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Scaling in Internet Traffic: A 14 Year and 3 Day
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and Random Projections
Romain Fontugne, Patrice Abry, Fellow, IEEE, Kensuke Fukuda, Darryl Veitch, Fellow, IEEE,

Kenjiro Cho, Pierre Borgnat, Member, IEEE, and Herwig Wendt, Member, IEEE

Abstract— In the mid 1990s, it was shown that the statistics
of aggregated time series from Internet traffic departed from
those of traditional short range-dependent models, and were
instead characterized by asymptotic self-similarity. Following
this seminal contribution, over the years, many studies have
investigated the existence and form of scaling in Internet traf-
fic. This contribution first aims at presenting a methodology,
combining multiscale analysis (wavelet and wavelet leaders) and
random projections (or sketches), permitting a precise, efficient
and robust characterization of scaling, which is capable of
seeing through non-stationary anomalies. Second, we apply the
methodology to a data set spanning an unusually long period:
14 years, from the MAWI traffic archive, thereby allowing an in-
depth longitudinal analysis of the form, nature, and evolutions
of scaling in Internet traffic, as well as network mechanisms
producing them. We also study a separate three-day long trace
to obtain complementary insight into intra-day behavior. We find
that a biscaling (two ranges of independent scaling phenomena)
regime is systematically observed: long-range dependence over
the large scales, and multifractallike scaling over the fine scales.
We quantify the actual scaling ranges precisely, verify to high
accuracy the expected relationship between the long range depen-
dent parameter and the heavy tail parameter of the flow size
distribution, and relate fine scale multifractal scaling to typical
IP packet inter-arrival and to round-trip time distributions.

Index Terms— Communications technology, computer

networks, Internet.
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I. INTRODUCTION

STATISTICAL analysis and modelling of data traffic lies at

the heart of traffic engineering activities for data networks

including network design, management, control, security, and

pricing. Surprisingly then, empirical measurements of com-

puter network traffic did not appear until the early 1990’s,

making Internet modelling in particular a somewhat young

discipline. In this contribution, we take advantage of an

exceptional dataset which spans a good percentage of this

lifetime, to reexamine in depth one of the central features of

Internet traffic – scale invariance.

Scale Invariance in Internet Traffic: From the beginning,

traffic processes, instead of being well described by models

such as the Poisson process with its independent inter-arrival

times (IAT), or ARMA timeseries and other Markov processes

with their richer but still short range (exponentially decaying)

auto-correlation structures, were found to show significant

burstiness (strong irregularity along time) as well as slow,

power-law decay of correlation [1]–[5]. The latter phenom-

enon, referred to as asymptotic self-similarity or as long range

dependence (LRD) [6], implies that no specific time scale or

frequency plays a central role in the temporal dynamics of the

data, a property also generically referred to as scale invariance,

scaling or fractal (for example see [7], [8]). It was soon

recognized that scaling had strong implications for networks

due to its dramatic impact on queuing performance. Indeed the

discovery of ‘fractal traffic’ stimulated much research in the

queueing theory community (see [9]–[11]) which detailed

the potentially severe performance penalties in terms of loss

and delay of scaling arrival processes.

A natural question was that of the origin of scaling in traffic.

In the late 90’s, a mathematical link was made relating a

characteristic of underlying data objects to be served over the

Internet, namely the heavy tail of their size distribution, to the

LRD of aggregate traffic [4], [12]. To this day, this link remains

the main framework used to explain the origin and nature of

scaling in Internet traffic. Early empirical measurements of

the tail index of file sizes qualitatively supported the finding

as a realistic mechanism producing LRD in Internet traffic

processes [1], [13].

The seminal observations described above drove a

substantial research effort in the field over the subsequent

20 years. Evidence of scale invariance was reported



continuously over this period for numerous different types of 
traffics and networks, e.g., [5], [7], [8], [14]–[23] and works 
continue to appear [24]–[29]. See also [30] and [31] for early 
surveys. Despite being widely investigated however, there are 
a number of important challenges regarding Internet scaling 
which remain unresolved, even controversial.

Challenge 1: Where is the Scaling?: Although the existence 
of scaling phenomena in traffic, in particular LRD, is now 
essentially universally acknowledged, at a more detailed level 
important questions are routinely outstanding. Scaling parame-

ters, such as H values and scaling ranges, measured on one 
network or one type of traffic often differ from those observed 
on others. Even when measured on the same link over different 
days, or at different times within the day, scaling may be found 
to differ significantly. Differences are also found between 
links at the network edge compared to those in the core 
and in large backbone networks (Tier-1 ISPs), where traffic 
volumes, multiplexing levels, and bandwidths, are all higher. 
Finally, measurements typically consist of a mixture of normal 
background traffic, corresponding to a base load of legitimate 
traffic, with sporadic anomalous traffics, be they legitimate 
such as flashcrowds, or malicious such as aggressive Denial-

of-Service Attacks [22], [27]. This results in a paradoxical 
situation where, despite having far more data available than in 
most other applications, pernicious non-stationarities, which 
cannot be eliminated by simple time averages, induce a lack of 
statistical robustness and reproducibility of conclusions. These 
considerations can even lead to doubts as to the very existence 
of scale invariance, seen instead as a spurious empirical 
observation produced by non stationarities.

Challenge 2: Is There Scaling Beyond LRD?: LRD 
describes scaling in the auto-correlation of the data and thus 
only concerns 2nd order statistics. It therefore neglects the 
impact of departures from Gaussianity, a much debated issue 
[15], [32], [33]. To model potentially richer scaling involv-
ing higher order statistics, and the full dependence structure 
including departure from Gaussianity, the multifractal para-
digm was put forward [14], [15], [17], [34]–[38]. Multifractal 
models explicitly designed for Internet traffic were proposed 
in [36], [37], and [39], while the impact of multifractality 
on performance was investigated in [40], thus showing its 
practical importance. Deciding whether Internet traffic could 
be multifractal or simply self-similar became important as 
the former implies significant departures from Gaussianity 
as well as the presence of underlying cascade-like multi-

plicative mechanisms [41]. Together with discussions of its 
possible origins, the existence of multifractality in traffic has 
been the subject of numerous investigations, with sometimes 
contradictory conclusions [14], [15], [20], [25], [34], [35],
[41], [42]. For example [20] points out that among the initial 
papers examining the issue of multifractal scaling in traffic, 
conclusions which appeared at times at odds were in fact 
not, as they were made in relation to different scale ranges. 
More generally, assessing both the existence of scaling and 
its nature brings into focus the importance of the selection of 
the range of time scales where scaling properties are observed 
and analysed, an issue whose importance is often overlooked 
and/or underestimated (see a contrario [18], [41], [42]).

Challenge 3: Is Scaling Here to Stay?: The Internet has

evolved rapidly since its creation, and it is commonly accepted

that this will continue as new services and applications,

business models and regulation regimes, protocols and control

plane paradigms, as well as hardware and software, evolve.

For example clearly the Internet today conveys much larger

volumes of traffic, at far higher bandwidth, than in the year

2000. More recent examples include the rise of traffic from

social media such as twitter, and the democratization of

protocols and the redesign of routing enabled by Software

Defined Networking (SDN). This has lead some to argue that

the statistical properties of Internet traffic in the modern era

should be very different from that of the early days (barely

20 years ago). Notably, essentially relying on a Central Limit

Theorem argument, these analyses suggest that traffic statistics

will return to being Gaussian and Poisson-like, implying the

irrelevance or disappearance of scale invariance (see interest-

ing discussions and analyses in [19], [23], [26], [43], and [44]).

