
HAL Id: hal-01913983
https://hal.science/hal-01913983

Submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Isomorphism of Dependent Products in a Typed
Logical Framework

Sergei Soloviev

To cite this version:
Sergei Soloviev. On Isomorphism of Dependent Products in a Typed Logical Framework. 20th In-
ternational Conference on Types for Proofs and Programs (TYPES 2014), May 2014, Paris, France.
pp.274-287, �10.4230/LIPIcs.TYPES.2014.274�. �hal-01913983�

https://hal.science/hal-01913983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19100

Official URL: http://drops.dagstuhl.de/opus/volltexte/2015/5501/

DOI : http://doi.org/10.4230/LIPIcs.TYPES.2014.274

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Soloviev, Sergei On Isomorphism of
Dependent Products in a Typed Logical Framework. (2015) In: 20th
International Conference on Types for Proofs and Programs
(TYPES 2014), 12 May 2014 - 15 May 2014 (Paris, France).

On Isomorphism of Dependent Products in a

Typed Logical Framework∗

Sergei Soloviev1,2

1 IRIT, University of Toulouse

118 route de Narbonne, 31062 Toulouse, France

soloviev@irit.fr

2 associated researcher at

ITMO University

St. Petersburg, Russia

Abstract

A complete decision procedure for isomorphism of kinds that contain only dependent product,
constant T ype and variables is obtained. All proofs are done using Z. Luo’s typed logical frame-

work. They can be easily transferred to a large class of type theories with dependent product.

Keywords and phrases Isomorphism of types, dependent product, logical framework

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.274

1 Introduction

Why an axiomatization of the isomorphism relation between types in dependent type systems

(based on type rewriting, as in the case of simply-typed λ-calculus or system F , see, e.g.,

[1, 3, 15]) was never considered? Why no complete decision procedure for this relation was

developed there? Isomorphism of dependent types is used to some extent in proof assistants

based on dependent type systems, such as Coq (cf. [4]). We could find only one paper by

D. Delahaye [5] where the author tries to explore type isomorphisms in the Calculus of

Constructions along the lines used in the above-mentioned papers. On a theoretical side,

isomorphisms play also an important role in the study of Univalent Foundations [9]. There

are some studies of isomorphisms of inductive types [2, 6], but little is done on isomorphisms

even in the “core” of logical frameworks (including, e.g., dependent product).

In the paper [5] dependent product and dependent sum are considered but no complete

axiomatisation (suitable for “non-contextual” rewriting) or complete decision procedure is

obtained. As Delahaye writes:

we have developed a theory ThECCE with “ad hoc” contextual rules, which is sound for

ECCE ;

we have made contextual restrictions on Th
ECCE to build a decision procedure Dec

Coq

which is sound for Th
ECCE and which is an approximation of the contextual part of

Th
ECCE ;

we have implemented Dec
Coq in a tool called SearchIsos.

∗ This work was partially supported by Government of the Russian Federation Grant 074-U01.

© Sergei Soloviev;

licensed under Creative Commons License CC-BY

20th International Conference on Types for Proofs and Programs (TYPES 2014).

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

It should be said that some points concerning the notion of isomorphism in ECCE used in [5]
remain not very clear. In particular, he needs η-rules to justify all axioms he considers. It is
known that with Σ-types and cumulative hierarchy, the CR-property does not hold in the
presence of η-contraction scheme (and similar scheme for surjective pairing) [11], p.50.

In this paper we are going to obtain a complete decision procedure in a “core” system that
contains only dependent product, constant T ype and variables. We shall consider mostly the
logical framework proposed by Z. Luo [11]. It is sufficiently close to the Martin-Löf logical
framework or to the Calculus of Constructions, but in difference from Martin-Löf’s original
system it is typed, and in difference from the Calculus of Constructions it has the explicit
equality rules even for standard βη-conversions, and this is more convenient for the study
that concerns both isomorphism and equality. In difference from Edinburgh LF it permits
to specify other type theories. This system (without Σ-types and cumulative hierarchy) is
confluent with respect to βη-reductions.

We shall use the notation from [11]. In particular, (x : K)K ′ will denote dependent
product and [x : K]P abstraction (instead of frequently used Πx : K.K ′ and λx : K.P). If
x : K does not occur freely in K ′, it will be written (K)K ′ (that corresponds to K → K ′ in
simply typed lambda calculus).

