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A new approach for managing Android
permissions: learning users’ preferences
Arnaud Oglaza* , Romain Laborde, Pascale Zaraté, Abdelmalek Benzekri and François Barrère

Abstract

Today, permissions management solutions on mobile devices employ Identity Based Access Control (IBAC) models. If

this approach was suitable when people had only a few games (like Snake or Tetris) installed on their mobile phones,

the current situation is different. A survey from Google in 2013 showed that, on average, french users have installed 32

applications on their Android smartphones. As a result, these users must manage hundreds of permissions to protect

their privacy. Scalability of IBAC is a well-known issue and many more advanced access control models have

introduced abstractions to cope with this problem. However, such models are more complex to handle by

non-technical users. Thus, we present a permission management system for Android devices that (1) learns users’

privacy preferences with a novel learning algorithm, (2) proposes them abstract authorization rules, and (3) provides

advanced features to manage these high-level rules. Our learning algorithm is compared to two other well-known

approaches to show its efficiency. Finally, we prove this whole approach is more efficient than current permission

management system by comparing it to Privacy Guard Manager.

Keywords: Android permission, Access control model, Recommender System

1 Introduction
Defining privacy and thus protection of privacy is dif-

ficult. If at the end of the nineteenth century privacy

was “The right to be let alone” [1], it is hard to isolate

yourself in our digitalized world that has been created to

facilitate the flow of information [2]. Some people even

wonder if privacy still exists arguing that our digital life is

either shared or public [3]. Many researchers have taken a

more balanced view and propose solutions to control the

collection, analysis, and dissemination of personal infor-

mation, as well as solution to avoid intrusion/decisional

interference [4].

Smartphones have a predominant place in this digital

world. According to Gartner1, “the smartphone market

has reached 90 percent penetration in the mature markets

of North America, Western Europe, Japan and Mature

Asia/Pacific” in 2016. These devices being more and more

powerful, they includemore andmore applications. A sur-

vey fromGoogle and TNS/SOFRES [5] in 2013 shows that

French people have installed an average of 32.7 applica-

tions on their smartphone2; most of which are free. We
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performed an analysis of the 50 most downloaded free

applications on the Google Play Store. This study showed

that an Android application requests an average of 11.4

permissions, 5.72 of which can directly harm privacy.

Multiplying it by the number of applications per device

results in a total of 372.7 permissions and 184 of which

are highly dangerous to manage on each device. Each

of these dangerous permissions shall be carefully chosen

since some applications, not considered as trojan, collect

and sell users’ data under the guise of providing some ser-

vices. For instance, Yo3 is a free application whose unique

feature is sending a notificationwith the word “Yo” and the

current location to user’s friends. Yo requests a lot of per-

missions. Access to the contact list and the location seems

coherent. However, Yo also asks to have access to the iden-

tity information, the files, the pictures, and the camera.

The privacy policy of Yo states that the company collects

personal and activity data, shares them with companies

they trust, and keeps all these data indefinitely.

On Android, controlling access to applications is com-

plex. Until version 5.x (included), installing an application

is equivalent of granting all the permissions requested by

the application (more than 50% of Android devices are

still running version 4.x or 5.x in early 20174). Permission
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management is very limited: either you authorize every-
thing or you cancel the installation. Additional permission 
management systems (such as Privacy Guard Manager, 
Permission Master, XPrivacy, or DonkeyGuard) can be 
installed to enhance the basic native Android system by 
allowing users to modify permissions after the installation 
of applications. All these permission management appli-
cations follow an Identity-Based Access Control model, 
i.e., the user has to control every permission for every 
installed application. Although IBAC allows fine-grained 
access control, it is not suitable for managing hundreds 
of permissions. Scalability issue has been studied by the 
access control models research community that proposed 
the use of abstractions leading to high-level authorization 
rules making global access control policies more under-
standable. Nonetheless, applying these models requires 
to understand the associated abstractions and thus suf-
fer accessibility for non-technical users. More recently, 
Google has enhanced the native Android permissions 
management system in version 6.x by (1) allowing users 
to modify permissions at run time and (2) reducing the 
number of permissions. However, it is no more possible to 
have a fine-grained control on applications (more details 
are given in Section 2.2).
The ideal permission management should allow users to 

write high-level permissions without narrowing the capa-
bility of access control. High-level permissions will reduce 
the number of permissions and make the global policy 
more understandable. However, writing high-level poli-
cies being more complex, non-technical users would not 
be able to do it without help. In this article, we present 
a recommender-based system, called Kapuer (KAPUER is 
an Assistant for Protection of Users pErsonal infoRma-

tion), that assists people in managing permissions on their 
Android device. Kapuer includes a novel machine learn-
ing algorithm, based on an aggregation operator called 
Kagop (Kapuer AGgregation OPerator), to capture users’ 
preferences in terms of privacy. These preferences, when 
validated by users, are transformed into XACML V3 poli-
cies and then enforced by our XACML authorization 
management system. We have implemented Kapuer in an 
Android application based on the Xposed5 framework. 
It has been tested on Android 4.4 and is freely available 
to download at the following address: http://www.kapuer. 
org. Kapuer also includes additional permission manage-

ment features to enhance its efficiency in understanding 
and visualizing abstract authorization rules.
This article summarizes all our previous works on 

Kapuer. In [6], we proved the benefit of recommender-

based systems for writing policies. In [7], we introduced 
a first version of our problem-solving model as well as 
the initial Android prototype. In [8], we described the 
final Android implementation. This article extends [8] and 
presents the whole learning process. For the first time,

we detail the latest version of our aggregation operator

Kagop, which is the cornerstone of our learning algorithm.

We also describe the integration of Kagop in Kapuer.

And finally, we prove Kagop has better results than two

well-known aggregation operators for learning privacy

preferences on Android.