Challenge 4: Is Scaling an Internet Invariant?: Studies

of Internet traffic scaling reported in the literature typically

concentrate on one or a small number of traces, collected at

specific times, often with a focus on the latest killer application

or a fascination for previously unseen phenomena. However,

statistical analyses solid enough to address the challenges

outlined above can only be achieved through longitudinal

studies, making use of a large data corpus, collected along

several years, as is the case for example in [19], [20], [22],

[23], [27], [29], and [45]–[49]. There exist only a few trace

repositories where such a large corpus of data are available:

Bell labs, WAND, CAIDA MFN Network, MAWI.

Goals, Contributions and Outline: Today, 20 years after the

original reports of long memory in data traffic [1], Internet

scaling behavior is no longer a hot topic. Nonetheless, the

challenges described above remain, making the development

of a definitive understanding of traffic scaling, and the goal

of definitive and widely accepted traffic models, no closer to

fruition now than 10 years ago.

We contend that the time is right to revisit this topic,

because of the conjunction of two opportunities. First, the

MAWI repository, which has been collecting traces daily

since 2001, constitutes an exceptionally rich dataset, encom-

passing a diversity of applications and network conditions,

including the presence of major known anomalies with global

impact or local ones, congestion periods, link upgrades and

network reconfigurations. This provides a unique opportunity

to perform a longitudinal study of the statistical scaling

properties of Internet traffic, over 14 years, an exceptionally

long period of time in relation to the lifetime of the field itself.

Second, there is an opportunity thanks to the greater maturity

of statistical methods, compared to those used before. We com-

bine the use of random projections or sketches to provide

robustness against the debilitating issue of anomalies which

fatally distort statistical analysis, and use wavelet leaders for

the precise assessment of scaling properties, in particular to

handle the difficult issue of the empirical measurement of

multifractality. These are now understood to be far superior

to other approaches, including normal wavelet analysis, for

this purpose [41], [50].



Fig. 1. MAWI Traffic. Application breakdown, from Jan. 2001 to Dec. 2014 (monthly level aggregation).

Our goals are also twofold, based on combining the above

two opportunities. First, to apply the new tools to the unique

dataset, in order to obtain reliable longitudinal results, and

therefore to meaningfully contribute to the resolution of the

challenges described above. As part of this, we provide some

of the most robust evidence ever presented for the presence

of various kinds of scaling, and in particular, a high quality

validation of the link described above between heavy tailed

sources and LRD. Second, we mine the MAWI repository to

provide elements toward responses to the challenges raised

above and particularly toward a greater understanding of

mechanisms underlying scaling at ‘small’ scales.

Section II describes the MAWI archive and the datasets

we use. The theoretical and practical methodology to study

scaling in Internet traffic (sketches and wavelet leaders) is

detailed in Section III. Applying these methodological tools

to data from the MAWI repository then allows: i) to robustly

assess the existence of different scaling properties in traffic,

with discussions of the different ranges of time scales involved

(Section IV); ii) to quantify short term intra-day variations

of scaling properties as well as long term evolution over

14 years (Section V); and iii) to characterize the nature of

scaling (LRD versus multifractality) both in the coarse and

fine scale ranges, and to investigate quantitatively and qual-

itatively the mechanisms potentially producing such scaling

(Section VI).

II. DATA

The MAWI Repository The MAWI archive [51] is an on-

going collection of Internet traffic traces, captured within the

WIDE backbone network (AS2500) that connects Japanese

universities and research institutes to the Internet. Each trace

consists of IP level traffic observed daily from 14:00 to 14:15

(Japanese Standard Time) at a vantage point within WIDE,

and includes each IP packet, its MAC header, and an ntpd

timestamp. Anonymized versions of the traces (with garbled

IP addresses and with transport layer payload removed), are

made publicly available at http://mawi.wide.ad.jp/.

As WIDE peers with all major domestic ASes, it used to

mainly carry trans-Pacific traffic. However, as the global net-

work topologies become less US-centric and content providers

start operating their own networks and become less dependent

on major ISPs, it now carries a rich traffic mix including

academic and commercial traffic. Consequently MAWI traces,

which typically contain several 100k IP addresses, capture

diverse behavior, as summarized by the breakdown of traffic

types over 14 years shown in Fig. 1, obtained with the traffic

classifier libprotoident. Although largely dominated by HTTP,

the traffic composition is markedly influenced by unusual

events. Some of these are global, for example, Code Red,

Blaster and Sasser are worms that infamously disrupted Inter-

net traffic worldwide [48]. Of these, Sasser (2005) impacted

MAWI traffic the most, accounting for 68% of packets at its

peak. Conversely, the ICMP traffic surge in 2003, and the SYN

Flood in 2012, are more local in nature, each revealing attacks

on targets within WIDE that lasted several months. The period

covered by Fig. 1 also includes congestion periods (from

2003 to 2006) [27], and changes in routing policy (2004).

MAWI traffic has also been significantly altered by temporary

deployments or research experiments. The surge of Teredo

traffic in 2010 is due to the IPv6 traffic temporarily tunneled

by the Tokyo6to4 project, and the increase of ICMP traffic

from September 2011 is caused by Trinocular, an experi-

mental outage-detection system that actively probes Internet

hosts [52], [53].

Datasets The traces used here were taken from those

collected daily from samplepoint-B within WIDE until its

decommissioning in July 2006, and from samplepoint-F from

Oct. 2006 onwards. Samplepoint-F is on the same MAWI

router as samplepoint-B, but connected to a new link following

a network upgrade and reconfiguration. These links have

capacity, respectively, of 100Mpbs with 18Mbps Committed

Access Rate (CAR, an average bandwidth limit), and 1Gbps

with a CAR of 150Mbps. We extract from each packet record

the packet size, timestamp, and when needed, a standard

header 5-tuple (IP address and port number for source and

destination, and IP protocol carried (TCP, UDP or ICMP))

used to construct flow-ids. We examine two data sets.

DataSet I (Longitudinal): 15-min Traces 2001-2014: A total

of 1176 standard traces taken from the first 7 days of each

month from Jan. 2001 to Dec. 2014.

DataSet II (Intra-Day): 3-day trace 2013: To allow a

study of intra-day variations, a special 3-Day long trace was

measured at Samplepoint-F over June 25-27, 2013. This trace,

containing a large variety of applications, features a strong

diurnal cycle where the packet rate during working hours is

about twice that at night, yielding a change in the typical

packet inter-arrival time from 0.01ms to 0.023ms.

III. SCALING ANALYSIS - THEORY & METHODOLOGY

A. Scaling and Multifractal Analysis

The goal of this section is to briefly introduce both the

analysis tools, (wavelet coefficients [5], [17], [19], [54], [55],



wavelet leaders [41], [50]) and stochastic models 
(LRD [1], [6] and multifractality [15], [37], [41], [50]), 
that are essential to a discussion of scale invariance in 
Internet traffic.