As to the above mentioned “core part”, an answer may be that the isomorphism relation
between dependent product kinds seems at a first glance too limited to be interesting.
Among “basic” isomorphisms, there is only one obvious isomorphism that corresponds to the
isomorphism A → (B → C) ∼ B → (A → C) of simply-typed λ-calculus. The corresponding
isomorphism in dependent type case is

Γ ⊢ (x : A)(y : B)C ∼ (y : B)(x : A)C.

Here A, B, C are kinds, (x : A)D means dependent product. In difference from simply-typed
calculus we need a context Γ because A, B, C may contain free variables. The variable x
must be not free in B and y in A, and (x : A)(y : B)C, (y : B)(x : A)C must be well formed
kinds in Γ.

Notice that a priori it does not exclude the existence of isomorphisms that are not
generated by this basic isomorphism (cf. [7]).

In fact, though, there are some other aspects that make even the isomorphisms in the
“core part” of dependent type systems interesting. The role of contexts (variable declarations)
is to be taken into account. The equality of kinds is non-trivial and it has an influence on
(the defintion of) the isomorphisms: for example, the condition that x is not free in B above
may be not satisfied but B may be equal to B0 that does not contain x free.

In the “core part” itself the role of contexts is rather superficial, but it shows what is to
be expected if we consider more sophisticated type theories defined using logical frameworks.

The next aspect is more important. It is illustrated by the following example. Let
Γ ⊢ A ∼ A′. Consider Γ′ ⊢ (x : A)B. Let Γ ⊢ P : (x : A)A′ be the term that represents
the isomorphism between A and A′ and Γ ⊢ P ′ : (x : A′)A the term that represents its
inverse (in this case x is not free in A′ and x′ is not free in A). Then, in difference from the
simply-typed case where (x : A)B ∼ (x : A′)B, the isomorphism P ′ appears inside B:

Γ ⊢ (x : A)B ∼ (x′ : A′)[(P ′x′)/x]B

([(P ′x′)/x] denotes substitution). Notice that there may be many mutually inverse isomorph-

isms between A and A′ (represented by P1, P ′

1
, . . . , Pn, P ′

n, . . . and the structure of the “target”

type (x : A′)[(P ′

i x)/x]B depends on their choice. (This was noticed already in [5].) Thus, if

we see the isomorphic transformation as rewriting, this rewriting is not local, and there is

little hope that one can describe the isomorphism relation between types using rewriting

rules for types1 as in, e.g., [1, 3, 15].

2 Basic definitions

We consider Z. Luo’s typed logical framework LF [11].

Because LF is mostly used to specify type theories, types in LF are called kinds (to

distinguish them from types in the specified type theories). In LF there are five forms of

judgements (below Γ ⊢ J will be sometimes used as a generic notation for one of these five

judgement forms):

Γ ⊢ valid (Γ is a valid context);

Γ ⊢ Kkind (K is a kind in the context Γ);

Γ ⊢ k : K (k is an object of the kind K);

Γ ⊢ k = k′ : K (k and k′ are equal objects of the kind K);

Γ ⊢ K = K ′ (K and K ′ are equal kinds in Γ).

There are the following inference rules in LF (we use here an equivalent formulation

which is more convenient proof-theoretically, cf. [14]):

Contexts and assumptions

(1.1)
<>⊢ valid

(1.2)
Γ ⊢ Kkind x Ó∈ FV (Γ)

Γ, x : K ⊢ valid
(1.3)

Γ, x : K, Γ′ ⊢ valid

Γ, x : K, Γ′ ⊢ x : K

Γ1, Γ2 ⊢ J Γ1, Γ3 ⊢ valid

Γ1, Γ3, Γ2 ⊢ J
(wkn)

(where FV (Γ2) ∩ FV (Γ3) = ∅).

General equality rules

(2.1)
Γ ⊢ Kkind

Γ ⊢ K = K
(2.2)

Γ ⊢ K = K ′

Γ ⊢ K ′ = K
(2.3)

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

(2.4)
Γ ⊢ k : K

Γ ⊢ k = k : K
(2.5)

Γ ⊢ k = k′ : K

Γ ⊢ k′ = k : K
(2.6)

Γ ⊢ k = k′ : K Γ ⊢ k′ = k′′ : K

Γ ⊢ k = k′′ : K

Retyping rules

(3.1)
Γ ⊢ k : K Γ ⊢ K = K ′

Γ ⊢ k : K ′
(3.2)

