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Remarks on Nash equilibria in mean field game models with a

major player

P. Cardaliaguet∗ M. Cirant† A. Porretta‡

November 6, 2018

Abstract

For a mean field game model with a major and infinite minor players, we characterize a
notion of Nash equilibrium via a system of so-called master equations, namely a system of
nonlinear transport equations in the space of measures. Then, for games with a finite num-
ber N of minor players and a major player, we prove that the solution of the corresponding
Nash system converges to the solution of the system of master equations as N tends to
infinity.

Introduction

The aim of this note is to discuss the model of a mean field game (MFG) with a major and many
minor players. Let us recall that MFGs describe Nash equilibrium configurations in differential
games with infinitely many small players.

MFG problems with a major player are differential games in which infinitely many small
players interact with a major one. This class of problems was first introduced by Huang in [17]
and later studied in various forms and different frameworks in several papers [2, 3, 4, 5, 8, 9, 10,
11, 13, 14, 18, 22, 24, 25, 26, 28]. In the literature, the notion of solution is often that of Nash
equilibria and, in the present paper, we will concentrate on this notion of solution. Let us point
out however that this is not always the case in the above quoted references: for instance, [2, 3]
(see also [24]) study Stackelberg equilibria (in which the major player announces in advance
his strategy); [13] deals with the (closely related) problem of principal-agents; [4] considers the
situation where the small agents cooperate to play a zero-sum game against the major player.

Concerning Nash equilibria in the framework of MFG with a major player, Carmona and
Zhu [11] point out that the notion is rather subtle and not trivial at all. In fact, [11] (and,
subsequently, [8] and [10]) propose a notion of Nash equilibrium which differs from the classical
construction of [25, 26] (see Proposition 6.2 of [11]). In the same papers, it is proved by the
authors that this definition yields ε-Nash equilibria for the N ` 1-players’ game in the linear
quadratic case. Very recently, Lasry and Lions [22] introduce a new equation (the master
equation with a major player, see equation (2) below) which could give rise to yet another
notion of solution. Finally, one could also wonder if the limit of games with finitely many
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players (including a major player) as the number of small players tends to infinity would not
give rise again to a different notion of solution. The purpose of this paper is to show that the
approach by Carmona and al. [8, 10, 11], the master equation of Lasry and Lions [22] and the
limit of Nash equilibria, as the number of small players tends to infinity, lead to the same Nash
equilibria.

To explain our result, let us start with the differential game with N minor players and
one major player, which we describe through the following PDE system; the value functions
associated with the N minor players are denoted by uN,i (i “ 1, . . . , N) while the value function
of the major player is uN,0. To simplify the discussion, we assume that the players have only
individual noises. The Nash system reads (in p0, T q ˆ R

d0`Nd) (see Section 1 below for the
notations):
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´BtuN,0 ´
N
ÿ

j“0

∆xj
uN,0 ` H0px0,Dx0

uN,0,mN
x

q `
N
ÿ

j“1

Dxj
uN,0 ¨ DpHpxj, x0,Dxj

uN,j ,mN,j
x

q “ 0

´BtuN,i ´
N
ÿ

j“0

∆xj
uN,i ` Hpxi, x0,Dxi

uN,i,mN,i
x

q

`Dx0
uN,i ¨ DpH

0px0,Dx0
uN,0,mN

x q `
ÿ

j‰i, jě1

Dxj
uN,i ¨ DpHpxj , x0,Dxj

uN,j,mN,j
x q “ 0

uN,0pT,xq “ G0px0,mN
x

q, uN,ipT,xq “ Gpxi, x0,mN,i
x q.

(1)

where x “ px0, . . . , xN q, mN
x “ 1

N

ÿ

iě1

δxi
, mN,i

x “ 1

N ´ 1

ÿ

j‰t0,iu

δxj
.

Following [15] for instance, the solution puN,0, uN,1, . . . , uN,N q describes the payoff at equi-
librium of a pN `1q´player stochastic differential game. The particular structure of this system
expresses the fact that the “small” players (for i “ 1, . . . , N) have a symmetric cost function,
giving rise to the same Hamiltonian H. In addition, for a small player i “ 1, . . . , N , the other
players are indistinguishable and appear only through the empirical measure mN,i

x in the Hamil-
tonian H of this player. In the same way, the small players are indistinguishable for the large
player: they appear through the empirical measure mN

x
in the Hamiltonian H0 of the large

player. The fact that the players differ in size is expressed by the fact that the position of a
small player i (for i “ 1, . . . , N) enters in the Hamiltonian H0 of the major player and in the
Hamiltonian H of the other small players with a weight 1{N or 1{pN ´ 1q, while the position of
the major player (i.e., for i “ 0) enters in the Hamiltonian H the other players without weight.