1) LRD and Wavelet Coefficients: Let ψ denote a mother 
wavelet, characterized by an integer Nψ > 0, defined as∫

R
tkψ(t)dt ≡ 0 ∀n = 0, . . . , Nψ−1, and

∫
R
tNψψ(t)dt 6= 0,

known as the number of vanishing moments. The (L1-

normalized) discrete wavelet transform coefficients of a

process X are defined as dX(j, k) = 〈ψj,k|X〉, with

{ψj,k(t) = 2−jψ(2−jt − k)}(j,k)∈N 2 . For a detailed

introduction to wavelet transforms see [56].

When X is a process which exhibits second order scaling

the time average of the squared wavelet coefficients behave as

a power law with respect to the analysis time scale a = 2j ,

Sd(j) ≡
1

nj

nj∑

k=1

d2
X(j, k) ≃ C2j(2H−2), (1)

over a range of scales, 2j1 ≤ 2j ≤ 2j2 , with 2j2

2j1
≫ 1,

where nj denotes the number of dX(j, k) actually available

at scale 2j) [5]. The scaling exponent 2H − 2 is driven

by the Hurst parameter H , that usually takes values in

H ∈ (0, 1). For example in the case of a stationary X with

LRD, H ∈ (0.5, 1) and 2jmax = ∞, and the resulting slow

decay of correlations over all time poses significant statistical

challenges, which motivates the recourse to wavelet analysis

[5], [54], [55], [57].

2) Multifractality and Wavelet Leaders: Eq. (1) is related to

the (algebraic or power-law decay of the) correlation function

of X only. Multifractal analysis describes the statistical prop-

erties of data not just at second order but at arbitrary qth order,

for processes where Eq. (1) can be nominally generalized to
1
nj

∑nj
k=1 |dX(j, k)|q ≃ C2jζ(q). Multifractal analysis assesses

whether ζ(q) ≡ q(H − 1), where H alone controls scaling at

all orders, or departs from this linearity in q, revealing richer

temporal dependencies, referred to as multifractality.

It is now theoretically well-grounded and practically well-

documented [41], [50] that correctly assessing the linearity of

ζ(q) requires wavelet coefficients to be replaced with wavelet

leaders. Let λj,k = [k2j, (k+1)2j) denote the dyadic interval

of size 2j centered at k2j , and λ̃j,k the union of λj,k with its

neighbors: λ̃j,k = λj,k−1 ∪ λj,k ∪ λj,k+1. The wavelet leader

LX(j, k) is the largest wavelet coefficient over all finer scales

j′ < j within λ̃j,k: LX(j, k) := sup
λ′⊂ λj,k

2j
′

|dX(λ′)|, with

factors 2j
′

and 2−j used here to compensate for insufficient

regularity of X , cf. [41], [50].

The exponent ζ(q) can now be measured via

SL(j, q) ≡
1

nj

∑

k

LX(j, k)q ≃ S0(q)2
jζ(q). (2)

The Legendre transform L(h) of ζ(q) provides an estimation

of the multifractal spectrum which defines the multifractal

properties of X via the fluctuations of its pointwise Hölder

exponents h, cf. [41], [50]. For further theoretical details on

multifractal analysis and wavelet l̊eader formalism, the reader

is referred to, e.g., [50]. For our purposes here however, we

focus on characterising ζ(q), specifically its linearity. It is

advantageous to do so indirectly, via the cumulants Cp(j) of

order p of lnLX(j, k). It can be shown ( [50]), that when X
has multifractal properties, the Cp(j) take the explicit form

Cp(j) = c0p + cp ln 2j (3)

where the cp can be directly related to the scaling exponents

ζ(q) ≃ c1q + c2q
2/2 + . . ., and hence to the multifractal

spectrum. The first two cumulants are sufficient for our

purposes as a measurement of c2 < 0 implies nonlinearity

in ζ(q) and hence multifractality. It amounts to assuming a

parabolic multifractal spectrum L(h) ≃ 1 + (h − c1)
2/(2c2),

where c1 controls the position of the maximum of L(h)
while c2 quantifies its width (see [41], [50] for details). When

c2 ≡ 0, one has H ≡ c1, otherwise, one approximately obtains

H ≃ c1 + c2 for times series with true scaling properties.

3) Scaling Range and Estimation of Scaling Exponents:

The estimation of H is wavelet based, performed by linear

regression of log2 Sd(j) against j = log2 2j . The estimation

of cp is wavelet leader based, performed by regressing Cp(j)
against j. A plot of log2 Sd(j), C1(j) or C2(j) as a function of

log-scale j is referred to as a Logscale Diagram (LD). By best

fits, we mean the estimation procedures extensively detailed

in [50] and [55]. Whereas log2 Sd(j) and C1(j) (estimating

respectively log2 E[D2
X(j, k)] and E[lnLX(j, k)]), and thus

H and c1 are mainly associated to the 2nd-order statistics

of X , C2(j) (estimating Var [lnLX(j, k)]) and hence c2,
conveys information beyond correlation. The crucial prior step

to estimation is to carefully examine LDs to determine the

range of scales 2j1 ≤ a ≤ 2j2 over which the regression is

performed, either by manual inspection or using goodness-of-

fit tests. Thus, LDs plots, estimation and tests are assessed by

time-scale domain bootstrap based procedures (cf. [50], [54],

[55], [58]). Practical scaling and multifractal analyses were

conducted using a toolbox designed by ourselves and publicly

available.

B. Packets Versus Bytes and Aggregation Procedure

In nature, Internet traffic consists of a flow of IP Packets and

could thus naturally be modeled as a (marked) point process.

However, analyzing such point processes would require mas-

sive memory and computational capacities. It is thus often

preferred to analyse aggregated time series, consisting of the

count of packets (or bytes) within bins of size ∆0, the choice

of which being often considered arbitrary and sometimes

controversial. However, a wavelet transform can be considered

per se as an aggregation procedure thus making the actual

choice of ∆0 much less crucial, as it does not imply a narrow

analysis at that scale, but rather an analysis over all scales

a ≥ ∆0, cf. [57]. Wavelet analysis does however require an

initialising projection into an approximation space at the initial

scale ∆0, which we approximate here (with negligible error)

by a simple packet count in each ‘bin’ of width ∆0.

We study the packet arrival times, referred to as the packet

arrival process X∆0
(t). We do not consider the IP byte

arrival process, both for space reasons and because prior

work [27], [59] suggests that the main features of the two

are the same.



Fig. 2. LDs. From left to right, LDs for the statistics log
2

Sd(j), C1(j) and C2(j). Each plot shows Global-LDs (black), Sketch-LDs (light grey),
Median-LD (red). Global-LDs are dominated by the Sketch-LD concentrating anomalous traffic (dashed blue). The dashed vertical lines mark respectively the
typical IAT time scale jM

τ (blue), and the FS (black) and CS (dark grey) scaling ranges (j1, j2). Best fits of Median-LDs are shown (dashed-red lines) over
both FS and CS. Top: for the 3-day trace. Bottom for one arbitrarily chosen 15-min trace.

For point processes, scaling cannot exist at scales finer than

the typical inter-arrival time (IAT), τ . To permit an analysis

of the finest meaningful scales, it is thus natural to choose

∆0 ≃ τ . We select ∆0 ≡ 2−3 = 0.125ms which is of the order

of the median IAT for both 15-min and 3-day traces. Time

scales are normalized with respect to ∆0, that is ∆τ = ∆02
jτ .