The rest of the article is structured as follows: In

Section 2, we review and discuss access control manage-

ment approaches applied to Android. In Section 3, we give

an overview of decision support system and we present

the generic architecture of Kapuer. Section 4 intro-

duces Kapuer’s problem-solving model and its instanti-

ation to the Android permission management context.

In Section 5, we detail the learning algorithm Kagop. In

Section 6, we introduce some features that complement

the learning process of privacy preferences. We evaluate,

in Section 7, Kapuer and Kagop on a real life scenario.

Finally, we conclude in Section 8.

2 Related works
In this section, we summarize different works related to

Android permission management.

2.1 High-level policies in Android

Access control models can be seen as design patterns

to help the specification of policies. They all consider

three main entities: the subject, the action, and the

resource. In addition, some access control models pro-

pose abstractions. For Barker [9], these abstractions (he

calls them categories) represent “any of several funda-

mental and distinct classes or groups to which entities

may be assigned.” One of the advantages of using abstrac-

tions is simplifying policies. For instance, Role-Based

Access Control (RBAC) [10] uses the concept of role to

group subjects according to their function in an organi-

zation. Other access control models propose abstractions

for other elements. Organization-Based Access Control

(OrBAC) [11] uses abstractions on all three main ele-

ments: roles abstract subjects, activities are for actions,

and views for resources. Some access control models are

designed for privacy like PBAC [12] that introduces the

intent of the subject or P-RBAC [13] that extends RBAC

with concepts like purpose, condition, and obligation.

An exception is Attribute-Based Access Control (ABAC).

ABAC does not introduce abstraction but is a specifica-

tion pattern to express authorization policies using any

abstraction.

Each model offers concepts and abstractions to guide

security experts in the writing of policies. Even if ana-

lyzing and implementing abstractions is time-consuming,

resulting authorization policies are more powerful and

easier to manage. But it requires security expertise for

writing authorization policies and most of mobile device

users lack this skill.



Some systems already use access control models to 
enforce Android permissions. For instance, CRêPE [14] 
uses context-related policies to control how applications 
can use their permissions. Detection of contexts triggers 
the activation of the policy to use.
MOSES [15] is also a system enforcing policy-based 

security on Android. MOSES relies on system compart-

menting to create isolated areas. Each area can be used 
to separate, for example, data and applications used for 
work and those for personal use. Although both CRêPE 
and MOSES allow Android to enforce high-level policies, 
they did not address the usability issue. Only skilled peo-
ple can write those policies or define contexts and security 
profiles.

2.2 Writing policies with a graphical editor
Until version 6.x, official Android releases did not provide 
any efficient tools to manage permissions. Many cus-
tom releases or applications give users a way to better 
control permissions (such as Privacy Guard Manager, Per-
mission Master, XPrivacy, or DonkeyGuard). Our study 
will concentrate only on Privacy Guard Manager (PGM) 
from CyanogenMod6 since all other applications have the 
same drawback. PGM is available in the settings menu of 
CyanogenMod and presents all installed applications. For 
each application, there is the list of its permissions. Users 
have the choice to select ON or OFF for each applica-
tion to allow or deny the permission. An option also exists 
to ask users to decide at the first time the permission is 
requested. Thus, the interface is very easy to master and 
requires no technical skills: only a simple action on the 
device for each permission.

Although the process is easy to learn, checking all per-
missions for every applications is painful. As a matter 
of fact, we have shown in introduction that French peo-
ple have to handle an average of 372.7 permissions. Few 
users will browse the whole list of permissions to pro-
tect their privacy. Although PGM is interesting when 
dealing with few applications, current smartphone envi-
ronment is much more complex and using no abstraction 
has difficulties facing scalability.
Google has improved its native permission management 

approach in Android version 6.0. First, permissions are 
requested at runtime (the first time applications require 
them) and users can change allowed/refused permissions 
at any time. Now, Android application developers shall 
manage the fact that their application may not have access 
to all the permissions listed in the manifest file. Google has 
also addressed the large number of permissions issue by 
introducing protection levels and groups of permissions. 
Each permission is associated to one of four protection 
levels. Permissions with level normal are considered as 
low-risk permissions and are automatically granted with-
out any user approval. Permissions with level signature

are related to communication between applications devel-

oped by the same organization. The requesting applica-

tion needs to be signed by the same certificate as the

application providing the service and declaring the per-

mission. In that case, the system automatically grants the

permission without any action required from the user.

Protection level signatureOrSystem works like signature

but concerns also the applications that are in the Android

system image. Finally, the last level, dangerous, contains

permissions with high risk for the user. There are 24 dan-

gerous permissions. To reduce this number, every danger-

ous permission is attached to one permission group. Nine

different groups exist, and each one of them represents

a resource or a set of resources like CALENDAR, CON-

TACTS or PHONE. For example, the group CALENDAR

consists in two permissions read calendar and write cal-

endar. To reduce the number of interactions with the user,

the new permission management works as follows. When

an application requests a dangerous permission, Android

does not ask the user to accept or deny that particular

permission. It asks the user to accept or deny the whole

permission group.

Thus, even if there exist more than 130 permissions

in Android, a user will be asked to grant or refuse per-

missions to a specific application only nine times at

most (one per group). Although this approach seems

more user-friendly, it has significant drawbacks in terms

of security. All permissions to access any network ser-

vices (3G/4G, NFC, Bluetooth) are associated to pro-

tection level normal. As consequences, users cannot

control network access and any application can com-

municate anywhere. In addition, this loss of control is

increased by the use of groups of permission. Indeed,

users’ control regresses even with dangerous permissions.

For instance, group PHONE includes seven permissions

(use SIP, call phone, read phone state, process outgoing

calls, read call log, write call log and add voicemail).

Thus, when a Voice over IP application requests permis-

sion use SIP which seems relevant, the user can only

grant the group of seven permissions. These permis-

sions are not all relevant to a VoIP application. Thus, to

limit the number of interactions with the users and cope

with scalability, Android 6.0 has decreased the privacy

protection capability of the system. These IBAC coarse-

grained permissions only give the user an illusion of

control.

