTER thermal data, the spatial resolution that is potentially achievable for RZSM retrievals is 100 m. Note however that one key step in the estimation of thermal-based RZSM estimates over partially vegetated surfaces is the partitioning of the observed LST into soil and canopy temperatures [START_REF] Merlin | An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S)[END_REF][START_REF] Merlin | Disaggregation of SMOS Soil Moisture in Southeastern Australia[END_REF][START_REF] Moran | Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index[END_REF]. [START_REF] Moran | Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index[END_REF] proposed the water deficit index (WDI) to estimate a most probable range of crop water stress over partially vegetated pixels, which is obtained from the aforementioned LST -VI space (contextual method). This crop water stress index is equivalent to the RZSM normalized by the soil moisture at field capacity and by the soil moisture at wilting point [START_REF] Bastiaanssen | Remote sensing for irrigated agriculture: examples from research and possible applications[END_REF]. In the FAO formalism, the same thresholds are set for Ks equal to 1 (soil moisture at field capacity) and for a Ks equal to 0 (soil moisture at wilting point).

In order to take advantage of: i) the simplicity and robustness of the thermal-based contextual ET models, ii) the utility of LST/VI data for water budget components (E/T, RZSM) and iii) the availability of LST/VI data at a spatial resolution suitable for monitoring crops; this study proposes an original approach to better constrain the water budget components of FAO-2Kc from LST and VI data. In practice, the approach seeks to retrieve the irrigation volumes and dates from first-guess (LST-derived) ET and RZSM, and to re-analyze all water-budget components (including ET and RZSM) from the retrieved irrigation data. In this study, the new methodology is tested by using groundbased observations of LST/VI, evaluated against ET, RZSM and irrigation observations. A sensitivity analysis is carried out in order to assess the applicability of the approach to remote sensing data.

Data sets

The experimental site (31°40'9.46"N, 7°35'45.64"O, 575 m above mean sea level) is located over an irrigated area in the semi-arid Haouz plain in the centre of Morocco (Fig. 1). The study focuses on a winter wheat crop, which is an irrigated unit that includes six fields of 4 ha each, from January to May 2003. More details about the experimental site can be found in [START_REF] Duchemin | Agrometerological study of semi-ard areas: An experiment for analysing the potential of time series of FORMOSAT-2 images (Tensift-Marrakech plain)[END_REF][START_REF] Duchemin | Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices[END_REF], [START_REF] Er-Raki | Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region[END_REF] and [START_REF] Toumi | Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management[END_REF].

Variables of the surface energy and water balance as well as soil and vegetation characteristics were monitored during the entire growing cycle. The data set is described below.

Meteorological and flux data

Meteorological data including air temperature, solar radiation, relative humidity and wind speed were monitored throughout the agricultural season at a semi-hourly time step from January 14 until May 27, 2003. The four components of net radiation were measured by using a CNR1 radiometer (Kipp and Zonen). An eddy covariance (EC) system was installed over a winter wheat field to measure the latent and sensible heat fluxes. The data were recorded from high frequency (10 Hz) measurements of turbulent structures: a 3D sonic anemometer (CSAT3, Campbell Scientific), which measured the fluctuations in the wind velocity components and temperature; and an open-path infrared gas analyzer (Li7500, Licor), which measured concentration of water vapor and carbon dioxide.

Soil moisture data

Six time domain reflectometry (TDR) probes (CS615, Campbell Scientific) were installed in a soil pit near the fluxes measurement tower to measure soil water content at different depths (5,10,20,30,50 and 100 cm) every 30 min. The average ground-based RZSM (RZSMobs) was estimated by interpolating the soil moisture observations of the different depths belonging to the root-zone of wheat as follows:

𝑅𝑍𝑆𝑀 𝑜𝑏𝑠 = 𝑑 𝑖 𝑆𝑀 𝑑 𝑖 + (𝑑 𝑖+1 -𝑑 𝑖 )𝑆𝑀 𝑑 𝑖+1 + ⋯ + (𝑑 𝑛 -𝑑 𝑛-1 )𝑆𝑀 𝑑 𝑛 𝑑 𝑖 + (𝑑 𝑖+1 -𝑑 𝑖 ) + ⋯ + (𝑑 𝑛 -𝑑 𝑛-1 ) (1) 
where SMdi (m 3 m -3 ) is the soil moisture measured at depth di (5 -100 cm) and dn is the deeper depth where there is a measurement that belongs to the root-zone. In this study, it is assumed that rooting depth varies according to the crop growth stages, so that different measurements are considered in the Eq. ( 1). The variation and values of rooting depth is detailed in the section 3.1.2.

Irrigation data

Four irrigation events were applied in the field along the growing season by flooding with about 24 mm of water regardless of the precipitation and thus of soil moisture conditions.

The sowing and the irrigation dates are listed in Table 1.