Hence scale a = 1 = 20 (octave j = 0) refers to ∆0.

C. Random Projections (or Sketch Procedure)

1) Robustness From Averages: As discussed above, the

variety in network topologies, volumes or the nature of the

traffic itself, often leads to a failure of reproducibility in its

statistical analysis. Combined with such diversity, the exis-

tence of non-stationary anomalous traffic superimposed onto

normal traffic, whether malicious or not, essentially precludes

the use of time averages to overcome this lack of statistical

robustness. However, compared to data from other application

fields, Internet traffic has the particularity that, beyond the

aggregated time series X∆0
(t) itself, assembled from IP Pkt

timestamps, the extra 5-tuple available for each packet conveys

valuable information that can be used to robustify statistical

analysis. We follow the approach pioneered in [60] and [61],

and elaborate on the methodology developed in [27], to use

random projections to circumvent this core difficulty.

2) Random Projection: A random projection (or sketch

procedure) [60], [61] relies on the use of a k-universal hash
function h [62], applied to an IP Pkt attribute A, chosen

by practitioners, that defines a notion of flow, and taking

values in an alphabet of size 2M . A sketch procedure thus

splits an original IP trace X into 2M sub-traces, X
(m)
∆0

,m =
1, ..., 2M , each consisting of all packets with identical sketch

output h(A), thus preserving flow structure (packets belonging

to a same flow are assigned to the same sub-trace). The

intuition here is that when there are no anomalies, random

projections amount to creating surrogate traces which can be

expected to be only weakly dependent if M is large, and that

are statistically equivalent to each other up to a multiplicative

factor. Conversely, when present, anomalous flows are likely to

be concentrated in a subset of the sketches. Robust estimation

then stems from using a median procedure across sketch

outputs, thus providing a reference for normal traffic that

shows little sensitivity to the anomalies.

3) Hash Key: Selecting the hash key for defining flows

is important, as different choices will lead to different sub-

traces. We used Source IP and Destination IP addresses as

obvious choices, and found equivalent conclusions in terms of

the statistical characterization of scale invariance in Internet

traffic, even though certain types of anomalies are missed using

either hash key. Yet, the ultimate goal is not anomaly detection,

but rather robustness of the median statistics. Because both

keys lead to equivalent statistical description, results reported

below were obtained using Source IP address as the hash key.

IV. ROBUST BISCALING IN MAWI TRAFFIC

A. Robustness via Random Projections

The scale invariance analysis described in Section III-A

produces systematically 3 LD plots, log2 Sd(j), C1(j) and

C2(j). When applied to the full trace, they are referred to as

Global-LDs, and when applied to a sub-trace, as Sketch-LDs.

Over a set of M Sketch-LDs from a given trace, Median-LD

is obtained as a pointwise median of M values for each j.
Fig. 2 compares, for the 3-day trace and for one 15-min trace,

separately for log2 Sd(j), C1(j) and C2(j), the Global-LDs,

the individual Sketch-LDs, and the Median-LD. Equivalent

plots for each 15-min trace are available online.1

1) Robustness: Examining all LD plots leads to conclude

that: i) The shapes of Global-LDs are clearly driven by a

particular sketch output, whose shape differs from that of the

majority of the Sketch-LDs; ii) As expected, the shapes of the

majority of Sketch-LDs are close to that of the Median-LD;

iii) Global-LDs do not show clearly identifiable scaling ranges

1http://romain.iijlab.net/internetScaling/results.html



where alignment is seen, corresponding to power-law behavior 
(scaling), whereas the Median-LDs do; iv) Global-LDs vary 
markedly over days, whereas Median-LDs remain fairly 
comparable; v) Global-LDs show intraday diurnal cycles, 
whereas Median-LDs remain fairly constant.

Making use of the sketch-based detection procedure, 
proposed in [59], to identify the IP addresses involved in 
traffic anomalies, enabled us to determine that the sketch 
output driving the global-LDs in Fig. 2 is dominated by a 
high volume component of ICMP traffic involving a single 
source IP address. It in fact corresponds to probing data from 
Trinocular (cf. Section II). In a similar way, for the 15min-

traces, it was verified that the Sketch-LDs that essentially 
drive the global-LDs can be quasi-systematically associated to 
anomalous traffic. It is important to note that there is almost 
not a single day free of significant anomalies (see [27], [59]).

2) The Number of Sketches: The choice of the number 2M

of sketch outputs results from a trade-off: robustness against

anomalous behaviors increases with higherM where it is more

likely that anomalies will be isolated in a small number of

outlier subtraces, while the remainder of sketch outputs can be

regarded as surrogate traces acting as a large number of copies

of traffic with equivalent statistical properties. Increasing M
however also results in subtraces whose statistics may diverge

from those of the background traffic as a whole. In particular,

it results in an increase in the IAT of each subtrace: ∆M
τ =

2M∆τ = ∆02
jMτ , with jMτ = jτ + M , and so impairs the

statistical analysis of background traffic at the finest scales.

Given that the analysis of scaling requires access to the widest

possible range of scales, we select M = 4 to keep jMτ
reasonably low.

3) Partial Conclusion 1: Global-LDs are strongly impacted

by anomalous traffics, and are likely to change often. They

can therefore not be analyzed reliably without an ability

to filter out anomalies, which the random projection and

median-sketch procedure provides. Median-LDs characterize

the statistics and scaling properties of the traffic with many

anomalies rejected, and constitute a de facto legitimate back-

ground traffic.

B. Biscaling

1) Two Scaling Ranges: The analysis of the Median-LDs

leads to a significant, and robust observation: The statistical

signature of background traffic does not consist of a single

scaling range across all scales but rather of two separate

scaling ranges. This is consistently observed across the all

15-min traces but for exceptions, occurring in less than 1% of

cases, because of data quality issues) as well as for the 3-day

trace. This clearly implies that the packet arrival process is

not describable by a single scaling mechanism acting over all

available scales, ranging from milliseconds to hours, but rather

that two different mechanisms control scaling properties across

two different ranges, hereafter referred to respectively as the

coarse (CS) and fine (FS) scaling ranges. We refer to this

henceforth as biscaling, as originally coined in [63]. Biscaling

reported here is consistent with observations previously made

in the literature for different traffics and for different analysis

Fig. 3. Frontier scale. Histogram (left) and time evolution (right) of the
octave JF associated to the frontier scale. The right plot also reports the time
evolution of JR and Jτ (time scales of RTT and IAT respectively).

tools, for example [18], [20] for WAND traffic, [14], [35] for

CAIDA and LBL traffics, and [42] for Grid traffic.

2) Frontier Scale: The frontier scale ∆F = ∆02
JF , empiri-

cally defined as the scale connecting the CS and FS asymptotic

scaling, is estimated as follows: First, CS and FS scaling

best fits are estimated independently on chosen CS and FS

scaling ranges; Second, departures from CS and FS best fits

are computed across all scales; Third, ∆F is estimated as the

first (finest scale) zero-crossing of the difference between the

absolute values of these departures.