Because of the symmetry of system (1) and the uniqueness of its solution, one can check
that uN,0 only depends on pt, x0q and on the empirical measure mN

x of the small players while
uN,i depends on pt, xi, x0q and on the empirical measure m

N,i
x (player i playing a particular role

for vN,i).
So, arguing as in [6], one formally expects, as the number N of small players tends to

infinity, that uN,0 „ U0pt, x0,mN
x

q, uN,i „ Upt, xi, x0,mN,i
x q, where U0, U solve the system of
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master equations:
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piq ´BtU0 ´ ∆x0
U0 ` H0px0,Dx0

U0,mq ´
ˆ

Rd

divyDmU0pt, x0,m, yqdmpyq

`
ˆ

Rd

DmU0pt, x0,m, yq ¨ DpHpy, x0,DxUpt, y, x0,mq,mqdmpyq “ 0

in p0, T q ˆ R
d0 ˆ P2pRdq,

piiq ´BtU ´ ∆xU ´ ∆x0
U ` Hpx, x0,DxU,mq ´

ˆ

Rd

divyDmUpt, x, x0,m, yqdmpyq
`Dx0

U ¨ DpH
0px0,Dx0

U0pt, x0,mq,mq
`
ˆ

Rd

DmUpt, x, x0,m, yq ¨ DpHpy, x0,DxUpt, y, x0,mq,mqdmpyq “ 0

in p0, T q ˆ R
d ˆ R

d0 ˆ P2pRdq,
piiiq U0pT, x0,mq “ G0px0,mq, in R

d0 ˆ P2pRdq,
pivq UpT, x, x0,mq “ Gpx, x0,mq in R

d ˆ R
d0 ˆ P2pRdq.

(2)

This is a nonlinear equation stated in the space of probability measures P2pRdq of Rd. The
notion of derivative with respect to a measure used in the above system is the same as in [6].
The master equation (without a major agent) was first introduced by Lasry and Lions and
discussed by Lions in [23]. It was later studied in [6, 7, 8, 12, 16] in various degrees of generality.
System (2) is precisely the system (here without common noise, to simplify the expressions)
introduced in [22]. The well-posedness in short time of (2) is stated in [22], a detailed proof
(with a completely different approach) is also contained in our companion paper [7]. The first
goal of the present paper is to show, through a classical verification argument, that (2) yields the
notion of Nash equilibria (in the case of Markovian feedback controls) introduced by Carmona
and al. in [8, 10, 11]: see Proposition 2.2. Then we rigorously prove that the solution of the
Nash system (1) converges to the solution of the system of master equations (2) as the number
of players tends to infinity: see Theorem 3.1. The main interest of this result is that it provides
another justification of the definition. The method of proof follows closely the lines of [6] (see
also [8]), where a similar statement for problems without a major player but with common noise
is established.

1 Notation and assumptions

The state space of the major player is Rd0 (d0 P N, d0 ě 1), the state space for the minor player
is Rd (d P N, d ě 1). Both spaces are endowed with the Euclidean distance | ¨ |.

We denote by PpRdq the set of Borel probability measures on R
d and by PkpRdq, k ě 1, the

set of measures in PpRdq with finite moment of order k: namely,

Mkpmq :“
ˆ
ˆ

Rd

|x|kmpdxq
˙

1{k

ă `8 if m P PkpRdq.

The set PkpRdq is endowed with the distance (see for instance [1, 27, 29])

dkpm,m1q “ inf
π

ˆ
ˆ

Rd

|x ´ y|kπpdx, dyq
˙

1{k

, @m,m1 P PkpRdq,

where the infimum is taken over the couplings π betweenm andm1, i.e., over the Borel probability
measures π on R

d ˆ R
d with first marginal m and second marginal m1.
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Given a map U : P2pRdq Ñ R, the notion of derivative in the space of measures is the one
introduced in [6] and [7]. We say that a map U : P2pRdq Ñ R is C1 is there exists a continuous

and bounded map δU
δm

: P2pRdq ˆ R
d Ñ R such that

Upm1q ´ Upmq “
ˆ

1

0

ˆ

Rd

δU

δm
pp1 ´ sqm ` sm1, yqpm1 ´ mqpdyqds @m,m1 P P2pRdq.

We say that the map U is continuously L´differentiable if U is C1 and if y Ñ δU
δm

pm, yq is
everywhere differentiable with a continuous and globally bounded derivative on P2pRdq ˆ R

d.
We denote by

DmUpm, yq :“ Dy
δU

δm
pm, yq (3)

this L´derivative.
The Hamiltonians of the problem are H0 : Rd0 ˆR

d0 ˆP2pRdq Ñ R for the major player and
H : Rd ˆ R

d0 ˆ R
d ˆ P2pRdq Ñ R for the minor players. We assume that H0 and H are smooth

enough to justify the computations below. In particular, H0 and H are assumed to be at least
C1 with respect to the measure variable. The maps p0 Ñ H0px0, p0,mq and p Ñ Hpx, x0, p,mq
are also assumed to be strictly convex:

D2

p0p0H
0px0, p0,mq ą 0, D2

ppHpx, x0, p,mq ą 0.

We denote by L0 and L the convex conjugate of H0 and H with respect to the variable p0 and
p respectively:

L0px0, α0,mq “ sup
p0PRd0

´α0 ¨ p0 ´ H0px0, p0,mq

and
Lpx, x0, α,mq “ sup

pPRd

´α ¨ p ´ Hpx, x0, p,mq.

2 Interpretation of the model

In this section, we show that the system (2) of master equations can be interpreted as a Nash
equilibrium in the infinite players’ game with a major player.