Fractional green and total vegetation cover

Given that green vegetation cover is commonly estimated from remote sensing data using empirical relations with vegetation indices, in this study the fractional green vegetation cover (fvg) is estimated from a linear relationship with NDVI (Normalized Difference Vegetation Index) as in [START_REF] Gutman | The derivation of the green vegetation fraction from NOAA / AVHRR[END_REF]:

𝑓 𝑣𝑔 = 𝑁𝐷𝑉𝐼 -𝑁𝐷𝑉𝐼 𝑠 𝑁𝐷𝑉𝐼 𝑣 -𝑁𝐷𝑉𝐼 𝑠 (2)
where NDVI is the near-infrared to red reflectance difference divided by their sum and NDVIs and NDVIv correspond to NDVI for bare soil (fvg = 0) and fully covering green vegetation (fvg = 1), respectively. The NDVIs was equal to the minimum value measured in the field (0.14) and NDVIv was defined at 0.93 after looking at maximum values taken on individual plots over the study area [START_REF] Duchemin | Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices[END_REF]. Ground-based surface reflectance data over the field were collected using a MSR87 multispectral radiometer (Cropscan Inc., USA) every week. Fifteen sets of canopy reflectance measurements were made between January 8 and May 27 2003. More details about the NDVI measurement procedure can be found in [START_REF] Er-Raki | Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region[END_REF]. The fractional total vegetation cover (fc) is derived from fvg by assuming that once fvg has reached its maximum value, it keeps equal to this maximum value until the end of the study period. fc was also measured using a hemispherical digital camera equipped with a fisheye lens with a field-of-view of 183°.

Comparing the fvg-and photo-derived fc estimates before the maximum value of fvg revealed a good agreement (data not shown here). The values of root mean square error (RMSE) and coefficient of determination (R 2 ) were equal to 3.5% and 1.0, respectively.

Land Surface Temperature

In situ LST was derived from tower-based measurements of thermal radiances emitted from the surface, which were sampled at 1 Hz and averaged over 30 min. The averaged radiance was converted to LST by inverting Planck's law:

    Ldown Lrad LST B    1 ) ( (3) 
where Lrad is the land leaving radiance (W m -2 ) measured by a thermal radiometer (SI-111, Apogee), ε is the land surface emissivity, Ldown is the long-wave downwelling irradiance (W m -2 ) and B(LST) is Planck's law for the LST (W m -2 sr -1 µm -1 ). Ldown was retrieved from the incoming longwave radiation measurement from the net radiometer (CNR1, Kipp & Zonen). The ε was retrieved from the simplified NDVI threshold method [START_REF] Sobrino | Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors[END_REF] that weights the soil and vegetation emissivity through the fractional green vegetation cover (fvg). The soil emissivity was measured by Olioso et al.

(2007) over the study area and the vegetation emissivity was considered equal to 0.99 [START_REF] Amazirh | Modified Penman-Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index[END_REF], Sobrino et al., 2008). Only the 30-min LST data collected between 10 am and 2 pm are used in this study, consistent with the overpass times of current thermal satellite missions (e.g. ASTER, Landsat, MODIS). In addition to the radiometric LST, the vegetation temperature was measured with Type-J thermocouples (seven replications, one sensor per plant), which were clumped on the vegetation apex near the location of the thermal radiometer. The sensors were changed every week to be set up at the vegetation apex and to measure the youngest leaves of the plant along the growing season. Thermocouple measurements will be used to evaluate the vegetation temperature estimates from the partition method of LST.

Methodology

Overview of FAO-56 dual crop coefficient method

The FAO-2Kc is a water balance model driven by 1) meteorological forcing variables to calculate reference evapotranspiration ET0 and 2) precipitation and irrigation that jointly determine the water supply to simulate the soil water availability for soil evaporation and plant transpiration. In practice, FAO-2Kc estimates ET by multiplying ET0 by a two separate crop coefficients:

𝐸𝑇 = (𝐾𝑠𝐾𝑐𝑏 + 𝐾𝑒)𝐸𝑇 0 ( 4 
)
where Kcb is the basal crop transpiration, Ks the stress coefficient (0-1) that represents the vegetation water status and a reduction factor of T (Kcb ET0) and Ke the evaporation coefficient. ET0 is calculated according to the FAO Penman-Monteith equation [START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF] 

𝐾 𝑠 = 𝑇𝐴𝑊 -𝐷 𝑟 𝑇𝐴𝑊 -𝑅𝐴𝑊 = 𝑇𝐴𝑊 -𝐷 𝑟 𝑇𝐴𝑊(1 -𝑝) (5)
where Dr (mm) is root zone depletion, TAW (mm) is total available soil water in the root zone, and p is the fraction of TAW that a crop can extract from the root zone without suffering from water stress. Water stress occurs when Dr becomes greater than RAW (Ks < 1). In contrast, when Dr ≤ RAW, Ks = 1 (see Fig. 3). Dr is calculated from the daily water balance. TAW is estimated as the difference between the water content at field capacity (SMFC) and wilting point (SMWP) by the daily crop rooting depth (TAW = 1000 (SMFC -SMWP) Zr). The rooting depth Zr is assumed to vary between a minimum value (maintained during the initial crop growth stage at 0.1 m) and a maximum value (reached at the beginning of the mid-season stage). The maximum value was measured in the field and was equal to 0.52 m according to [START_REF] Er-Raki | Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region[END_REF]. The soil parameters SMFC and SMWP were considered equal to an average value of 0.37 and 0.17 m 3 m -3 respectively, in accordance with the values recommended by [START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF] and with the minimum and maximum SM observed in the root-zone for the agricultural season.