Fig. 3 shows that estimated ∆F values remain remarkably

constant along the 14-years, with a slow and mild decrease

from 0.5s in 2001 to 0.25s in 2014, or equivalently that

JF ranges essentially within JF ∈ (10, 13) corresponding to

128ms ≤ ∆F = ∆02
JF ≤ 1s. The 3-day trace was collected

in 2013, and Fig. 2 indicates a ∆F ≃ 0.25s, consistent with

Fig. 3. Such orders of magnitude for ∆F are remarkably

consistent with knee position reported in [14], [18], [20],

[35], and [42], though measured on different traffics and

networks.

3) Coarse Scales: Empirical inspections of LDs, assisted

with bootstrap based confidence intervals and goodness-of-fit

tests (cf. Section III-A.3 and [50], [58]), for both the 15-min

and 3-day traces (cf. Fig. 2) indicate the onset of CS scaling

at roughly 2∆F . They also show that scaling at CS continues

up to the coarsest available scale, mostly controlled by the

data observation duration ∆D = ∆02
jD . The observation that

scaling holds up to data duration is consistent with numerous

earlier findings, for example [24], [42], [64]. Notably, the

Median-LDs obtained from the entire 3-day trace (cf. Fig. 2)

show that coarse scale scaling ranges from 0.5s to 9h, i.e.,

over 17 octaves, a very impressive observation, which, to the

best of our knowledge, has never been reported so far on

traffic collected on a commercial link. Note that ≃ 9h is the

coarsest statistically significant scale available for the 3-Day

(= 72-hour) trace. Indeed, for significance in estimation of

the statistical properties, the coarsest available scale is of the

order of ∆D/2
S, with S empirically set to 3 or 4 depend-

ing on the wavelet time support and the targeted statistical

confidence [50], [55]. The CS scaling range thus corresponds

to:

2∆F ≤ ∆ ≤ 2−S∆D or JF + 1 ≤ j ≤ JD − S.

In practice at CS, for reliable statistical estimation, guided

by the statistical tools developed in [58] and [65], estimation

of the scaling parameter (S = 4) is conducted in ranges

corresponding to 1s to 17min ([jCS1 , jCS2 ] = [13, 23]) for the

6h-blocks of the 3-day trace and, for the 15-min traces, to 1s



Fig. 4. Intra-day variability along the 3-day trace. For the 12 6h-blocks, comparisons of Global (black) and Median-Sketch (red) analyses: LDs (top);
Estimated scaling exponents at CS (middle) and FS (bottom). Confidence intervals on Median-Sketch estimates are obtained as average across sketch outputs.
For LDs (top), the ’+’ and the ’o’ correspond to night and day time estimates respectively. The dashed vertical lines mark respectively the typical IAT time
scale JM

τ (blue), and the FS (black) and CS (dark grey) scaling ranges (j1, j2).

to 32s ([jCS1 , jCS2 ] = [13, 18]), for years 2001-2006 and to

0.5s to 32s ([jCS1 , jCS2 ] = [12, 18]) for years 2007-2014.

4) Fine Scales: Empirically, the Median-LDs indicate that

scaling at FS holds up to roughly ∆F /2. While, obviously,

scaling cannot exist at scales finer than the IAT τM , Median-

LDs clearly show that scaling holds right down to this scale.

The fine scale range is thus given by

∆M
τ ≤ ∆ ≤ ∆F /2 or JMτ ≤ j ≤ JF − 1.

In theory, scaling analysis implies that the different scaling

parameters (H, c1, c2) are measured over the same scale range:

j1 ≤ j ≤ j2 for any given trace (or subtrace). However, the

practical computation of wavelet leaders, though mandatory to

assess the departure of c2 from 0, remains problematic at the

finest scales because to compute leaders at scale 2j , one needs

wavelet coefficients at finer scales: As a consequence, wavelet

leaders at the finest computed scales are biased (cf. [50] for

detailed discussions) as can be seen in Fig. 2 (right plots).

Thus, for simplicity and self-consistency, conservative FS

ranges are selected so that all parameters are estimated over

the same range. Because the IAT decreases significantly along

the 14 years (cf. Fig. 3), inspections of Sketch-LDs lead us to

choose [jFS1 , jFS2 ] = [7, 10] corresponding to [16, 128]ms for

years 2001-2006, and [jFS1 , jFS2 ] = [4, 10] corresponding to

[2, 128]ms over 2007-2014.

5) Partial Conclusion 2: Internet traffic scaling properties

are characterized by a biscaling regime, corresponding to

scaling in two distinct scaling ranges.

V. VARIABILITY AND EVOLUTION OF

SCALING WITH TIME

A. 3-Day Trace and Intra-Day Variability

Fig. 4 compares Global versus Median-LDs (and

corresponding scaling exponents) estimated from the 12 non

overlapping 6h-traces within the 3-day trace (top row).

Global-LDs show a much larger variability, notably at CS,

such that the use of Global-C2(j) becomes meaningless. In

fact, the scaling exponent estimates obtained from Global-LDs

display a variability which is far too large for consistency

with (bootstrap based) confidence intervals. Notably, the

Global-LD estimates show a 24-hour periodicity, particularly

clear at FS, that has (almost) disappeared from the Median-

LD estimates. Beyond the potential natural diurnal cycle that

could explain such modulation, inspection of traffic trace

showed that the trinocular experiment, discussed earlier in

Section II, was active during this trace. This anomalous

traffic can be regarded as non stationary as it was essentially

run at night (Japanese time), hence explaining the 24-hour

periodicity. Further, the trinocular experiment sends, every

11 minutes, 1 to 15 ICMP probes to 3.4M blocks of IP

addresses. Probes sent to the same block are spaced out by

a 3 second timeout, thus producing a specific time scale in

temporal dynamics that materializes as the bump at j ≃ 14 or

15 in Global-LDs (cf. Figs. 2 and 4). On average, Trinocular

sends about 19.2 probes per hour per IPv4 block. It therefore

produces a massive ICMP packet traffic superimposed to the



Fig. 5. Long term Evolution along the 14 years. For the 1176 15-min traces, Median-LDs (top) and comparisons between Global (black) versus Median
(red)-based estimated scaling exponents at CS (middle) and FS (bottom).

remainder of the regular background traffic, thus significantly

affecting traffic statistics and scaling properties at all scales.

Global-LDs are hence polluted by this anomalous traffic,

both at CS and FS, and their use would lead one to conclude

that traffic undergoes a periodic modulation of its statistics

and scaling properties, while this is actually due to the

intermittent occurrence of the anomaly. Conversely, Median-

LDs provide practitioners with a robust characterization of

the background traffic, not altered by the trinocular anomaly.

Median-LDs (and corresponding estimated parameters)

display a remarkable constancy over time along the 3 days,

thus showing the stationarity of intra-day statistical properties

of Internet traffic, with minimal impact of the diurnal cycle.

Interestingly, a careful inspection of the Median-LDs for

C2(j), Fig. 4 (top right), still shows a residual 24-h modulation

(C2(j) computed during 6-h day-time blocks differ from

those computed during 6-h night-time blocks). The Source

IP Address has been chosen here as flow (hashing) key for

sketching traffic. This allows trinocular (produced from a

same IP Address) traffic to be concentrated into a single sketch

output. However, this generates a response traffic, far lower in

volume yet anomalous, which is not similarly concentrated.