Namely we consider the infinite players’ game in which the minor players play closed loop
strategies of the form α “ αpt, x, x0,mq (where x is the position of the minor player, x0 is
the position of the major player and m is the distribution of the minor players), while the
major player plays a closed loop strategy of the form α0 “ α0pt, x0,mq. Here and below,
αpt, x, x0,mq and α0pt, x0,mq are (deterministic) functions which we assume to be bounded and
locally Lipschitz continuous on, respectively, r0, T sˆR

dˆR
d0 ˆP2pRdq and r0, T sˆR

d0 ˆP2pRdq.
Thus, both the representative minor agent and the major agent are playing feedback strategies.
In particular, given a Brownian motion tB0

t u in R
d0 , and a stochastic flow of measures tmtu in

P2pRdq which is adapted to the filtration generated by B0 :“ tB0
t u, the dynamics of the major

player will be given by
dX0

t “ α0pt,X0

t ,mtqdt `
?
2dB0

t

while the dynamics of the representative minor player is given by

dXt “ αpt,Xt,X
0

t ,mtqdt `
?
2dBt ,

where B :“ tBtu is a Brownian motion independent of B0. We stress that the choice of Marko-
vian feedback controls implies that the stochastic controls α0

t “ α0pt,X0
t ,mtq, and, respectively,
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αt “ αpt,Xt,X
0
t ,mtq are adapted to the filtrations generated by pB0

t q and, respectively, by
pB0

t , Btq.
Notice that the stochastic flow of measures mt, which is going to represent the distribution

of the minor agents, must necessarily be adapted to the filtration B0 of the major player. At
equilibrium, mt will be the conditional law given B0

t of Xt.
The following definition is a reformulation of the definition of [10] by using the stochastic

PDE satisfied by the distribution law mt:

Definition 2.1. Given an initial measure µ0 P P2pRdq and an initial position x0
0

P R
d0 for

the major player, a Nash equilibrium in the game is a pair pᾱ, ᾱ0q of feedback strategies for the

minor and major player with the following properties:

1. pX̄0
t , m̄tq are the flow of positions for the major player and of the mean field for the minor

players generated by ᾱ and ᾱ0, i.e. the solution to the McKean-Vlasov stochastic system:

$

&

%

dX̄0
t “ ᾱ0pt, X̄0

t , m̄tqdt `
?
2dB0

t in r0, T s
dtm̄t “

 

∆m̄t ´ divpm̄tᾱpt, x, X̄0
t , m̄tqq

(

dt in r0, T s ˆ R
d,

m̄0 “ µ0, X̄
0

0
“ x0

0
.

(4)

2. The feedback strategy ᾱ is optimal for each minor player, given pX̄0
t , m̄tq, namely

Jpᾱ; ᾱ0, m̄tq ď Jpα; ᾱ0, m̄tq (5)

for any Markovian feedback control αt :“ αpt,Xt, X̄
0
t , m̄tq, where

Jpα; ᾱ0, m̄tq “ E

„
ˆ T

0

LpXt, X̄
0

t , αpt,Xt, X̄
0

t , m̄tq, m̄tqdt ` GpXT , X̄
0

T , m̄T q


,

with dXt “ αtdt `
?
2dBt, X0 being distributed according to µ0.

3. The feedback strategy ᾱ0 is optimal for the major player, meaning that

J0pᾱ; ᾱ0q ď J0pᾱ;α0q,

for any different feedback law α0pt, x,mq, where

J0pᾱ;α0q “ E

„
ˆ T

0

L0pX0

t , α
0

t pt,X0

t ,mtq,mtqdt ` G0pX0

T ,mT q


,

where pX0
t ,mtq is now the flow of positions for the major player and of the mean field for

the minor players generated by ᾱ and α0, i.e., the solution to

$

&

%

dX0
t “ α0pt,X0

t ,mtqdt `
?
2dB0

t in r0, T s
dtmt “

 

∆mt ´ divpmtᾱpt, x,X0
t ,mtqq

(

dt in r0, T s ˆ R
d,

m0 “ µ0, X
0

0
“ x0

0
.

(6)

A few comments on the definition are now in order. We first note that m̄t (and, respectively,
mt) are nothing but the conditional expectation given pX̄0

s qsďt of the process X̄t (respectively,
the conditional expectation given pX0

s qsďt of Xt), where X̄t, Xt are solutions of the McKean-
Vlasov SDEs

dX̄s “ ᾱps, X̄s, X̄
0

s ,LpX̄s|X̄0

s qqds `
?
2dBs, LpX̄0q “ µ0,
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and, respectively,

dXs “ ᾱps,Xs,X
0

s ,LpXs|X0

s qqds `
?
2dBs, LpX0q “ µ0 .

We stress that, given any couple ᾱ0pt, x,mq, ᾱpt, x, x0,mq of bounded and locally Lipschitz func-
tions, the existence of a (unique) solution pX̄t, m̄tq of the system (4) can be proved with standard
fixed point methods.