2.3 Writing policies with a text editor

Textual editors use specific languages to write autho-

rization policies. Textual editors are less accessible than

graphical ones because the language must be learned and

understood before writing anything. However, these lan-

guages provide much more flexibility and the possibility

to create very powerful rules.



XACML V3 [16] (eXtensible Access Control Markup 
Language) is a language standardized by OASIS, for writ-
ing authorization policies. XACML uses attributes to 
build policies thereby works great with ABAC. Every secu-
rity element can be represented as an attribute. Then it is 
possible to create any kind of abstractions such as roles in 
RBAC, activities in OrBAC, etc. Genericity and flexibil-
ity are the main advantages of XACML but also its main 
flaw. Technical skills are required: understanding access 
control models to select suitable abstractions and write 
policies according to them. In addition, XACML is an 
XML language which is not known to be user-friendly for 
non-technical people. Thus, the whole process demands 
lots of technical skills and cannot be performed by owners 
of smartphones.

Arena et al. [17] have proposed an XACML-based 
extension of the Android’s security framework called 
SecureDroid. This tool allows users to define situations 
and specify which permissions are accepted or denied 
in these situations. Users can also be prompted when 
a permission is requested. This approach do not use 
abstraction so scaling up is still a problem. Stepien 
et al. [18] have worked on a graphical editor to help non-
technical users write XACML rules. With this editor, it is 
possible to choose an attribute, an operator, and a value 
to compare to. It makes writing rules possible without 
using an XML format. Nonetheless, understanding how 
abstractions work is still required.

3 A decision support system for writing

high-level policies
Allowing non-technical users to write policies by them-

selves is not a simple task. A graphical editor like PGM 
is easy to use but lacks efficiency. With hundreds of per-
missions to handle, using abstractions seems mandatory. 
These abstractions can be specified with textual editors, 
but it requires a lot of technical skills so it is not acces-
sible to the public. Non-technical users should be helped 
by a security expert to write authorization policies to pro-
tect their privacy but, of course, it is not possible to have 
an expert behind every smartphone user. Since none of 
these approaches is satisfying, we present our work which 
aims at (i) requiring no skill before being used like PGM 
and (ii) allowing non-technical users to write policies with 
abstractions.

We have chosen to create a Decision Support System 
(DSS) to help users write their complex policies [19]. DSS 
are a set of methods and techniques used to help someone 
facing a problem to make a decision [20]. We use a DSS 
to interact with users and understand how they want to 
protect their data. We present in this section our system, 
named Kapuer, applied to Android permission manage-

ment. It informs users when applications request permis-

sions, it learns how users react to requests, and it uses

these preferences to propose abstract authorization rules.

Kapuer consists in an architecture to interact with users

and control applications, and a problem-solving model

and an aggregation operator to learn users’ preferences.

3.1 Introduction to Decision Support System

The main goal of a Decision Support System is not to

make the decision on behalf of the user but instead to

give him precious information to understand the situa-

tion, to give parts of solutions, or possible alternatives to

allow him make the final decision [20]. Among the differ-

ent approaches of DSS, we have focused on recommender

systems. A recommender system works with a profile of

the user. It filters and analyzes information, extracts the

most useful to build knowledge about users, their prefer-

ences. By learning these preferences, the system is able to

propose solutions to the user by analyzing new informa-

tion each time new preferences are acquired. Thereby, the

system is always learning and adapting itself to the user.

Three types of recommender systems exist [21]:

1) Content-based recommendations rely only on objects

characteristics to make propositions. All available infor-

mation on the object can be used to describe it. For

example, a book can be described by a title, an author, a

release date, etc. To make recommendations, the system

compares objects to find those that seems to be the closest

to the user’s preferences. Content-based recommenda-

tions are very interesting with detailed objects. Because

they are seen as a set of characteristics, a new object can

be immediately proposed to users if its characteristics fit

their preferences. If users have always the same behav-

ior, the system will always propose relevant objects. The

drawback is the starting: when the system has no informa-

tion about user’s preferences, a learning period is required

before propositions can be relevant. Similarly, if users sud-

denly change their behavior, there will be a certain latency

before the system learns those changes.

2) Recommendations by collaborative filtering work

with the preferences of all people using the system. The

idea is if one user has similar preferences with other users,

then he should like objects chosen by such users. Thereby,

they can be relevant recommendations for him. Unlike

content-based, the system does not need much informa-

tion to start. It will quickly find other people with a close

profile. Collaborative filtering also works well with objects

that are hard to describe like emotions. However, this

approach also has some drawbacks. When few people are

using the system, finding a similar profile might fail. In this

case, recommendations will not be relevant. In the same

way, if a new object is added to the system, as long as it is

not chosen by some users, it will not be recommended.

3) Hybrid systems use both content-based and collab-

orative filtering. It allows getting rid of some flaws of

each approach. Content-based recommendations for new



objects in the system, collaborative filtering for users with 
few information to work with. A well-known hybrid rec-
ommender system is used by Amazon to create lists of 
similar items when a customer visits the page of an object 
or adds one in his basket.
Despite the advantages of hybrid recommender systems, 

we chose a pure content-based approach in Kapuer for 
two reasons. Firstly, using collaborative filtering requires 
to store every user’s privacy preferences somewhere on 
a server and protection of users’ preferences is complex 
[22, 23]. With a content-based recommender system, 
user’s preferences are stored locally and are not shared at 
all. Secondly, privacy recommendation can also be pro-
vided by a set of experts like in [24]. We think that privacy 
is by nature personal and these solutions do not allow 
experts to customize their recommendations to specific 
users. For example, the five authors of this article do not 
agree on what access should be granted to an application 
like Facebook.