LST-integrated FAO-2Kc: new approach in the calculation of water budget components

Given that the main limitation of FAO-2Kc for operational irrigation management over large areas is the unavailability (over most irrigated areas) of irrigation data at the field scale, a new approach (named LST-integrated FAO-2Kc) is proposed to derive the water budget components from LST and VI data. An overview of the methodology is represented in Fig. 2 and is explained below.

Basically, LST is integrated in the standard FAO-2Kc at two levels: the ET and SM modeling components. LST is first partitioned into its soil and vegetation components to force E and T separately via thermal-derived estimates of Ks and Kr, respectively (ET modeling component). Note that the thermal-derived Ks is also used to derive a first-guess (LSTderived) RZSM estimate, based on the FAO-2Kc relationship between TAW and Ks (SM modeling component). The dynamic of first-guess RZSM is then analyzed to retrieve the irrigation amounts and dates. The FAO-2Kc is next forced by the previously retrieved irrigation and re-analyzed estimates of RZSM (RZSMFAO+LST) and ET (ETFAO+LST) are finally provided. The different components of LST-integrated FAO-2Kc (namely LST partitioning, thermal-derived Ks and Kr, first-guess ET and RZSM, irrigation retrieval, and re-analyzed ET and RZSM) are described in the following sections.

Partitioning LST

The method used for partitioning LST into vegetation and soil components relies on the combination between the hourglass approach [START_REF] Moran | Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index[END_REF] and the procedure to obtain the Temperature Vegetation Dryness Index [START_REF] Sandholt | A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[END_REF]. These two methods are based on the polygon defined in the LST -VI space. Tsmax is the temperature of a fully dry bare soil. Tsmin is the temperature of a fully wet bare soil. Tvmax is the maximum vegetation temperature corresponding to fully stressed (non-transpiring) vegetation. Tvmin is the minimum vegetation temperature corresponding to well-watered unstressed vegetation (transpiring at potential rate). Since this study tests the feasibility of the proposed methodology from in situ measurements, the image-based polygon cannot be plotted to constrain the temperature endmembers (Tsmax, Tsmin, Tvmax, Tvmin).

Therefore, these temperatures are simulated by using the energy balance model proposed by Stefan et al. (2015). Tsmin and Tsmax are simulated by a soil energy balance model, while Tvmin is set to the air temperature and Tvmax is defined according to the assumptions that the difference between Tsmax and Tsmin is the same that between Tvmax and Tvmin (Stefan et al. 2015). Once the temperature endmembers have been defined, Tv is obtained by using the hourglass approach or TVDI method according to the position of the (fc, LST) point in the polygon. In practice, the diagonals are plotted in the polygon LST -fc space by distinguishing four areas (evaporation-and transpiration-controlled, unstressed and stressed mixed surface), as they were defined in [START_REF] Merlin | Disaggregation of SMOS Soil Moisture in Southeastern Australia[END_REF]. If the (fc, LST) point belongs to the unstressed mixed or stressed mixed zone, Tv is calculated according to [START_REF] Merlin | Disaggregation of SMOS Soil Moisture in Southeastern Australia[END_REF]. If the (fc, LST) point belongs to the evaporation-controlled or transpiration-controlled zone, Tv is calculated by using the TVDI method, by interpolating the temperature between the Tvmax and Tvmin.

Derivation of Ts is based on a linear decomposition of the LST into its soil and vegetation components as a good approximation of the relationship with fourth power for temperatures (and consistent with the contextual approach) as follows:

𝑇𝑠 = 𝐿𝑆𝑇 -𝑓𝑐𝑇𝑣 1 -𝑓𝑐 (6)

Retrieving stress coefficient (Ks) and evaporation reduction coefficient (Kr) from thermal data

LST data are used to reflect the soil and crop water status by calculating stress indices for the surface and root-zone layer, respectively, namely the E reduction coefficient (Kr), and the stress coefficient (Ks). The Ks (Kr) was estimated by relating the vegetation (soil) temperature to cold and hot extreme temperatures of vegetation (soil) that represent wet and dry vegetation (soil) as follows:

𝐾𝑟 𝐿𝑆𝑇 = 𝑇𝑠 𝑚𝑎𝑥 -𝑇𝑠 𝑇𝑠 𝑚𝑎𝑥 -𝑇𝑠 𝑚𝑖𝑛 (7) 𝐾𝑠 𝐿𝑆𝑇 = 𝑇𝑣 𝑚𝑎𝑥 -𝑇𝑣 𝑇𝑣 𝑚𝑎𝑥 -𝑇𝑣 𝑚𝑖𝑛 (8)
where Ts and Tv correspond to the temperature of the soil and vegetation component derived from the partitioning method presented above.