The asymmetry between the major and the infinitely many minor players appears clearly
in the above definition of Nash equilibrium. Indeed, the cost for a minor player who deviates
playing a strategy α is Jpα; ᾱ0, m̄tq because, for this deviating small player, the mean field is
fixed (since the strategies of the other minor players are fixed) as well as the corresponding
strategy of the major player. In contrast, if the major player deviates, the mean field pmtq also
changes because all the minor players react to the deviation. Note that this definition is exactly
the one introduced by Carmona-Wang [10] in their “closed loop version” of Section 2. In fact,
as detailed in [11], the equilibrium defined so far can also be interpreted as a Nash equilibrium
of a two-player differential game by first defining the cost of the small player as Jpα;α0,mtq for
an exogenous stochastic flow of measures and the cost of the major player as J0pα;α0q as above,
and then requiring that the flow mt satisfies, at the Nash equilibrium, the consistency condition
mt “ LpX̄s|X̄0

s q.
We now show the link between the system of master equations and the Nash equilibria of

the MFG problem with a major agent.

Proposition 2.2 (Verification). Let pU0, Uq be a classical solution to the system of master

equations (2). Then the pair

pᾱpt, x, x0,mq, ᾱ0pt, x0,mqq :“ ´pDpHpx, x0,DxUpt, x, x0,mq,mq,DpH
0px0,Dx0

U0pt, x0,mq,mqq

is a Nash equilibrium of the game.

Proof. Let us first check that (5) holds. For any α, we have, in view of the equation satisfied by
pm̄tq,

dUpt,Xt, X̄
0

t , m̄tq “
!

BtU ` DxU ¨ αpt,Xt, X̄
0

t , m̄tq ` Dx0
U ¨ ᾱ0pt, X̄0

t , m̄tq ` ∆xU ` ∆x0
U

`
ˆ

Rd

divypDmUpt,Xt, X̄
0

t , m̄t, yqqm̄tpdyq

´
ˆ

Rd

DmUpt,Xt, X̄
0

t , m̄t, yq ¨ DpHpy, X̄0

t ,DxUpt, y, X̄0

t , m̄tq, m̄tqm̄tpdyq
)

dt

`
?
2
`

DxU ¨ dBt ` Dx0
U ¨ dB0

t

˘

,

where, unless otherwise specified, U and its space derivatives are evaluated at pt,Xt, X̄
0
t , m̄tq.

Using the equation satisfied by U and the definition of ᾱ0, we obtain after integration in time
and taking expectation:

E
“

GpXT , X̄
0

T , m̄T q
‰

“ E
“

UpT,XT , X̄
0

T , m̄T q
‰

“ E
“

Up0,X0, x
0

0, µ0q
‰

`
ˆ T

0

E
“

DxU ¨ α ` HpXt, X̄
0

t ,DxUpt,Xt, X̄
0

t , m̄tq, m̄tq
‰

dt

ě E
“

Up0,X0, x
0

0
, µ0q

‰

´
ˆ T

0

E
“

LpXt, X̄
0

t , αpt,Xt, X̄
0

t , m̄tq, m̄tq
‰

dt,

6



with an equality if

αpt,Xt, X̄
0

t , m̄tq “ ´DpHpt,Xt, X̄
0

t ,DxUpt,Xt, X̄
0

t , m̄tq, m̄tq “ ᾱpt,Xt, X̄
0

t , m̄tq.

This shows that
Jpα; X̄0

t , m̄tq ě E
“

Up0,X0, x
0

0, µ0q
‰

“ Jpᾱ; X̄0

t , m̄tq,
so that ᾱ is optimal.

Next we show the optimality of ᾱ0. Let α0 be a feedback for the major player, pXt,mtq be
given by (6). Then

dU0pt,X0

t ,mtq “
!

BtU0 ` Dx0
U0 ¨ α0 ` ∆x0

U0 `
ˆ

Rd

divypDmU0pt,X0

t ,mt, yqqmtpdyq

´
ˆ

Rd

DmU0pt,X0

t ,mt, yq ¨ DpHpy,X0

t ,DxUpt, y,X0

t ,mtq,mtqmtpdyq
)

dt

`
?
2Dx0

U ¨ dB0

t ,

where, unless otherwise specified, U0 and its space derivatives are evaluated at pt,X0
t ,mtq.

Therefore, in view of the equation satisfied by U0, we have

E
“

G0pX0

T ,mT q
‰

“ E
“

U0pT,X0

T ,mT q
‰

“ U0p0, x0, µ0q `
ˆ T

0

E
“

Dx0
U0 ¨ α0 ` H0pX0

t ,Dx0
U0pt,X0

t ,mtq,mtq
‰

dt

ě U0p0, x0, µ0q ´
ˆ T

0

E
“

L0pX0

t , α
0pt,X0

t ,mtq,mtq
‰

dt,

with an equality if

α0pt,X0

t ,mtq “ ´DpH
0pt,X0

t ,Dx0
Upt,X0

t ,mtq,mtq “ ᾱ0pt,X0

t ,mtq,

in which case m “ m̄. This shows that

J0pᾱ;α0q ě U0p0, x0, µ0q “ J0pᾱ; ᾱ0q

and proves the optimality of ᾱ0.