3.2 Architecture of Kapuer
Figure 1 shows the global architecture of Kapuer with a 
clear distinction between the XACML access control part 
and the decision support part. The process begins when 
an application requests the access to one of the user’s pri-
vate information. This request is intercepted by the Policy 
Enforcement Point (PEP) (step 1) that creates a request 
in the XACML V3 format and transmits it to the Policy 
Decision Point (PDP) (step 2). The PDP is the decision 
unit; it compares the request with the access control pol-
icy. If one of the rules matches, the PDP sends back the 
associated decision (Permit or Deny) to the PEP which 
applies it on the Android system. If there is no matching,

the PDP returns decision “Not Applicable” to the PEP. No

matching rule means that our system needs to learn more

information about the user’s preferences regarding this

request. As a consequence, the PEP transfers the request

to the DSS. To gather information about the user’s prefer-

ences, the DSS interacts with him. Kapuer has two sorts of

interactions with the user:

1) When a request is sent by the PEP to the DSS

(step 3), Kapuer informs the user that an application

wants to access one of his private data. If possible, details

about the request are also given such as similar applica-

tions asking for the same permission or indications about

the permission asked. The user just needs to accept or

decline that request. Making a decision in the appropri-

ate context (i.e., when the user runs the application) is

easier than doing it out of the context of use; it limits

the cognitive load. Once the user has made his decision,

the DSS creates the corresponding XACML V3 rule for

that specific couple (application, permission) and puts

it in the policy database (step 4). Then, all the prefer-

ences regarding the attributes used in the request are

updated (more information on the preferences update can

be found in [7]). When the update process is completed,

Kapuer calculates a score reflecting the user’s preferences

knowledge level.

2) When the score of a request reaches a predetermined

threshold (found by experimentations), the system has

acquired enough information to propose a new abstracted

rule that covers a broader range of access requests. In

this interaction, Kapuer presents this rule to the user and

explains all the abstract elements (step 5). For example,

if a rule is proposed for all game applications, Kapuer

lists all games. If a rule is proposed for all resources

Fig. 1 The architecture of Kapuer



linked to networks, it details all the associated permis-

sions. This way, user are informed and even without any 
technical skills, they are able to understand what the rule 
means. Then they can accept or reject the proposed rule. 
If accepted, the DSS transforms the rule in XACML V3 
and adds it to the policy database (step 4 again).

4 Kapuer problem-solving model and its
instantiation to Android

In this section, we present our problem-solving model 
that represents the users’ privacy preferences. This model 
is used by our learning calculus and is independent 
from any access control model. Thereafter, we instan-
tiate it to the context of Android permission man-

agement where we define a specific access control 
model.

4.1 The problem-solving model

Our problem-solving model consists in four elements:

– Criteria—A criterion is the basic and main element

of our problem-solving model. It represents an

attribute of an access request like the name of an

application, a resource, or an action. We have defined

criteria to be very similar to attributes in ABAC. An

attribute-based request can be easily converted into a

list of criteria. The set of criteria is noted CR. Criteria
are composed of an identifier and two values. The

first value, gt : CR →[0,∞[, increments each time

the user accepts a request including this criterion.

The second value, f t : CR →[0,∞[, increments each

time the user refuses a request including this

criterion. This dual unipolar scale gives much more

information than a unique bipolar scale. We can

easily differentiate if a criterion has a low preferences

value because we have few information on user’s

preferences or because users do not always behave in

the same way (sometimes they accept requests with

this criterion and sometimes they deny them). The

preferences score regarding criterion c can be found

by subtracting f t(c) and gt(c). We define two

preferences scores. The disclosure preference score

stD(c) = f t(c) − gt(c) of criterion c at time t and the

dual preference score about non disclosure

stnD(c) = gt(c) − f t(c).

– Classes of criteria—We introduce the notion of

class of criteria to express security objects introduced

in the access control models like visibility, temporal

and spatial aspects, retention, or purpose. Each

criterion is part of a class with relation Association

Criterion Class: ACC ⊆ CR × C where the set of

class of criteria is noted C. It is possible to create any

class depending on the type of data used by the

system. The set of criteria of a class is defined by the

function class :

class : C → P
CR

x �→ {y ∈ CR|(y,C) ∈ ACC} (1)

– Meta-criteria—Access control models propose

abstractions of security objects. We define the notion

of meta-criterion to represent these abstractions. For

instance, “Games” is a meta-criterion for applications

describing this kind of application. A meta-criterion

is a criterion, with the same structure but with a

higher level of abstraction. The set of meta-criteria is

notedMCR whereMCR ⊂ CR. A meta-criterion is

also part of a class. Each criterion is linked to one

meta-criterion of the same class. A meta-criterion

can be linked to another meta-criterion of a higher

level. Then, we can create a hierarchy of criteria and

meta-criteria for each class, noted by transitive

relation Hc such that (x, y) ∈ Hc means that criterion

y is a meta-criterion of x and class(x) = class(y) = c.

Values of meta-criteria are updated each time a

criterion or a meta-criterion linked to it is updated.

Then if a criterion is updated, all meta-criteria in the

same branch of the hierarchy are also updated.

– Groups of criteria—We have defined groups of

criteria to represent the interactions (links or

conflicts) between criteria or meta-criteria from

different classes. A group of criteria is formed by at

least two criteria and at most by the number of

classes. A group has its own preferences values f t and

gt (and therefore its two preferences scores stD(x) and

stnD(x)). The preferences scores are not calculated

based the values of the criteria or meta-criteria

present in the group. Values of groups are updated

each time all the criteria or meta-criteria of the group

are present in a request. The larger a group is, the

more important it is because it conveys more detailed

information about users preferences. The set of

groups of criteria G is defined by:

G ⊆ P
CR.

A group of criteria is composed by at least two

criteria.

∀g ∈ G, |g| ≥ 2

Two criteria of a same group cannot belong to the

same class.