Given that we have daily LST observation, KsLST may show significant day-to-day variability associated with uncertainties in the LST partitioning method, the LST-derived Ks was smoothed to reduce random uncertainties. A weighting function is applied to the KsLST values estimated during a 3-day sliding period:

𝐾𝑠 𝐿𝑆𝑇,𝑐𝑜𝑟,𝑖 = ∑ 𝑤 𝑖 𝐾𝑠 𝐿𝑆𝑇,𝑖 ∑ 𝑤 𝑖 𝑖+1 𝑖-1 ; 𝑤 𝑖 = 1 - 𝑒𝑟𝑟𝑜𝑟 𝑇𝑣 𝑚𝑎𝑥,𝑖 -𝑇𝑣 𝑚𝑖𝑛,𝑖 (9) 
where KsLST,cor,i is the smoothed KsLST, wi (0 -1) is the weight corresponding to the KsLST of day i and the subscript 'i-1' and 'i+1' is referred to the day before and after, respectively.

The error is the uncertainty considered for the LST partitioning method (i.e. uncertainty in Tv estimates). We define the weight wi such as: i) the higher the (Tvmax -Tvmin) difference, the higher the weight wi, and ii) wi is set to 0 for (Tvmax -Tvmin) < error. The smoothing procedure become necessary since RZSM is derived from thermal-derived Ks and to obtain a temporal dynamic more consistent with RZSM observations.

First-guess ET

A thermal-based ET (ETLST) is calculated by using the FAO-2Kc formulation (Eq. ( 4)) and the coefficients KrLST and KsLST (Eq. ( 7) and ( 9)).

First guess RZSM

The procedure to estimate first-guess (LST-derived) RZSM is described below. RZSM can be derived from the root-zone depletion (Dr) and the soil parameter used in the FAO-56 formalism (SMWP, SMFC, TAW) as follows:

𝑅𝑍𝑆𝑀 = 𝑆𝑀 𝑊𝑃 + (1 - 𝐷 𝑟 𝑇𝐴𝑊 ) (𝑆𝑀 𝐹𝐶 -𝑆𝑀 𝑊𝑃 ) (10) 
By inserting the Eq. ( 5) into the Eq. ( 10), RZSM is expressed as a function of Ks during stressed periods (Ks<1, Dr<RAW):

𝑅𝑍𝑆𝑀 = 𝑆𝑀 𝑊𝑃 + 𝐾𝑠 𝐿𝑆𝑇 (1 -𝑝)(𝑆𝑀 𝐹𝐶 -𝑆𝑀 𝑊𝑃 ) (11) 
Note that for unstressed periods (Ks = 1), RZSM from Eq. ( 11) would be equal to the threshold from which the stressed conditions end (SMThreshold). According to the values of SMWP, SMFC and p used in this study (0.17, 0.37 and 0.55, respectively), the SMThreshold is equal to 0.26. During unstressed periods, RZSM from Eq. ( 11) is thus corrected dynamically for both cumulated precipitation and cumulated ETLST during this period through a daily water balance (shaded area in plot of Fig. 3). The RZSM is limited to a maximum of SMFC. If this maximum is reached then the RZSM is reset to the SMThreshold and next the above correction is applied. For instance, in the Fig. 3, RZSMLST,cor would reach SMFC if the unstressed period were longer and then it would be reset to the SMThreshold to carry on the correction in the unstressed period remaining.

Irrigation retrieval

Irrigation events are detected based on a significant increase in first-guess (LST-derived)

RZSM, which cannot be attributed to precipitation. Only significant increases are considered with a RZSM change larger than a threshold value equal to 0.02 m 3 m -3 , which represents a water supply greater than 10 mm for a 0.5 m root-zone depth. Note that such a threshold considers that ET and drainage are both negligible compared to the irrigation depth (during the irrigation event), and that the irrigation depth is larger than 10 mm. For the periods with steady increase in RZSM, the amount of retrieved/inverted irrigation (Iinv) is constrained through a water budget between the amounts of precipitation as inflow and the LST-derived ET as outflow, as well as the drainage if it is produced by precipitation.

The periods when a significant man-made water supply is observed are considered as probable dates for the retrieved irrigation events. If an irrigation is effectively detected for this period (with a minimum threshold of 10 mm), then the estimated date of irrigation is set as the last date of the period, in order to agree the maximum LST-based RZSM and the maximum RZSM simulated from FAO-56.