3 The mean field limit

In this part we show that the master equation (2) corresponds to the mean field limit of the
N´player game with a major player. We work here with the d1 distance and we assume that
H0, DpH

0, H and DpH are globally Lipschitz continuous in the sense that (for instance for H)

|Hpx, x0, p,mq ´ Hpx1, px0q1, p1,m1q| ď Cp|x ´ x1| ` |x0 ´ px0q1| ` |p ´ p1| ` d1pm,m1qq

for any x, x1 P R
d, x0, x

1
0

P R
d0 , p, p1 P R

d, m,m1 P P1pRdq. Our main result is the following:

Theorem 3.1. Let puN,iq be a classical solution to the Nash system (1) and pU0, Uq be a

classical solution to the system (2) of master equations. There is a constant C, independent of

N , x P R
d0 ˆ pRdqN and t P r0, T s, such that

ˇ

ˇuN,0pt,xq ´ U0pt, x0,mN
x

q
ˇ

ˇ ` sup
i“1,...,N

ˇ

ˇuN,ipt,xq ´ Upt, xi, x0,mN,i
x

q
ˇ

ˇ ď CN´1

˜

1 ` 1

N

N
ÿ

i“1

|xi|
¸

,
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where, as before,

mN
x “ 1

N

N
ÿ

i“1

δxi
, mN,i

x “ 1

N ´ 1

ÿ

jRt0,iu

δxj
.

As in [6], it is also possible to show that the optimal trajectories associated with theN´player
problem converge to the optimal trajectory for the limit one.

Proof. We follow the strategy of proof of [6]. Let puN,iq be the solution to (1) and pU0, Uq be
the solution of (2). Following [6], we set

vN,0pt,xq “ U0pt, x0,mN
x

q, vN,ipt,xq “ Upt, xi, x0,mN,i
x

q.

Let us fix pt0, x00, µ0q P r0, T s ˆ R
d0 ˆ P2pRdq and let pZN,iqiě1 be i.i.d. random variables with

law µ0 P P2pRdq. We consider the system X “ pXN,0,XN,1, ¨ ¨ ¨ ,XN,N q of SDEs:

dXN,0
s “ ´DpH

0pXN,0
s ,Dx0

uN,0ps,Xsq,mN
Xs

qds `
?
2dB0

s , s P rt0, T s,
dXN,i

s “ ´DpHpXN,i
s ,XN,0

s ,Dxi
uN,ips,Xsq,mN,i

Xs
qds `

?
2dBi

s, s P rt0, T s,
X

N,0
t0

“ x00, X
N,i
t0

“ ZN,i.

Let us first notice that the pvN,iq are almost solutions to the Nash system:

Lemma 3.2. For i “ 0, . . . , N , there exist continuous maps rN,i : r0, T s ˆ R
d0`Nd Ñ R such

that
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´BtvN,0 ´
N
ÿ

j“0

∆xj
vN,0 ` H0px0,Dx0

vN,0,mN
x q `

ÿ

jě1

Dxj
vN,0 ¨ DpHpxj, x0,Dxj

vN,j ,mN,j
x q “ rN,0

´BtvN,i ´
N
ÿ

j“0

∆xj
vN,i ` Hpxi, x0,Dxi

vN,i,mN,i
x q

`Dx0
vN,i ¨ DpH

0px0,Dx0
vN,0,mN

x
q `

ÿ

j‰i, jě1

Dxj
vN,i ¨ DpHpxj , x0,Dxj

vN,j,mN,j
x

q “ rN,i

vN,0pT,xq “ G0px0,mN
x q, vN,ipT,xq “ Gpxi, x0,mN,i

x q.

and

sup
i“0,...,N

}rN,ipt,xq}8 ď C

N
p1 ` M1pmN

x qq.

Recall that M1pmq “
´

Rd |x|mpdxq is the first order moment of the measure m. We postpone
the proof of the Lemma and proceed with the ongoing proof. The main part of the proof consists
in estimating the difference uN,i ´ vN,i along the trajectory X. For this we set

U
N,i
t “ uN,ipt,XN

t q, V
N,i
t “ vN,ipt,XN

t q.

We first note that, in view of the equation satisfied by the puN,iq,

dU
N,0
t “

´

BtuN,0 `
ÿ

jě0

∆xj
uN,0 ´ DpH

0pXN,0
t ,Dx0

uN,0pt,Xtq,mN
Xt

q ¨ Dx0
uN,0

´
ÿ

jě1

DpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ¨ Dxj
uN,0

¯

dt `
?
2
ÿ

jě0

Dxj
uN,0 ¨ dBj

t

“ pH0pXN,0
t ,Dx0

uN,0,mN
Xt

q ´ DpH
0pXN,0

t ,Dx0
uN,0,mN

Xt
q ¨ Dx0

uN,0

`
?
2
ÿ

jě0

Dxj
uN,0 ¨ dBj

t ,

8



where the uN,j are evaluated at pt,XN
t q. On the other hand, by Lemma 3.2, we have