Robustness to that response traffic is indeed not achieved by

hashing on Source IP Address, but would instead be obtained

using Destination IP Address as the hashing key. In practice,

one should thus ideally perform hashing on both Source

and Destination Addresses. This indicates that LD C2(j)
corresponding to a refined and detailed analysis of statistical

properties at all statistical orders, i.e., beyond correlation, may

thus be more impacted by remaining anomalous traffic than

are LDs C1(j) and log2 Sd(j), which essentially quantifies the

2nd order statistics.

B. 15-Min Traces

Fig. 5 reports, for the 15-min traces, the Median-LDs (top)

and compares the scaling exponents, as a function of trace

collection time, estimated from Median-LDs to those of

Global-LDs, for CS (middle) and FS (bottom). Global-LD

estimates show a very large daily variability, far too large to

be consistent with statistical estimation fluctuations. Common

practice would trust such estimates, and lead to the (incorrect)

conclusion that traffic scaling is not a robust property, as

estimates keep changing. However, automated inspection of

MAWI traces shows that there is almost no single day with-

out significant anomalies [27], [59], [66], [67]. Global-LDs

are thus essentially shaped by anomalous traffic. Conversely,

Sketch-LDs (top row) and the corresponding estimated scaling

parameters display a significantly reduced variability from one

day to the next. Such variability is consistent with bootstrap-

estimated statistical fluctuations, following procedures well-

assessed in [50]. These observations constitute a significant

indication for constancy of CS scaling over the 14 years.

Further, inspection of Fig. 5 shows an actual (mild yet

clear) change in scaling exponents and scaling ranges,

separating two roughly piecewise constant periods, from

Jan. 2001 to June 2006 and from Oct. 2006 to Dec. 2014,

respectively. Interestingly, summer 2006 corresponds to the

link update, mentioned in Section II. This shows that a network



reconfiguration, even if major (significant increase of the

available bandwidth), does not change drastically the

general shape of the scaling properties in traffic (notably

biscaling remains), but affects, though only marginally,

scaling exponents and scaling ranges: Notably, ∆F and ∆τ

are both slightly decreased (cf. Fig. 3), which motivates

the changes in the scaling range selection reported in

Sections IV-B.3 and IV-B.4. The remaining variations of

Median-LD estimates of H at both CS and FS, around years

2004-05 (cf. Fig. 5), correspond to the period of intense

Sasser virus traffic. They show that once a given anomalous

behavior becomes the dominant traffic, the sketch procedure

considers it as the normal traffic and ceases to provide

robustness against it [27].

C. Partial Conclusion 3

Median-LDs show unambiguously that Internet traffic

exhibits remarkable constancy of its statistical and scaling

properties, both at CS and FS, both for intra-day variability,

with no impact of diurnal cycles acting as a nonstationary

trend, and for long-term evolution: The scaling properties in

MAWI traffic do not significantly change along the 14 years,

neither in the shape of the LDs (biscaling is a robust property)

nor even in the value taken by the scaling exponents, and this,

despite the major changes undergone by the Internet during

the last decade.

VI. NATURES AND ORIGINS OF SCALING

This section investigates the nature of scaling (LRD

or multifractality), by systematically analysing scaling

parameters H, c1 and c2 estimated off Median-LDs, at both

CS and FS. Potential mechanisms for the origins are also

investigated quantitatively.

A. Coarse Scales

1) Nature of Scaling: For the 6-hour blocks of the 3-day

trace, Median-LDs estimate H ≃ 0.92 ± 0.03, consistently

along the 3 days (Fig. 4, middle left plot). This is consistent

with the 15-min traces whereH is observed to remain confined

in the range 0.8 ≤ H ≤ 1, with typical values around

H ≃ 0.94± 0.03 after 2006, while H is found slightly lower

H ≃ 0.86± 0.04 before 2006 (Fig. 5, middle left plot). Such

values of H are extremely consistent with earlier measures

on the same traffic [27] as well as on many other different

traffics [1], [5], [18], [20], [54]. It is also consistently observed

that c1 ≃ H and c2 ≃ 0 (see Figs. 4 and 5, middle row,

left plots) thus indicating no multifractality at CS. This is

consistent with [20] that reported no evidence of multifractality

on Auckland Traffic in an equivalent range of time scales. It

is also interesting to note that besides the decrease of ∆F

(visible in Fig. 3, left), the link upgrade in 2006 has a fairly

limited impact on scaling at CS.

2) Origins: As recalled in Section I, a mechanism was

proposed to explain LRD in Internet Traffic, by relating it

to the distribution of Internet object sizes via a generic heavy

tail On/Off superimposition mechanism [1], [12]. In essence,

this theoretical mechanism predicts asymptotic scaling in the

Fig. 6. Origin of scaling at CS: LRD versus heavy Tail. Flow size
distribution (measured in pkt) show heavy-tail behavior, with tail exponent in
exceptional quantitive agreement with Hurst exponent H at CS, as predicted
in [12].

limit of very large scales: it is hence naturally associated to

scaling at CS as defined in the present study. It, however,

raises the issue of selecting the range of scales where LRD

should be practically observed, in relation to heavy tails. As

reported in Section VI-A, CS scaling extends up to a scale

corresponding to data recording duration, and down to cut-

off scale 2JF . These findings, associated with the typical

H ≃ 0.9, are in agreement with the methodological analyses

of this asymptotic mechanism reported in [24], [42], and [64].

Further, the theorem in [1] and [12] predicts that, in the

limit of CS, Internet traffic time series should be asymp-

totically Gaussian self-similar, thus excluding multifractality

(i.e., c2 ≡ 0), again in agreement with empirical measurement

reported in the present study.

Despite the numerous efforts reported in the literature

(cf. e.g., [13], [68]), a quantitative validation of the theoretical

relation between heavy tail index α and H has turned out

to be difficult to obtain from real measurements. This can

been explained by practical difficulties in measuring the actual

Internet object distribution and its corresponding index, as

thoroughly documented in [24], [42], [64], and [68]. Following

insights offered by the use of the Cluster Point process (CPP)

model in [18], we explore here this generic link between LRD

and heavy tail by studying the distribution of the flow sizes

(in number of pkts). The estimation procedure for H and

α, in particular in terms of selecting the ranges of scales

and quantiles over which to conduct the linear regressions,

carefully follows the methodology devised in [42] and [64].

The combined use of two methodological ingredients (multi-

scale analysis and random projections) with the exceptional

duration of Internet data (3-day trace), enables us to measure,

on one hand H = 0.9 ± 0.05 for the pkt arrival process,

and on other hand, α = 1.19 ± 0.05 as the tail index

of the flow size distribution, as illustrated in Fig. 6. The

theorem in [1] and [12] predicts a relation H = (3 − α)/2,
which turns here into a remarkable match (3 − 1.19)/2 =
0.905± 0.025. To the best of our knowledge, this constitutes

a quantitative agreement of unprecedented-quality between

the theoretical prediction and empirical measures obtained on

actual Internet traffic collected on real commercial links (see a

contrario [42], [64] for simulated or Grid traffics).

3) Partial Conclusion 4: The present longitudinal study

clearly shows robust and strong LRD with no multifractality

for Internet traffic at CS, i.e., beyond 1s, moreover in close

quantitative agreement with the tail exponent of flow size.