∀g ∈ G,∀(c1, c2) ∈ g×g, c1 
= c2 ⇒ class(c1) 
= class(c2)

4.2 The problem-solving model instantiation

When Kapuer intercepts a permission request, informa-

tion about the application and the permission (i.e., what

action on what service) is collected. Thus, we have defined



three classes to implement our problem-solving model: 
Applications, Actions, and Resources. Criteria of class 
Applications are represented by the name of the appli-
cations that are installed on the device. Kapuer retrieves 
the first level of meta-criteria from the application cat-
egories provided by the Google Play Store (e.g., games, 
entertainment, work, etc.). We have created a meta-

criterion called no category for the applications that are 
not included in the Google Play Store. Finally, we added 
meta-criterion all applications to group all the meta-

criteria of this class (Fig. 2). Criteria of classes Actions 
and Resources are extracted from the permissions (e.g., 
“android.permission.READ_CALENDAR” contains crite-
ria READ and CALENDAR). We chose for class Resources 
to use meta-criteria media, network, service, user data, 
and system data. We added meta-criteria hardware (supe-
rior to media, network, service) and data (superior to user 
data and system data). Finally, the root of this hierarchy 
is meta-criterion all resources (Fig. 3). With the same rea-
soning, we have extracted criteria from the permission 
list for class Actions. We have defined three meta-criteria 
: local access (regrouping criteria execute, control, read, 
and write), external access (regrouping criteria send and 
receive), and the root of the hierarchy called all actions 
(Fig. 4).
Classes Resources and Actions are fixed; their crite-

ria and meta-criteria remain always the same regard-
less the user’s device. Meta-criteria of class Applications 
are also fixed. However, criteria of class Applications 
will depend on which applications are installed on the 
target device.

Fig. 2 Hierarchy of criteria for class Applications

Fig. 3 Hierarchy of criteria for class Resources

5 Our privacy preferences learning algorithm
Our privacy learning algorithm relies on Multi-Criteria

Decision Analysis (MCDA), which is a set of methods

used to solve complex problems where a mono-criteria

approach cannot. Zeleny [25] said “It is only when fac-

ing multiple attributes, objectives, criteria, functions, etc.,

that we can talk about decision making and its theory. As

alternatives of choice becomemore complex and are char-

acterized by multiple attributes as well as multiple objec-

tives, the problem of combining these various aspects into

a simple measure of utility becomes more difficult and

less practical.” A method frequently used in MCDA is

to decompose alternatives of a problem into criteria and

aggregate their values to calculate an utility score. Then,

alternatives can be ranked by score and recommended

to users. In the following section, we present our own

aggregation operator called Kapuer aggregation operator

(Kagop).

5.1 Kapuer aggregation operator

When applications request permissions to access some

services, the request is decomposed into a set of crite-

ria. For instance, “Facebook tries to read the contact list”

is seen as criteria Facebook of class Applications, Read of

class Actions, and Contact list of class Resources. Kagop

also computes all the possible groups based on the crite-

ria included in the request (for instance, {Facebook,Read}

or {Social apps, Read, Contact list}). Figure 5 shows the

decomposition of the Facebook request with our problem-

solving model. The result is 3 criteria, 7 meta-criteria,

Fig. 4 Hierarchy of criteria for class Actions



Fig. 5 Decomposition of a request in criteria, meta-criteria, and

groups of criteria

33 groups of criteria of size two, and 36 groups of size

three. Groups of size three are actually the possible alter-

natives of abstract rules that Kapuer can propose to the

user. Groups of size two helps to better evaluate interac-

tions between criteria. At the same time, Kapuer asks the

user to make a decision (Accept or Deny the request) and

records it (see Fig. 6). This interaction is displayed only if

Kapuer has no authorization rule to matches the request

(corresponds to the step 3 in Fig. 1). This decision allows

Kagop to update f t and gt for every criteria, meta-criteria,

and groups.

Fig. 6 Interactions of Kapuer during the learning phase

If later, the user accepts to disclose the contact list

to Twitter and to Instagram, the value gt of alternative

{Social apps, Read, Contact list} will increase each time

whereas low-level alternatives {Facebook, Read, Contact

list}, {Twitter, Read, Contact list}, and {Instagram, Read,

Contact list}) will increase once only. Thus, the preference

score stD of alternative {Social apps, Read, Contact list}will

be higher.

By learning preferences on criteria, meta-criteria, and

groups of criteria, Kapuer is able to understand this kind

of relations and to propose to the user a rule that permits

the disclosure of the contact list to all social applica-

tions. Kagop calculates the utility score of an alternative as

follows.

Let AR be an alternative of request R and CAR the set

criteria of alternative AR. The set of possible criteria and

meta-criteria for building alternatives is:

PCA = CAR ∪ (∪x∈CAR
{y|(x, y) ∈ Hclass(x)}) (2)

Finally, the set PGA of possible valid groups built on

alternative AR is formed by the intersection between the

set of all valid groupsG and the power set of PCA such as:

Algorithm 1 Score SAR calculus

if the request was accepted then

SAR =

∑

∀c∈PCA stD(c) +
∑

∀g∈PGA stD(g)

m

else

SAR =

∑

∀c∈PCA stnD(c) +
∑

∀g∈PGA stnD(g)

m

end if

wherem is the number of groups.

Once the system has calculated the scores of all alter-

natives, it selects the best one to update the user’s prefer-

ences (i.e., f t and gt of criteria and meta-criteria in PCA

and groups in PGA).

5.2 Preferences update

The best alternative is considered by our system as the

most representative of the user’s behavior. As conse-

quence, we calculate the weighting factor used to update

the preferences values of all criteria, meta-criteria, and

groups of criteria based on this alternative score, noted

SbestAR
.