dV
N,0
t “ pBtvN,0 `

ÿ

jě0

∆xj
vN,0 ´ DpH

0pXN,0
t ,Dx0

uN,0pt,Xtq,mN
Xt

q ¨ Dx0
vN,0

´
ÿ

jě1

DpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ¨ Dxj
vN,0qdt `

?
2
ÿ

jě0

Dxj
vN,0 ¨ dBj

t

“
´

H0pXN,0
t ,Dx0

vN,0,mN
Xt

q ´ DpH
0pXN,0

t ,Dx0
uN,0pt,Xtq,mN

Xt
q ¨ Dx0

vN,0

´
ÿ

jě1

pDpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ´ DpHpXN,j
t ,X

N,0
t ,Dxj

vN,j ,m
N,j
Xt

qq ¨ Dxj
vN,0

´ rN,0
¯

dt `
?
2
ÿ

jě0

Dxj
vN,0 ¨ dBj

t ,

where the uN,j, rN,0 and vN,0 are, here again, evaluated at pt,Xtq. So, for any s P rt0, T s,

pUN,0
T ´ V

N,0
T q2 “ pUN,0

s ´ V N,0
s q2

`
ˆ T

s

2pUN,0
t ´ V

N,0
t q

´

H0pXN,0
t ,Dx0

uN,0,mN
Xt

q ´ H0pXN,0
t ,Dx0

vN,0,mN
Xt

q

´ DpH
0pXN,0

t ,Dx0
uN,0,mN

Xt
q ¨ pDx0

uN,0 ´ Dx0
vN,0q

`
ÿ

jě1

pDpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ´ DpHpXN,j
t ,X

N,0
t ,Dxj

vN,j ,m
N,j
Xt

qq ¨ Dxj
vN,0

` rN,0
¯

dt ` 2
ÿ

jě0

ˆ T

s

|Dxj
uN,0 ´ Dxj

vN,0|2dt

` 2
?
2
ÿ

jě0

ˆ T

s

pUN,0
t ´ V

N,0
t qpDxj

uN,0 ´ Dxj
vN,0q ¨ dBj

t .

Note that UN,0
T “ V

N,0
T because the maps uN,0 and vN,0 have the same terminal condition. Using

the global Lipschitz continuity of H0 and H and the fact that }Dxj
vN,0}8 ď CN´1 for j ě 1,

we infer that

0 ě pUN,0
s ´ V N,0

s q2

´ C

ˆ T

s

|UN,0
t ´ V

N,0
t |

´

|Dx0
puN,0 ´ vN,0q| ` N´1

ÿ

jě1

|Dxj
puN,j ´ vN,jq| ` |rN,0|

¯

dt

` 2
ÿ

jě0

ˆ T

s

|Dxj
puN,0 ´ vN,0q|2dt ` 2

?
2
ÿ

jě0

ˆ T

s

puN,0 ´ vN,0qDxj
puN,0 ´ vN,0q ¨ dBj

t .

Taking the conditional expectation E
Z given Z and using Young’s inequality we find, for any

ǫ ą 0,

0 ě E
Z
“

pUN,0
s ´ V N,0

s q2
‰

´
ˆ T

s

E
Z

”

Cǫ´1|UN,0
t ´ V

N,0
t |2 ` ǫ|Dx0

puN,0 ´ vN,0q|2 ` ǫ|rN,0|2

` CǫN´1
ÿ

jě1

|Dxj
puN,j ´ vN,jq|2

ı

dt

` 2
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,0 ´ vN,0q|2

ı

dt. (7)
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Note that the estimate of rN,i in Lemma 3.2 implies that

E
ZrprN,0pt,XN

t qq2s ď C

N2
p1 ` E

ZrM1pmN
X

N
t

qsq2,

where, in view of the uniform bound on DpH
0 and DpH, we have

E
ZrM1pmN

X
N
t

qs ď Cp1 ` M1pmN
Z

qq.

So

E
ZrprN,0pt,XN

t qq2s ď C

N2
p1 ` M1pmN

Z qq2 “ CZ

N2
,

where CZ :“ Cp1 ` M1pmN
Z

qq2. Coming back to (7), we find, for ǫ small,

CZǫN
´2 ě E

Z
“

pUN,0
s ´ V N,0

s q2
‰

´ C

ˆ T

s

E
Z

”

ǫ´1|UN,0
t ´ V

N,0
t |2 ` ǫN´1

ÿ

jě1

|Dxj
puN,j ´ vN,jq|2

ı

dt (8)

`
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,0 ´ vN,0q|2

ı

dt.