Re-analyzed RZSM and ET

Once irrigation has been retrieved from first-guess (LST-derived) RZSM, first-guess ET and observed precipitations, the standard FAO-2Kc is implemented by using the default (non-calibrated) parameters given by [START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF], but with the difference that the retrieved irrigation (amounts and dates) is introduced as forcing. From the FAO-2Kc we obtained ET, E, T as well as Dr and TAW that allow us to calculate RZSM by using the Eq.

(10) throughout the growing season. Note that Eq. ( 10) is valid to obtain the RZSM for both stressed and non-stresses periods, because Dr is calculated from the daily water balance implemented in FAO-2Kc for its full range (0 ≤ Dr ≤ TAW). To distinguish the simulated ET and RZSM from their first-guess (LST-derived) values, the former are referred to as re-analyzed RZSM and ET, respectively.

Validation strategy of irrigation, ET and RZSM estimates

In this study, the validation is carried out in terms of ET, RZSM and irrigation estimates by comparing them against ground-based ET, RZSM and actual irrigation on a daily basis.

Two evaluations are performed for ET and RZSM estimates: 1) LST-derived (or first-guess) estimates and 2) derived from standard FAO-2Kc forced by retrieved irrigation.

The irrigation is assessed in terms of dates and amounts. Regarding dates, the irrigation is compared in terms of 1) the numbers of retrieved irrigation events and 2) the agreement between probable dates on which the irrigation is detected and the actual date of the events. Regarding amounts, two scales are considered for the cumulated irrigation:

the daily and seasonal time scales. However, taking into account that irrigation is estimated by assuming a negligible drainage (during irrigation periods), the retrieved irrigation is compared to the observed irrigation after subtracting the drainage. Since no measurement was available during the field experiment, drainage was estimated from the standard FAO-2Kc using observed irrigation as forcing.

Results

LST partitioning

In Fig. 4 is shown the series of soil (Ts, Tsmin and Tsmax) and vegetation (Tv, Tvmin and Tvmax) temperatures. According to the partition method, Ts and Tv are estimated within its corresponding endmembers and the ground-based LST (LSTobs in Fig. 4) is observed within the minimum and maximum temperatures (Tvmin and Tsmax, respectively) for practically the whole season. Thus temperature endmembers are suitably simulated, fully consistent with LST observations.

In order to validate quantitatively the partition of LST into its vegetation (Tv) and soil (Ts) components, Tv is compared against the mean vegetation temperature from the seven thermocouples set up in the vegetation apex. The RMSE and R 2 are equal to 3.27 °C and 0.92, respectively. Note that if the validation daytime period is restricted between 10 am and 1 pm only (still consistent with the overpass time of thermal missions such as ASTER, Landsat and MODIS), the errors are improved reaching a RMSE of 2.98 °C. These results are similar to the errors obtained by Stefan et al. (2015) for the simulation of the soil temperature endmembers (Tsmax, Tsmin) over the same study area. It can be observed in Fig. 5 that Tv is overestimated for values larger than 30 °C, corresponding to the late season (after DAS 120). This is due to location (in the apex) of the Tv measurements.

Indeed, the youngest leaves of the plant are expected to be colder (with a higher transpiration rate) than the adult and senescing leaves, whose temperature has not been measured. Another reason can be probably explained for the impact of water stress on surface roughness (vegetation height), which was neglected in the estimation of Tvmax and Tvmin. The four temperature endmembers and the decomposed temperatures (Tv, Ts) are then used in Eqs. (8 -10) to estimate the E and T reduction factors (KrLST and KsLST, respectively).

LST-derived ET estimates

Two versions of the FAO-2Kc method are compared: the standard version by using the parameters given in [START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF] forced by the observed irrigation, and the version proposed in this study by using the KrLST (Eq. ( 7)) and KsLST (Eq. ( 8)) coefficients derived from LST/VI data. Comparison between the time series of vegetation stress coefficient from standard FAO-2Kc (KsFAO) and from LST/VI (KsLST) is presented in Fig. 6. Overall, KsLST detects stress periods and responds well to the water inputs (see the significant increase just after irrigation events), even though its estimation is fully independent of the daily water balance. However, it shows day-to-day variability that could be associated with uncertainties in the LST partitioning method (errors in Tv estimates). For this reason, the LST-derived Ks is smoothed to reduce random uncertainties, by using the KsLST values estimated on the day before and the day after (Eq. ( 9)). It can be observed that LST-derived Ks simulates stress conditions in a more pronounced way than the standard FAO-2Kc, except for the late season. Such information can next be used to simulate the required water supply (see section 4.3).