Updating the preferences values allows Kapuer to refine

its representation of the user’s preferences. When the

request has been accepted, only gt(x) for all x ∈ PCA ∪

PGA is updated. Conversely, when the request is denied,

only f t(x) is modified. Then, if a user behaves consistently,



only gt(x) or f t(x) will have high values resulting in high
values of stD(x) or stnD(x). High values of preferences scores 
for some criteria, meta-criteria, and/or groups x (either
stD(x) or stnD(x)) denote a good representation of the user’s 
preferences on them.

The update calculus is a very important step of the pref-
erences learning. Indeed, it determines the learning speed 
and accuracy of the algorithm. Choosing good update 
algorithm is complex and requires the appropriate bal-
ance between maximizing the accuracy of the preferences 
and minimizing interactions with the users. If the system 
learns users’ preferences slowly, it needs to interact more 
often with the user but preferences values are more repre-
sentative. On the contrary, if the system learns preferences 
quickly, interactions with the user are less frequent, but 
there is a risk of less accurate preferences, which might 
lead to irrelevant propositions. We have developed a sim-

ulator [26] that provides metrics to evaluate the accuracy 
and the number of interactions during a learning pro-
cess. The simulator allows to specify a given user model 
through a set of predefined privacy policies. Then, the 
simulator can create random requests, automate the inter-
actions with users by using the predefined user model, and 
execute the learning algorithm. This simulator allowed us 
to determine the update calculus by experimentation.
The value Mc to update criteria and groups, and the 

value Mmc to update meta-criteria are calculated as fol-
lows:

Mc = log(SbestAR
)

Mmc =
log(SbestAR

)

nc × nl

(3)

where nc is the number of criteria depending on the meta-

criterion and nl the number of level between the criteria

level and the one of the meta-criterion.

Based on these update values, we calculate the new

values of criteria, meta-criteria an groups as follows:

The update affects all the criteria, meta-criteria, and

groups of criteria involved in the request. Once the update

is finished, the system verifies if the best alternative can be

proposed to the user.

5.3 High-level proposition

Proposing abstract rules to users is the last step of our pro-

cess. After the update, a proposition score is calculated

and, if it is high enough, Kapuer interacts with the user to

propose him a new high-level rule. These rules must have

an interest for the user otherwise he does not accept them.

An irrelevant abstract rule is no more than a disturbance

and can lead the user to stop using the system.

Interaction in Fig. 7 is an example of a high-level propo-

sition. It offers information about all abstractions used

in the rule. Here, there are only meta-criteria so Kapuer

Algorithm 2 Update calculus

for all x ∈ PCA ∪ PGA do

if x is a criterion or a group then

if the request was accepted then

gt+1(x) = gt(x) + Mc

else

f t+1(x) = f t(x) + Mc

end if

else if x is a meta-criterion then

if the request was accepted then

gt+1(x) = gt(x) + Mmc

else

f t+1(x) = f t(x) + Mmc

end if

end if

end for

details all criteria contained in each meta-criteria to help

the user understand exactly what this new rule will do if

he accepts it.

Making a proposal implies that the action associated to

it is strictly preferred as its contrary. In other words, either

the user agrees to disclose the resource either he does not.

If the system cannot make a proposal, it comes from no

real preferences between the two actions. Two situations

can lead to this non-preference:

Fig. 7 Proposition of a new high-level rule



– The system does not have an accurate representation

of the user behavior, therefore lacks data on his

privacy preferences;

– The user does not behave consistently. In that case,

the system cannot infer his behavior and make a

proposition.

This situation of non-preference is captured in the

relational system of preference [27] that consists in the

following two fundamental situations:

– Indifference ∼ or non-preference where there are no

clear reasons to choose one action on the other.

∼: a ∼ a′ ⇔ aIa′ (4)

I is a binary relation, symmetric, and reflexive.

– Strict preference ≻ where there exist clear reasons to

justify that one action is significantly preferred to the

other.

≻: a ≻ a′ ⇔ aPa′ (5)

P is a binary relation, asymmetric, and irreflexive.

Kapuer recalculates with Algorithm 1 the score St+1
AR

of last best alternative with the new values f t+1(x) and

gt+1(x). Then this score is compared to λ, a parameter

corresponding to the threshold between the relation of

indifference and of strict preference. If St+1
AR

is lower than

λ, there is indifference and no proposition can be made.

If St+1
AR

is greater than λ, there is strict preference and

the rule composed by the criteria and meta-criteria in the

alternative can be proposed to the user. λ is a parameter

that affect the speed of proposition making. A small value

leads to make propositions faster with less time to learn

preferences. A high value leads to more time to learn pref-

erences and also more time before propositions are made.

We used our simulator to run experimentation, and we

conclude that the most satisfying value for λ is 3.5.

When St+1
AR

is greater than λ, a new proposition is made

to the user during a new interaction. The system proposes

to add in the policy base a new rule where the attributes

are the criteria and meta-criteria of the chosen alternative

combined with the right decision. The user can accept or

refuse the rule. Because the rule is abstract and can con-

tain meta-criteria, details about them must be present.

Then, the user can take an informed decision about his

privacy. If he accepts the abstract rule, the DSS trans-

forms it into XACMLv3 and adds it to the access control

policy database to be considered for next requests by the

authorization engine.

6 Post learning permissionmanagement
Finally, Kapuer also offers a more classic interface for

viewing the privacy policy and features to modify it.

Figures 8, 9 and 10 shows three screenshots of the appli-

cation. Users can access the list of all rules and have a

description for each one (Fig. 8). They can also edit each

rule and modify it on four parts: the application, the

resource, the action, or the decision (Fig. 9). Except for

the decision, they can modify the level of abstraction if

needed. We added a summary of all permissions granted

to an application (Figure 10). This view provides detailed

information about permissions handled by Kapuer.

7 Evaluation of Kapuer for managing Android
permissions

We evaluate in this section Kapuer’s and Kagop’s effi-

ciency against a real life scenario. Firstly, we compare

Kagop to two other well-known aggregation operators.