We now make the same computation for i ě 1. We have

dU
N,i
t “

´

BtuN,i `
ÿ

jě0

∆xj
uN,i ´ DpH

0pXN,0
t ,Dx0

uN,0,mN
Xt

q ¨ Dx0
uN,i

´
ÿ

jě1

DpHpXN,j
t ,X

N,0
t ,Dxj

uN,j ,m
N,j
Xt

q ¨ Dxj
uN,i

¯

dt `
?
2
ÿ

jě0

Dxj
uN,i ¨ dBj

t

“ pHpXN,i
t ,X

N,0
t ,Dxi

uN,i,m
N,i
Xt

q ´ DpHpXN,i
t ,X

N,0
t ,Dxi

uN,i,m
N,i
Xt

q ¨ Dxi
uN,i

¯

dt

`
?
2
ÿ

jě0

Dxj
uN,i ¨ dBj

t ,

where the uN,j is evaluated at pt,Xtq. On the other hand, by Lemma 3.2, we have

dV
N,i
t “

´

BtvN,i `
ÿ

jě0

∆xj
vN,i ´ DpH

0pXN,0
t ,Dx0

uN,0,mN
Xt

q ¨ Dx0
vN,i

´
ÿ

jě1

DpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ¨ Dxj
vN,i

¯

dt `
?
2
ÿ

jě0

Dxj
vN,i ¨ dBj

t

“
´

HpXN,i
t ,X

N,0
t ,Dxi

vN,i,mN
X

N
t

q ´ DpHpXN,i
t ,X

N,0
t ,Dxi

uN,i,m
N,i
Xt

q ¨ Dxi
vN,i

´ pDpH
0pXN,0

t ,Dx0
uN,0,mN

Xt
q ´ DpH

0pXN,0
t ,Dx0

vN,0,mN
Xt

qq ¨ Dx0
vN,i

´
ÿ

j‰t0,iu

pDpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ´ DpHpXN,j
t ,X

N,0
t ,Dxj

vN,j ,m
N,j
Xt

qq ¨ Dxj
vN,i

´ rN,i
¯

dt `
?
2
ÿ

jě0

Dxj
vN,i ¨ dBj

t ,

10



where the uN,j, rN,j and vN,j are, here again, evaluated at pt,Xtq. So, for any s P rt0, T s,
pUN,i

T ´ V
N,i
T q2 “ pUN,i

s ´ V N,i
s q2

`
ˆ T

s

2pUN,i
t ´ V

N,i
t q

´

HpXN,i
t ,X

N,0
t ,Dxi

uN,i,mN
Xt

q ´ HpXN,i
t ,X

N,0
t ,Dxi

vN,i,mN
Xt

q

´ DpHpXN,i
t ,X

N,0
t ,Dxi

uN,i,m
N,i
Xt

q ¨ Dxi
puN,i ´ vN,iq

´ pDpH
0pXN,0

t ,Dx0
uN,0,mN

Xt
q ´ DpH

0pXN,0
t ,Dx0

vN,0,mN
Xt

qq ¨ Dx0
vN,i

`
ÿ

j‰0,i

pDpHpXN,j
t ,X

N,0
t ,Dxj

uN,j,m
N,j
Xt

q ´ DpHpXN,j
t ,X

N,0
t ,Dxj

vN,j,m
N,j
Xt

qq ¨ Dxj
vN,i

´ rN,i
¯

dt ` 2
ÿ

jě0

ˆ T

s

|Dxj
puN,i ´ vN,iq|2dt

` 2
?
2
ÿ

jě0

ˆ T

s

pUN,i
t ´ V

N,i
t qDxj

puN,i ´ vN,iq ¨ dBj
t .

Since U
N,i
T “ V

N,i
T and H0 and H are Lipschitz continuous and since }Dxj

vn,i}8 ď CN´1 for
j ‰ t0, iu, we have

0 ě pUN,i
s ´ V N,i

s q2

´
ˆ T

s

C|UN,i
t ´ V

N,i
t |

´

|Dxi
puN,i ´ vN,iq| ` |Dx0

puN,0 ´ vN,0q|

` N´1
ÿ

j‰t0,iu

|Dxj
puN,j ´ vN,j | ` |rN,i|

¯

dt

` 2
ÿ

jě0

ˆ T

s

|Dxj
puN,i ´ vN,iq|2dt ` 2

?
2
ÿ

jě0

ˆ T

s

puN,i ´ vN,iqDxj
puN,i ´ vN,iq ¨ dBj

t .

Taking expectation and using Young’s inequality and the estimate of rN,i in Lemma 3.2, we
find, for ǫ small enough,

CZǫN
´2 ě E

Z
“

pUN,i
s ´ V N,i

s q2
‰

´ C

ˆ T

s

E
Z

”

ǫ´1|UN,i
t ´ V

N,i
t |2

` ǫ|Dx0
puN,0 ´ vN,0q|2 ` ǫN´1

ÿ

j‰t0,iu

|Dxj
puN,j ´ vN,jq|2

ı

dt (9)

`
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,i ´ vN,iq|2

ı

dt.

We add inequalities in (9) for i “ 1, . . . , N with N times inequality (8) to obtain

CZǫN
´1 ě NE

Z
“

pUN,0
s ´ V N,0

s q2
‰

`
ÿ

iě1

E
Z
“

pUN,i
s ´ V N,i

s q2
‰

´ CNǫ´1

ˆ T

s

E
Z

”

|UN,0
t ´ V

N,0
t |2

ı

dt ` Cǫ´1
ÿ

iě1

ˆ T

s

E
Z

”

|UN,i
t ´ V

N,i
t |2

ı

dt

´ CNǫ

ˆ T

s

E
Z
“

|Dx0
puN,0 ´ vN,0q|2

‰

dt ´ Cǫ
ÿ

jě1

ˆ T

s

E
Z
“

|Dxj
puN,j ´ vN,jq|2

‰

dt (10)

` N
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,0 ´ vN,0q|2

ı

dt `
ÿ

iě1,jě0

ˆ T

s

E
Z

”

|Dxj
puN,i ´ vN,iq|2

ı

dt. (11)
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Choosing a last time ǫ small enough, we can absorb the terms in line (10) into the term in line
(11). Then, by Gronwall’s Lemma, we find

NE
Z
“

pUN,0
s ´ V N,0

s q2
‰

`
ÿ

iě1

E
Z
“

pUN,i
s ´ V N,i

s q2
‰

(12)

` N
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,0 ´ vN,0q|2

ı

dt `
ÿ

iě1,jě0

ˆ T

s

E
Z

”

|Dxj
puN,i ´ vN,iq|2

ı

dt ď CZN
´1.