The evolution of ET during the growing season is simulated by both FAO-2Kc versions (Fig. 7). Results show that the performance of the FAO-2Kc by using coefficients based on LST/VI is superior to that of the standard version. The ET is estimated with an RMSE equal to 0.84 and 0.68 mm.day -1 by using the standard FAO-2Kc and the proposed method, respectively. The main discrepancies between both methods can be observed during the development (between DAS 40 and 70) and late (after DAS 110) stages due to great differences in Ks estimates and thus in T. Late in the season (after DAS 110) a difference in E estimates is also observed, according to daily water balance used in FAO-2Kc the water in surface evaporable layer is fully depleted (KrFAO = 0, E = 0), whereas the LSTderived E increases to about 1 mm day -1 because Ts is estimated between Tsmax and Tsmin from the partition of LST and thus KrLST is larger than 0. The increase in E can be explained by an increase of i) the sun-exposed soil due to the reduction of vegetation and ii) the capillary rise from the root zone, which can be detected from the LST-derived E estimates although the fc was assumed constant after the fc peak. A recent study about the E/T partitioning of winter wheat [START_REF] Rafi | Partitioning evapotranspiration of drip-irrigated wheat crop: a comparison study of FAO-56 dual crop coefficient model estimates with eddy covariance, sap flow and lysimeter measurements[END_REF] noted an underestimation of E by FAO-56 especially during the senescence period, consistent with the thermal-derived E estimates of this study. In the same way, others differences in E is found in the initial stage (before DAS 20) that could not be evaluated due to the lack of in situ measurements. Discrepancies are also observed when comparing each method individually against the observed ET.

During the first period (DAS 40 -70), ET is overestimated with the standard FAO-2Kc while it is underestimated with FAO-2Kc constrained by LST/VI data, whereas the opposite situation is encountered during late season, although the errors for the modified FAO-2Kc are lower.

Note that the ET and T estimated by using the LST-derived Ks or the smoothed LSTderived one are almost the same (Fig 7b). Also, the RMSE and slope for ET are slightly improved by using the smoothed LST-derived Ks from 0.70 to 0.68 mm day -1 and from 1.10 to 1.07, respectively. Nonetheless, it is worth noting that the smoothing is more useful in the estimation of RZSM from Eq. ( 11) by reducing the noisy temporal variability from thermal data (KsLST) and by obtaining a temporal variability more consistent with the temporal dynamic of the observed RZSM.

Irrigation estimates

The calculation of RZSM from KsLST (Eq. 11) and its variations allowed the detection of the irrigation time. In Fig. 8 it can be observed that four probable irrigation events were identified, corresponding to significant increases in LST-derived RZSM. Note that the probable days for an irrigation supply are marked in cyan in Fig. 8. Every identified event is in good agreement with the observed irrigation. However, only three irrigation events were detected from the inversion of the water budget whereas four probable events were obtained from significant increases in RZSMLST. The probable event detected on DAS 86 -90 does not correspond to a retrieved irrigation event. This is due to the rainfall events on DAS 86 -87, which resulted in relatively high RZSM values, so that the LST-derived RZSM was not sensitive enough to an additional (man-made) water supply on DAS 91.

Given that the last two actual irrigation events were applied 8 days apart and because three rainfalls occurred between both events, it was difficult to differentiate both irrigation supplies. This may be the reason for the overestimation of the irrigation amount of the last event (irrigation is estimated as 39.6 mm compared to 24 mm for the assumed true value).

The total irrigation depth for the growing season was equal to 67 mm, that represents a relative error of 30.2 % compared to the total irrigation applied by the farmer. Note that the retrieved irrigation amounts are only estimated considering the water required to produce the increase in LST-derived RZSM and thus the drainage from irrigation is not taken into account. The total drainage of the irrigation periods simulated along the season by standard FAO-2Kc with observed irrigation as forcing is equal to 26.2 mm. If we subtract this quantity to the observed total irrigation water supply (24 mm x 4 irrigations = 96 mm) the effective irrigation would be equal to 69.8 mm, which is very close to the cumulated retrieved irrigation estimated as 67.0 mm.

RZSM estimates

The time series for daily first-guess (LST-derived) RZSM and re-analyzed RZSM (RZSM simulated by the FAO-2Kc forced by retrieved irrigation) are shown in Fig. 8, namely RZSMLST and RZSMFAO+LST. Also, the time series of the observed RZSM is shown for comparison. The validation for each RZSM product is presented in Fig. 9. It can be observed in both Fig. 8 and 9 that the first-guess RZSM is systematically underestimated with an averaged bias equal to -0.044 m 3 m -3 . Although the first-guess RZSM shows a poor accuracy with a RMSE of 0.061 m 3 m -3 , it is shown an acceptable representativeness of the temporal variability of RZSM that can be seen in the ability to detect the irrigation dates and amounts, just as in previous section, and an acceptable R 2 equal to 0.42. RZSMFAO+LST is significantly improved (RMSE of 0.034 m 3 m -3 and R 2 of 0.68) and the results are very close if the actual irrigation is used as forcing in the FAO-2Kc (RMSE equal to 0.032 m 3 m - 3 and R 2 equal to 0.73). Overall, standard FAO-2Kc is able to estimate the RZSM (RZSMFAO+LST) through the Eq. ( 10), except during rainfall periods (without irrigation) when an overestimation can be observed (Fig. 8 and9). Hence, the standard FAO-2Kc does not represent sufficiently well the response of RZSM to the precipitation. This could be an effect of the rain gauges, which generally provide a larger measurement than the effective precipitation due to canopy interception. It can also be assumed that the FAO-2Kc model responds differently to natural and man-made water supplies due to differences in water supply intensities.