B. Fine Scales

1) Nature of Scaling: The parameter H measured at FS

should theoretically not be referred to as the Hurst parameter,

which is in essence associated to LRD, a CS property. Yet,

H , measured as a scaling exponent across FS, preserves the

key interpretation of accounting for a scaling property of the

correlation, though within a finite range of (fine) scales. It is

thus from now on labeled h, in reference to its link to the

Hölder exponent, to which it should rather be associated in a

multifractal setting (cf. e.g., [50]).

Fig. 4 (bottom row) shows that, for the 6-hour blocks of

the 3-day trace, h ≃ 0.70 ± 0.02 and that c2 ≃ −0.025 ±
0.013, with clear departure from c2 = 0. Fig. 5 (bottom

row) shows that FS scaling parameters on the 15-min trace

along the 14 years take roughly piecewise constant values

in the two periods separated by the link upgrade mid-2006:

h ≃ 0.57 ± 0.03, c2 ≃ −0.017 ± 0.012 before 2006, and

h ≃ 0.64 ± 0.03, c2 ≃ −0.044 ± 0.019 after 2006. For both

periods, H ≃ c1 + c2 and the latter estimates are satisfactorily

consistent with those measured on the 3-day trace collected

in 2013.

Global-LDs c2 are found close to 0 (both for the 6-hour

blocks of the 3-day trace and consistently for the 14 years

of 15-min traces), which, if taken for granted, would lead

to conclude that scaling at FS traffic is not multifractal,

However, Median-LD c2 are consistently strictly negative

along the 14 years and for the 3-day trace, with confidence

intervals either obtained by bootstrap or as an average across

sketch outputs, excluding 0. This unambiguously suggests

that Internet scaling at FS is better described by multifractal

models, than by LRD ones. This is consistent with a number

of contributions reporting multifractality in Internet traffic at

scales of the order of 100ms on numerous different types of

traffic and networks [14], [15], [25], [34], [35], [41], [42].

Conversely, [20] reported a lack of evidence for multifractality

in Internet traffic. However, in all earlier studies (including

ours [20]), multifractality was analysed without recourse to

random projections that brings robustness, and with tools (such

as wavelet coefficients or increments) that are now known to

have a low ability to discriminate c2 < 0 from c2 = 0 and

thus are not good to unambiguously assess multifractality (see

a contrario [41]).

2) Origins: Temporal burstiness of Internet traffic time

series has been consistently reported, with bursts occurring

over many different scales ranging from tens to hundreds

of milliseconds (cf. e.g., [28], [47]). Multifractality naturally

provides a relevant framework to model temporal burstiness

(e.g., [37]). Fig. 5 (bottom right plot) further shows that

the link upgrade in 2006 does not create nor obliterate

multifractality at FS. Yet, the link update, and corresponding

increase of bandwidth, induce a change in scaling parameters

that, though not large in amplitude, appears as clear and

robust: Stronger global structure in the correlation of Internet

traffic at FS (increase of h and c1) with yet larger variability

beyond correlation, i.e., increased burstiness (increase of |c2|).
Multifractal scaling over FS constitutes an important statistical

feature of Internet traffic, with notable impact of network

performance (cf. e.g., [40], [69]). However, in contradistinction

to CS, no clear and well recognized mechanism has been

proposed to explain scaling at FS.

While scaling at CS has been related to flow sizes, scaling

at FS has rather been associated to packet injection mech-

anisms, that is essentially to the TCP congestion control,

designed to regulate traffic. For instance, [47] described how

TCP self-clocking shapes the packet interarrivals within TCP

connections and thus the FS temporal dynamics. TCP has

thus been envisaged as one of the mechanisms potentially

producing or modifying burstiness and hence multifractality

or scaling at FS [8], [15], [18], [33], [69]. The importance

of time scales below the Round-Trip-Time (RTT) in Internet

traffic temporal dynamics, has been evidenced (e.g. [47]).

The relation and strength of scaling with respect to other

queuing mechanisms (such as bottlenecks and congestions)

has been further documented [16]. In [69], it was shown

that protocol related burstiness contributed strongly to the

form of the LDs over (what corresponds here to) FS, as did

network topology aspects, albeit in a very simple dumbbell

topology. In [70], it was shown that TCP congestion control

can propagate scaling between distant areas of the Internet.

In [42], varying TCP parameters was shown empirically to

modify the scaling parameters measured at FS in Grid Traffic.

TCP essentially relies on modifying a time window injection

mechanism, depending on bandwidth availability and traffic

congestion status: Large available bandwidth yields an additive

increase of the slow-start window per returning acknowledg-

ment packet, while loss detection results in a multiplicative

decrease. This mechanism, linked to a cascade mechanism,

has been envisaged in the context of Internet traffic in [37]

and [70] as a potential explanation for multifractality, together

with the protocol hierarchy of IP data networks [15], [69].

To quantitatively investigate the relations between the RTT

induced time scale and multifractality at FS, RTT has been

estimated for each flow using Karn’s algorithm [71], see

also [72] for further details. Here, the difference between

each TCP packet transmission time and the corresponding

acknowledgment reception time is measured. Retransmitted

packets are ignored to avoid ambiguous acknowledgments.

The typical flow-RTT is estimated as the median of such

RTTs. For one example 15-min trace, the empirical distribution

of RTT estimates is reported in Fig. 7a and appears to be

widely spread with several modes. Median-LDs are computed

from subtraces designed by conditioning on RTT (partitioned

in 4 classes as shown in Fig. 7a). They clearly suggest that

the frontier scale ∆F = ∆02
JF increases with RTT ∆R =

∆02
JR . Fig. 7a also illustrates that the lower limit of the FS

range is controlled by the packet IAT.

This RTT-conditioning procedure is applied to 100 ran-

domly chosen 15-min traces. Parameters H,h, c1, c2, JF are

estimated from the Median-LDs computed across the resulting

4×100 traces. For each of the classes, the median of JR is also

measured and its dispersion, JM , is estimated (as the median

absolute deviation). As expected theoretically, c1 and h are

highly correlated (ρ = 0.78) as they are essentially measuring

the same dynamical property at the 2nd-order statistic level.

The latter is thus removed from further analyses for clarity

of exposition. The Graphical Gaussian Model framework [73]



Fig. 7. Origins of scaling at FS: RTT. (a) Top, empirical histogram of RTT, class-partitioning. Bottom, Median-LDs conditioned to RTT quantiles. The
dashed-vertical lines correspond to the median RTT for each class of flows. LDs are normalized in amplitude for comparison. (b) Top: JF function of JR.
Bottom, c1 function of JM . The markers and colors of the data indicate the median RTT, as per the figure (a) bottom, on the left. (c) Top, Direct (upper
right triangle) and partial (lower left triangle) correlations between RTT distribution and scaling parameters. Bottom, corresponding Graphical Gaussian Model
analysis of partial correlations.

is used to assess direct and partial correlations amongst the

remaining 6 parameters. Partial correlation is classically used

to quantify how much dependency remains between two vari-

ables, once indirect correlations induced by the other variables

are removed. This leads to the graph of relations reported in

Fig. 7c and to the following comments and conjectures.

i) A weighted least square regression of JF against JR
(reported in Fig.7b) indicates that they are significantly corre-

lated and that JF ≃ JR (or ∆F ≃ ∆R), in clear agreement

with daily-median RTT reported in Fig. 3 for the 1176 traces.