Secondly, we compare Kapuer to Privacy Guard Manager.

Finally, we evaluate the speed of the learning process of

our approach.

We setup our experimentation as follows. The same sce-

nario is used in the three evaluations. First, we installed

the 50 most downloaded free applications in the Google

Play Store. It resulted in 28 games, 4 social apps, 4 com-

munication apps, 4 widgets apps, 3 tools, 3 entertainment

apps, 2 apps about music, and 2 apps about travel. Then,

we defined the following arbitrary user privacy prefer-

ences model expressed through the following high-level

authorization policy:

– Rule 1 : Games can access the Internet.

– Rule 2 : Social applications can access network and

system data.

Fig. 8 Rule information screen



Fig. 9 Rule modification screen

– Rule 3 : Communication applications can access

network and services.

– Rule 4 : Widget applications can access the Internet.

– Rule 5 : Music&Audio applications can access

network and audio.

– Rule 6 : Tools applications can access everything.

– Rule 7 : Travel&Local applications can access

network and GPS.

– Rule 8 : Entertainment applications can access the

Internet.

7.1 Kagop vs other aggregation operators

A multicriteria analysis requires the use of an aggregation

operator to reach the goal of a decision support system:

suggest one or many solution(s) to the decision maker to

help him to make a decision. We have presented in this

article Kagop our own aggregation operator, built to work

with Kapuer’s problem-solving model. In this section, we

compare Kagop with two other well-known aggregation

operators: the weighted mean and the Choquet integral.

(1) The weighted mean is an aggregation operator often

used for its simplicity and good result. It does not take into

account interactions between criteria. The weightedmean

is defined by:

ψ(a1, . . ., an) =

n
∑

i=1

wiai (6)

Fig. 10 Application information screen

with ai the value of a criterion and wi ∈ [0, 1] its weight

such as

n
∑

i=1

wi = 1 (7)

(2) The Choquet integral is an aggregation opera-

tor introduced by the french mathematician Gustave

Choquet [28]. It takes into account the importance of class

of criteria and interaction between criteria. Conversely to

the weighted mean that uses a weight on each criteria to

aggregate their scores and gives a global score to an entity,

the Choquet integral employs a capacity (also known

as fuzzy measure) to calculate weights for all groups of

criteria. A capacity is defined as follows:

Let N = 1, . . ., n a set of criteria. A capacity on N is a

function µ: 2N → [0, 1] with µ(∅) = 0,µ(N) = 1 and

µ(A) ≤ µ(B) if A ⊆ B.

Given µ belong to the set of all capacity on N, the

Choquet integral of x ∈ N with respect to µ is defined by:



Cµ(x) :=

n
∑

i=1

xσ(i)

[

µ
(

Aσ(i)

)

− µ
(

Aσ(i+1)

)]

(8)

where σ indicates a permutation of N such that xσ(1) ≤

. . . ≤ xσ(n). Also Aσ(i) = σ(i), . . ., σ(n) and Aσ(n+1) =

∅. The fuzzy measures in the Choquet integral allows to

understand the dependance between criteria and also the

importance of each criterion. Let have an example with 3

criteria and the following values of µ:

A c1 c2 c3
µ(A) 0 0.2 0.2

A c12 c13 c23
µ(A) 0.8 0.8 0.4

When looking at the first line of the table only, it seems

that c1 is not useful because its capacity is equal to zero.

However, we can see that when it is included in a group

with another criterion, it affects the group value. Thus,

c12 > c1 + c2 and c13 > c1 + c3. We used the plug-in

Kappalab [29] available for R to implement the Choquet

integral in our tests.

We implemented the three aggregation operators in our

simulator [26]. In this way, we could evaluate each opera-

tor on the same set of requests and the same user privacy

preferences model. We performed 10 simulations of 5000

requests each. The number of requests might seem very

high. Nevertheless, it ensures the whole policy is enforced

at the end of each simulation. In fact, requests being ran-

domly generated, the learning phase could be incomplete

with a lower number of requests. Aggregation operators

weighted mean and Kagop have been used without spe-

cific tuning. However, the performance of Choquet inte-

gral can be erratic depending on the scenario [7]. Thus,

we have configured it to have good result with this specific

experiment.

The Fig. 11 shows how many authorization rules were

created for each operator and each simulation. We can

see that the results of Choquet integral and Kagop are

close with an average of respectively 35 and 42 rules

created. The weighted mean results are higher with an

average of 74 rules created. There are a lot of interac-

tions between criteria in our test; therefore, the weighted

mean learns the user’s preferences slowly. It generates

more rules to complete the same user privacy preferences

model because the rules created by the weighted mean

have a lower level of abstraction and depends more on

criteria than on meta-criteria. Figure 12 displays the num-

ber of interactions needed to fully cover each rule of the

user privacy preferences model. Figure 13 shows the aver-

age of all interactions for each operator. Generally, we can

see that the weighted mean needs much more interac-

tions than the two other operators. Predictably, not taking

into account interactions between criteria decreases sig-

nificantly the efficiency of the learning phase.

Except for rule n1, Choquet integral and Kagop results

are pretty similar. Rule n1, which states that games can

access the Internet, is special. Indeed, in our test, meta-

criterionGames relates to 28 applications (out of 50). This

proves Kagop has good results when meta-criteria are

linked to lot of criteria.

These comparative results should be balanced by the

fact that the Choquet integral has required an initial con-

figuration dependant on the user’s preferences and a finite

set of criteria. This is a serious issue to deploy this oper-

ator in practice. We cannot configure the operator each

time the user installs or removes an application. We need

a generic configuration working with everybody. Kagop

does not need any initial configuration to work. It learns

privacy preferences on criteria, meta-criteria, and groups

of criteria to best fit on the user’s behavior. But this

advantage is also its main drawback. Groups of criteria

are function of the set of criteria and meta-criteria and

also of the number of classes of criteria. The size of a

group is equal to the number of classes of criteria. There

is a risk of combinatorial explosion. Nevertheless, with

three classes of criteria, the number of groups created is

Fig. 11 Number of created autorization rules



Fig. 12 Number of interactions needed to cover the user privacy preferences model

reasonable. This evaluation proves Kagop is suitable for

learning android high-level permissions.