Regarding the overestimation during the late season of first-guess RZSM from Eq. ( 11), and given the overestimation during the same period of LST-derived ET, which are both dependent on LST-derived Ks, we can affirm that the LST-derived Ks during this period is overestimated. This may be due to an overestimation of Tvmax (see Fig. 5) during this period with full-cover senescent vegetation. In fact, it is suspected that the assumption Tvmax -Tvmin = Tsmax -Tsmin does not apply during senescence period.

Discussion

Utility of thermal data to help constrain the water budget and retrieving root zone soil moisture

Given the results of KsLST estimates in Fig. 6 it can be observed that KsLST responds well to water inputs and its dynamic is fully consistent with the water balance estimates (KsFAO).

Moreover, the ET estimated from LST-derived coefficients (ETLST) is more accurate in Fig. 7 than that of the standard FAO-2Kc (ETFAO). The good performance of ETLST can be explained by 1) the strong relationship between the LST and the coupled energy-water balance as recently reported in [START_REF] Diarra | Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa[END_REF] when the TSEB model was used over the wheat field in the same area, 2) and the robustness of contextual models, which do not require accurate LST estimates to obtain satisfying results in ET retrievals [START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF]. In contrast with contextual methods, the standard FAO-2Kc requires local calibration to accurately estimate ET. This was notably demonstrated by Er-Raki et al.

(2007) with the same wheat field. For instance, they found a significant difference between the locally calibrated and non-calibrated Kcb and then ET estimates, indicating that wheat was not growing in optimal conditions. Such conditions can be detected by the proposed approach based on LST-derived coefficients (KsLST and KrLST), thus avoiding both the use of parameters (e.g. SMFC, SMWP, Ze, Zr) and the local calibration of Kcb.

However, if locally derived Kcb by Er-Raki et al. ( 2007) is used in the standard FAO-2Kc, better estimates of ET are obtained with a RMSE and R 2 equal to 0.65 mm day -1 and 0.81, respectively. Nonetheless, the use of EC measurements for calibration is a strong limitation for application of the methods to large areas. It should be noted that the performance of ETLST is even better than the re-analyzed ET (ETFAO+LST) since it is simulated from FAO-2Kc by using the retrieved irrigation and non-calibrated Kcb. In order to improve these estimates, the Kcb could be 1) forced by NDVI and 2) calibrated from ETLST estimates since ETFAO+LST does not take into account the stress detected from LST-estimates (not only the water stress). In this sense the vegetation conditions can be included in the re-analyzed ET through the Kcb calibrated from LST/VI data accounting the ETLST improvement.

LST-derived RZSM (RZSMLST) responds well to stressed periods and water inputs, consistent with the control of RZSM on the vegetation stress detected from canopy temperature (Tv). Even though a significant bias is observed in the validation of RZSMLST, its range of variability is enough to detect significant increases, which is the basis of the irrigation retrieval procedure. Finally, FAO-2Kc is implemented by using the retrieved irrigation and a re-analyzed RZSM is retrieved with a noticeable improvement. Such results confirm the utility of LST to help constrain the water budget components, and can be used in an irrigation scheduling program for deciding when and how much to irrigate.

Applicability to temporally sparse thermal data

As mentioned in Section 2, this study was undertaken by using ground-based radiometric LST. Therefore, the uncertainty and temporal sampling of remotely sensed LST are not taken into account. Regarding the uncertainty, many studies have demonstrated that contextual models, such as the LST/VI-based method used herein to partition LST, allow us to avoid accurate estimates of surface variables, since the extreme water conditions (stressed -well-watered) used as boundaries to estimate thermal-based evaporative indices are estimated from the variability captured within thermal imagery [START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF][START_REF] Li | A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[END_REF]. With regard to temporal sampling, this issue becomes a key limitation of spaceborne thermal sensors due to the restriction of surface retrievals to sufficiently cloud-free days [START_REF] Crow | Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model[END_REF]. In addition to the thermal data currently available at high spatial (100 m) resolution have a repeat cycle of 16 days only, and up to 8 days by combining Landsat-7 and -8. To assess the impact of the observation frequency on the proposed approach, a sensitivity analysis is carried out by decreasing the LST observation frequency. It should be noted that the smoothing of KsLST (Eq. ( 9)) to reduce the day-to-day variability is only applied for a daily revisit of LST observations. For a frequency between 2 and 16 days the KsLST from Eq. ( 8) is directly used without smoothing to LST-derived estimates. The assessment is undertaken in terms of RZSM, ET and total irrigation water supply simulated by FAO-2Kc.