Further, JF shows significant partial correlations with both

H and JM . RTT can be interpreted as a specific scale of

time, characteristic of a flow, and resulting jointly from inter-

actions between available bandwidth, flow size and destination

address. This typical time scale thus breaks the CS scaling

induced by heavy tails thus creating the frontier scale JF ,
whose value hence results from a competition between the

CS heavy tail and the FS packet injection mechanisms.

ii) The median RTTs JR is strongly correlated to its

dispersion JM but shows negligible partial correlations with

any other scaling parameter. Conversely, the intra-class RTT

dispersion JM shows significant partial correlations with all

scaling parameters. The large dispersion of RTTs (even within

classes) implies that a broad spread of time scales contributes

to temporal dynamics. A breadth of time scales, with no distin-

guishable roles, contributing to temporal dynamics constitutes

one potential known generic mechanism inducing scaling.

Further, partial correlations suggest that JM acts as a hub

controlling the values of c1 (thus h) and c2. Negative direct

correlations (Figs. 7b and 7c) between c1 or c2 and both

JR and JM indicate that a decrease of JR and JM induces

larger c1 and |c2|. This confirms that the modulation of both

c1 and c2 also stems from the competing CS/FS mechanisms.

A decrease in JR and JM may be a consequence of an increase

in available bandwidth. For instance, the link upgrade in 2006,

resulting into an increase of the available bandwidth, also

implies a decrease in JF and JR. This bandwidth increase

makes possible a much more active and efficient TCP control

mechanism, thus larger temporal burstiness and richer FS tem-

poral dynamics, which are quantified by an increase of both

c1 (stronger correlation) and |c2| (stronger multifractality).

iii) H at CS can be interpreted as not impacted by packet

injection mechanisms and thus as solely depending on flow

heavy tails.

3) Partial Conclusion 5: The present investigations provide

robust evidence that the multifractal paradigm offers a relevant

description of Internet traffic temporal dynamics at FS, notably

accounting for burstiness, consistently along the 14 years

studied here, as well as along the 3-day trace. They also

report quantitative and consistent empirical evidence, relating

the frontier scale ∆F and FS temporal dynamics to RTT ∆R

distributions, and thus to the TCP mechanism, in competition

with the heavy tail CS mechanism.

VII. DISCUSSIONS AND CONCLUSIONS

This longitudinal study over 14 years and across 3-days

suggests the following comments and conclusions related to

the scaling properties of Internet (MAWI) traffic, and echoing

the challenges raised in Introduction section.

A relevant study of scale invariance in Internet traffic

cannot be achieved without the combined use of multiscale

representations and random projections. The latter permit

statistical analyses that are robust to anomalous behaviors and

thus describe background regular traffic. The former allow

the range of scales where scaling behavior holds (through

wavelet coefficients) to be determined and allows for a better

discrimination of the nature of the scaling (wavelet leaders

enable one to discriminate multifractality, beyond LRD).



Scaling properties in Internet traffic do exist and are not 
caused by spurious non stationarity. They develop not within 
a single scaling range but across two scaling ranges, the coarse 
and fine scales. This biscaling regime is a robust property that 
holds within traffic monitored continuously along the 3-day 
trace. This biscaling regime thus provides practitioners with 
a paradigm to describe the statistical properties of Internet 
traffic over scales from ms (10−3s) to several hours (104s), 
impressively ranging over 7 decades. This biscaling regime 
is also a property that has remained remarkably stable both 
in terms of the qualitative shape of LDs and in the values 
of the scaling exponents across the 14 years of the present 
study, thus showing that the amazing evolution of services, 
applications, behaviors and of technological capacity increase 
(bandwidth, volumes, …) have not caused any significant 
changes in the temporal dynamics of Internet traffic time 
series. Particularly, in contradistinction to what has sometimes 
been proposed (cf. e.g., [23], [26]), the present study shows 
that neither the increase in bandwidth and traffic volume nor 
the constant evolution of applications and services, have led 
to the disappearance of scaling properties. They favor neither 
the disappearance of LRD at CS, nor the return to Gaussian 
statistics and reduced burstiness at FS – multifractal properties 
remains.

The scaling at CS (above 1s) is well described by LRD 
that models temporal dynamics at the covariance (2nd order 
statistics) level, with no need for recourse to multifractality. As 
often proposed qualitatively, we showed here an exceptional 
quantitative agreement with the heavy tail behavior of the flow 
size (number of packets) distribution, providing an empirical 
validation of the universal mechanism proposed in [12]. This 
CS scaling holds up to the coarsest scale practically available 
for the analysis (several hours in the case of the 3-day trace) 
and remains visible down to scales of the orders of 0.5s 
where competing mechanisms related to within-flow packet 
injection become dominant. Details of the CS/FS competition, 
governing in particular the definition of the corresponding 
scale ranges, depend on RTT. This forms a link between 
scaling properties and protocol-specific mechanisms which can 
be further explored in future work.

In the FS regime, from several hundreds of ms down to the 
typical packet IAT (below 1ms), scaling temporal dynamics 
are better described by multifractal properties. Notably, while 
it is sometimes incorrectly associated to LRD, the burstiness 
of Internet traffic time series is actually well accounted for 
by multifractality: the larger |c2| (multifractality) the more 
prominent the temporal burstiness. In contradistinction to CS, 
there is no universal mechanism proposed to described scaling 
at FS. Packet injection policies are driven by several protocols, 
the most prominent of which being TCP. TCP relies on a 
specific time scale, the RTT of a flow, that depends on flow 
size and destination, traffic volume and bandwidth. This study 
showed that the RTT distribution is very broad (see also [72]), 
thus producing a large continuum of time scales contributing to 
temporal dynamics and hence scaling. This study has provided 
quantitative evidence of the relations of scaling at FS with 
RTT. This is hence a possible mechanism producing scaling 
at FS, competing with scaling at CS, and thus producing the

biscaling regime. These links to RTT and TCP do not per

se explain multifractality. Therefore, the point made in the

present contribution is not that Internet traffic is multifractal

at FS, but rather that multifractal processes constitute an

efficient modeling of the statistics of Internet traffic at FS,

notably accounting for temporal burstiness.

The frontier scale separating the two scaling regimes ranges

from several hundreds of ms to 1s. It can be regarded as a typ-

ical time scale separating Internet users (human beings) gen-

erating/producing the contents transferred through the Internet

and hence to some large extent, the heavy tail of flow size,

and technological behaviors (packet injection protocols).

Instead of having recourse to a different description for

each scaling range, with no relation between the two ranges,

one may prefer to use a single model valid across all scales

(cf. e.g., [28] for the definition of an index of variability

across all scales). The Cluster Point Process model (CPP), put

forward in [18], provides a unique description of traffic across

all available scales in a hierarchical manner (clusters of point

processes) that accounts for flows and packets with-in flows.

By construction, the CPP model is asymptotically LRD at CS

when cluster size is heavy tailed, but being a point process

cannot be strictly multifractal in the limit of FS. However, the

extent to which it is well approximated as such across a large

range of FS is currently being investigated. While theoretically

appealing to describe Internet traffic, the CPP model is fully

parametric hence less versatile to accommodate real data.

Multifractal, and scaling exponents c1 and c2, can thus be

envisaged as alternative versatile semi-parametric features,

practically, relevant and useful for various network tasks (e.g.,

traffic characterization and anomaly detection, cf. e.g., [53]).
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