7.2 Kapuer vs Privacy Guard Manager

We also evaluated the cost of writing this high-level pol-

icy using a classic system such as Privacy Guard Manager

(PGM) and Kapuer. This cost is calculated by the num-

ber of actions the user has to perform. For PGM, an

action consists in all pressures (screen navigation and

on/off flipswitches selection). For Kapuer, any interaction

as explained in Figs. 6 and 7 is an action. Since Kapuer

learning process is not predetermined and depends on

the received requests, a large number of tests must be

executed to get its average behavior. Thus, we also used

our simulator that can automate this task. We ran 10

simulations with the same high-level policy but with

different requests each time since they are generated

randomly. After each simulation, we checked the rules

recommended by Kapuer.

Figure 14 illustrates the number of actions needed to

write each rule of our privacy policy. It also shows that

Kapuer needs fewer actions than Privacy Guard Manager

for each rule. There is even a huge difference on the first

rule. It concerns all the applications with the category

“Games” and they represent 28 applications out of 50 so

more than the half. For this rule, Kapuer needs 61 actions

and PGM 476, so nearly eight times more. For rules num-

ber 2 and 3, the difference between Kapuer and PGM is

also important when it is closer for all the others. This is

due to the few number of applications involved in the last

rules. If we compare the whole policy, Kapuer required

190 actions only when PGM has needed 848 actions. The

abstractions in the high-level rules proposed by Kapuer

are really providing a faster process for the user to fulfill

his privacy policy. We have also looked at these high-level

rules in details to see if some of them do not fit the user’s

preferences. None of the created rules proposed the oppo-

site of what the high-level policy stated. Nevertheless,

some of them did not have the right level of abstraction. It

happens that a rule is proposed to the user with a higher

abstraction than needed so it does not totally fit the user’s

behavior.

7.3 Evaluation of the speed at which Kapuer learns

privacy preferences

The number of interactions needed to recreate one rule or

all the policy provides information about the effort needed

by users. It is also interesting to see how fast Kapuer is

Fig. 13 Average number of interactions



Fig. 14 Comparison of Privacy Guard Manager and Kapuer

learning and how the level of completeness progresses.

We compared, for each simulation, how many requests

were needed to reach, 20, 50, 80, and 100% of complete-

ness. The results are shown in Fig. 15. At the beginning,

Kapuer does not know anything about the user’s prefer-

ences. It needs requests to learn his behavior and to start

proposing high-level rules. The first rule is proposed on

average after 50 requests. Then, the average number of

requests to reach the first threshold, 20% of completeness,

is 75. For the second threshold, 50%, the average num-

ber of requests is 104. For the 80% threshold, the average

number of requests is 123, and finally 100% of com-

pleteness needs an average of 190 requests. From these

simulations, we calculated the global average complete-

ness. Figure 16 shows the average of completeness at 10,

20, 30%, etc. It confirms that after learning from the first

requests, Kapuer proposes regularly rules until the policy

is nearly complete. Then, the process to achieve 100% of

completeness is slower. This learning speed could still be

improved. Today, Kapuer starts without any initialization

and has to learn users preferences from scratch. With an

initialization on these preferences, the number of requests

needed to propose the first rule could be reduced.

8 Conclusions
We have presented in this article a custom permis-

sion management system for Android 4.4. Unlike other

approaches, Kapuer does not only provide a way to mod-

ify what permissions an application can use. It learns from

users’ behavior to help them and advise them by propos-

ing rules with different levels of abstractions. This way,

they can protect their privacy more easily, without need-

ing knowledge about access control models or policy’s

structure. We have also presented a detailed description

of our learning engine. Kagop exploits all the concepts

of our problem-solving model to take into account inter-

actions and conflicts between criteria. Compared to two

other methods, Kagop achieved good results. Evaluations

on Kapuer show that hundreds of permissions can be

handledwith a limited number of actions by using abstrac-

tions. When Android 6.0 sacrifices control of privacy for

the sake of simplicity with concepts of protection levels

Fig. 15 Completeness comparison



Fig. 16 Average of completeness

and groups of permissions, Kapuer learns and proposes

both fine-grained and abstract privacy rules. In addition,

Kapuer supplies users with features to control the level of

abstraction of privacy rules.

The current version of Kapuer runs on Android 4.4. For

short-term future works, we will upgrade it to Android

version 6.x or later in order to benefit from the new per-

mission management system introduced in Android 6.0.

For the moment, each time a request is denied, Kapuer

makes Android act as if the application does not have the

permission. Since developers of Android 4.4 applications

do not manage this case, some applications crashed. This

issue will be resolved on Android 6.0 because now devel-

opers shall handle permission verification before trying to

use it. We will also take advantage of the new Android

permission request interception to implement our inter-

actions with users. Finally, we will integrate new Android

6.0 information (protection levels and groups of permis-

sion) as new meta-criteria. As a consequence, Kapuer will

be easier to maintain.

One of the initial goals when we designed Kapuer was

to inform people about privacy risks. For longer term

research, we want to go further in that direction and

not only inform people but also educate them about pri-

vacy issues. As an example, we need to explain them the

consequences of granting some permissions to an applica-

tion using approaches like privacy mirrors [30]. The more

people understand these risks, the better their privacy

decisions will be.

Finally, Kapuer learns users preferences from scratch.

A significant number of requests is needed before any

proposition can be made to the user. It is possible to

improve the beginning of the learning phase by initial-

izing the system. Making surveys with different kind of

users can help to find the best way to initialize these users’

preferences.
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