Increasing the duration between LST observations, naturally leads to a decreasing the number of thermal-derived ET and RZSM retrievals (from Eq. ( 4) and ( 11), respectively) available to constrain the irrigation from FAO-2Kc. However, given that irrigation can be estimated, it allows us to run FAO-2Kc for estimating RZSM and ET every day along the season. Fig. 10 shows the impact of the observation frequency every 2, 4, 8 and 16 days on estimating RZSM. One can observe the decreasing number of LST-derived RZSM estimates (RZSMLST), its errors and the significant improvement after running FAO-2Kc model by using the retrieved irrigation. Such approach allows estimating the RZSM for all days during the growing season (RZSMFAO+LST) irrespective of the observation frequency used.

Fig. 11 shows the impact on RZSM and ET estimates of the availability of LST observations according to the time revisit frequency ranging from 1 to 16 days. Although even the errors are gradually increasing, the results demonstrate a relatively good performance and acceptable errors by increasing the revisit period. Fig. 12 shows the impact of the availability of LST observations on the retrieved total irrigation water amount and number of irrigation events. Acceptable errors in the total water supply are observed. The number of simulated irrigation events decreases as the time revisit frequency decreases, falling below 3 events with a revisit longer than 8 days. Overall, it might be noted that up to a 10-day revisit of LST observations, a good agreement is obtained with R 2 higher than 0.5 and 0.6 for RZSM and ET respectively, and a mean absolute error (MAE) of total irrigation water supply lower than 15 mm (corresponding to a relative MAE of 21%).

According to these results, it could be considered the use of LST products with time revisit of 8 days such as i) the combination of Landsat-7 and -8 LST on cloud-free days and/or ii) the 1 km resolution MODIS LST product downscaled to 100 m resolution by using the Landsat LST (e.g. [START_REF] Anderson | Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign[END_REF][START_REF] Cammalleri | Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion[END_REF][START_REF] Olivera-Guerra | An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile[END_REF][START_REF] Weng | Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[END_REF].

The results show clearly the applicability to remote sensing data and the utility to the irrigation scheduling at regional scale. Given that KsLST and irrigation volumes and dates can be fully obtained from remotely sensed LST/VI data, this methodology could be implemented in an irrigation index to characterize the irrigation distribution, such as the irrigation index priority proposed by [START_REF] Belaqziz | A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling[END_REF]. This index takes into account the Ks and the irrigation volumes and dates and by using remote sensed-derived Ks and irrigation would allow evaluate the irrigation scheduling over broad irrigated agricultural areas poorly monitored.

Conclusions

A new approach in the calculation of water budget components and for irrigation with the observation period, results demonstrate a relatively good performance and acceptable errors for an observation frequency of 1 per 8 days so it is recommended to use LST observations at a temporal resolution finer than 10 days. In order to take advantage of the high temporal resolution of MODIS LST and the high spatial resolution of Landsat LST, downscaling method could be included in the future for monitoring the RZSM at the field and daily scale. However, further research will be required to assess the impact of downscaling uncertainties in the proposed methodology.

Tables Table 1. Sowing and irrigation dates. 

  at daily scale. The values used for Kcb (Kcbini, Kcbmid and Kcbend) at the three crop growth stages (initial, mid-season and maturity respectively) were taken from Allen et al. (1998). Ks (unitless) is calculated based on daily computation of the water balance for the root-zone layer Zr (m) as follows:

  scheduling (when and how much to irrigate) is developed by integrating LST data into the FAO-2Kc model. It relies on: 1) the estimation of first-guess (LST-derived) RZSM from KsLST (KsLST < 1) during stressed periods and its correction for both cumulated precipitation and cumulated ET during unstressed periods (KsLST = 1); 2) the estimation of irrigation amounts and dates along the season from (first-guess) LST-derived RZSM and ET estimates; and 3) the use of retrieved irrigations to force FAO-2Kc to simulate RZSM and ET on a daily basis. Statistical results indicate that first-guess (LST-derived) ET (ETLST) is more accurate than the ET simulated by the standard version of FAO-2Kc while the first-guess RZSM is significantly improved when FAO-2Kc is implemented by using retrieved irrigation. Results show that the new methodology combining FAO-2Kc and LST/VI data is able to 1) accurately estimate the crop ET using the default (noncalibrated) parameters given by[START_REF] Allen | Crop evapotranspiration -Guidlines for computing crop water requirements[END_REF], 2) to estimate the irrigation amounts and dates and 3) to accurately simulate RZSM.The impact of temporal sampling in LST observation is assessed by carrying out by decreasing the LST observation frequency from 1 to 16 days. It is demonstrated that the irrigation amounts and dates can be estimated, allowing us to run FAO-2Kc for estimating RZSM and ET along the season on a daily basis. Although errors are gradually increasing
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