We use this inequality to evaluate the second line in (9): for i “ 1, . . . , N we have

CZN
´2 ě E

Z
“

pUN,i
s ´ V N,i

s q2
‰

´ Cǫ´1

ˆ T

s

E
Z

”

|UN,i
t ´ V

N,i
t |2

ı

dt

`
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,i ´ vN,iq|2

ı

dt

and finally obtain, thanks again to Gronwall’s Lemma:

E
Z
“

pUN,i
s ´ V N,i

s q2
‰

`
ÿ

jě0

ˆ T

s

E
Z

”

|Dxj
puN,i ´ vN,iq|2

ı

dt ď CZN
´2.

For s “ t0 and in view of the initial condition of the process X, this proves that, P´a.s. and for
any i “ 1, . . . , N ,

|uN,ipt0,Zq ´ vN,ipt0,Zq|2 “ E
Z

”

pUN,i
t0

´ V
N,i
t0

q2
ı

ď CZN
´2

while, for i “ 0, we have by (12):

|uN,0pt0,Zq ´ vN,0pt0,Zq|2 “ E
Z

”

pUN,0
t0

´ V
N,0
t0

q2
ı

ď CZN
´2.

If we choose the Zi identically distributed with a positive density and finite first order moment,
we obtain the Theorem by the continuity of uN,i and of U .

Proof of Lemma 3.2. Let us recall the following relations, proved in [6, Proposition 6.1.1]. For
i, j ‰ 0 with i ‰ j, we have

Dx0
vN,0pt,xq “ Dx0

U0pt, x0,mN
x q, Dxi

vN,0pt,xq “ 1

N
DmU0pt, x0,mN

x , xiq,

D2

xixj
vN,0pt,xq “ 1

N2
D2

mmU0pt, x0,mN
x
, xi, xjq,

D2

xixi
vN,0pt,xq “ 1

N2
D2

mmU0pt, x0,mN
x , xi, xiq ` 1

N
D2

ymU0pt, x0,mN
x , xiq,

where, we recall that DmU0 depends on one extra variable (see (3)) and consequently, D2
mmU0

depends on two extra variables.
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The corresponding equalities hold for vN,i with i ě 1 (with 1{N replaced by 1{pN ´ 1q). So

´ BtvN,0 ´
N
ÿ

j“0

∆xj
vN,0 ` H0px0,Dx0

vN,0,mN
x

q `
ÿ

jě1

Dxj
vN,0 ¨ DpHpxj , x0,Dxj

vN,j ,mN,j
x

q

“ ´BtU0pt, x0,mN
x q ´ ∆x0

U0pt, x0,mN
x q

´
N
ÿ

j“1

Tr

ˆ

1

N2
D2

mmU0pt, x0,mN
x , xi, xiq ` 1

N
D2

ymU0pt, x0,mN
x , xiq

˙

` H0px0,Dx0
U0pt, x0,mN

x
q,mN

x
q

` 1

N

ÿ

jě1

DmU0pt, x0,mN
x
, xjq ¨ DpHpxj , x0,DxUpt, xj , x0,mN,j

x
q,mN,j

x
q

“ ´BtU0pt, x0,mN
x

q ´ ∆x0
U0pt, x0,mN

x
q ` H0px0,Dx0

U0pt, x0,mN
x

q,mN
x

q

`
ˆ

Rd

DmU0pt, x0,mN
x , yq ¨ DpHpy, x0,Dxj

Upt, y, x0,mN
x q,mN

x qmN
x pdyq

´
ˆ

Rd

divyDmU0pt, x0,mN
x
, yqmN

x
pdyq ` rN,0pt,xq “ rN,0pt,xq

thanks to the equation satisfied by U0, where

rN,0pt,xq :“ ´
N
ÿ

j“1

1

N2
TrD2

mmU0pt, x0,mN
x
, xi, xiq ´ 1

N

ÿ

jě1

DmU0pt, x0,mN
x
, xjqˆ

”

DpHpxj , x0,Dxj
Upt, xj , x0,mN,j

x q,mN,j
x q ´ DpHpxj , x0,Dxj

Upt, xj , x0,mN
x q,mN

x q
ı

.

Note that

1

N

ÿ

jě1

d1pmN,j
x ,mN

x q ď 1

N2pN ´ 1q
ÿ

jě1

ÿ

i‰0,j

|xi ´ xj | ď C

N
M1pmN

x q.

So, by the regularity of U0, U and H, we have

|rN,0pt,xq| ď C

N
p1 ` M1pmN

x qq,

as claimed.
The proof for vN,i goes along the same lines and we omit it.
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