Γ ⊢ k = k′ : K Γ ⊢ K = K ′

Γ ⊢ k = k′ : K ′

(3.3)
Γ, x : K, Γ′ ⊢ J Γ ⊢ K = K ′

Γ, x : K ′, Γ′ ⊢ J

1 Maybe, it is better to say “non-contextual” instead of “local”. But what is needed here is more than
dependency on context of the applicability of a rewriting rule. In fact all occurrences of x (indefinitely
many) must be simultaneously replaced by P ′x′. The inclusion of an explicit substitution rule as a part
of rewriting process may have its own drawbacks. The rewriting rules considered in [5] that take into
account this observation are called there “contextual”, but to us this terminology does not seem perfect.
Indeed, the “context” has to be changed simultaneously, otherwise at some point the expression will
not be well typed. There is also some confusion of the rewriting “context” in this sense, and the usual
type-theoretical contexts of variable declarations.

The kind Type

(4.1)
Γ ⊢ valid

Γ ⊢ Typekind
(4.2)

Γ ⊢ A : Type

Γ ⊢ El(A)kind
(4.3)

Γ ⊢ A = B : Type

Γ ⊢ El(A) = El(B)

Dependent product (kinds and terms)2

(5.1)
Γ, x : K ⊢ K ′kind

Γ ⊢ (x : K)K ′kind
(5.2)

Γ, x : K1 ⊢ K ′

1
= K ′

2
Γ ⊢ K1 = K2

Γ ⊢ (x : K1)K ′

1
= (x : K2)K ′

2

(5.3)
Γ, x : K ⊢ k : K ′

Γ ⊢ [x : K]k : (x : K)K ′
(5.4)

Γ, x : K1 ⊢ k1 = k2 : K Γ ⊢ K1 = K2

Γ ⊢ [x : K1]k1 = [x : K2]k2 : (x : K1)K

(5.5)
Γ ⊢ f : (x : K)K ′ Γ ⊢ k : K

Γ ⊢ f(k) : [k/x]K ′
(5.6)

Γ ⊢ f = f ′ : (x : K)K ′ Γ ⊢ k1 = k2 : K

Γ ⊢ f(k1) = f ′(k2) : [k1/x]K ′

(5.7)
Γ, x : K ⊢ k′ : K ′ Γ ⊢ k : K

Γ ⊢ ([x : K]k′)k = [k/x]k′ : [k/x]K ′
(5.8)

Γ ⊢ f : (x : K)K ′ x Ó∈ FV (Γ)

Γ ⊢ [x : K]f(x) = f : (x : K)K ′

Substitution rules

(6.1)
Γ, x : K, Γ′ ⊢ valid Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ valid
(6.2)

Γ, x : K, Γ′ ⊢ K ′kind Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′kind

(6.3)
Γ, x : K, Γ′ ⊢ k′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ : [k/x]K ′
(6.4)

Γ, x : K, Γ′ ⊢ K ′ = K ′′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k/x]K ′′

(6.5)
Γ, x : K, Γ′ ⊢ k′ = k′′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k/x]k′′ : K ′

(6.6)
Γ, x : K, Γ′ ⊢ K ′kind Γ ⊢ k1 = k2 : K

Γ, [k1/x]Γ′ ⊢ [k1/x]K ′ = [k2/x]K ′

(6.7)
Γ, x : K, Γ′ ⊢ k′ : K ′ Γ ⊢ k1 = k2 : K

Γ, [k/x]Γ′ ⊢ [k1/x]k′ = [k1/x]k′ : [k/x]K ′

In the syntax of LF (x : K)K ′ denotes dependent product, and [x : K]k denotes

abstraction, x is considered as bound in K ′ and k respectively. In case when x is not free in

K ′ we shall write (K)K ′ instead of (x : K)K ′. We shall use ≡ for syntactic identity.

One of the fundamental properties of derivations in LF is that the inferences of sub-

stitutions, wkn and context-retyping 3.3 that create problems with structural induction

on derivations can be eliminated, i.e., a judgement is derivable iff it has a substitution,

context-retyping and wkn-free derivation ([14], Theorem 3.1, [12], Definition 3.12 and

Algorithm 3.13).

In [12] such derivations are called canonical (Definition 3.12). The following technical

lemmas are easily proved by induction on the size of canonical derivation in LF.

◮ Lemma 1. Let Γ, Γ′, Γ′′ ⊢ J be any judgement derivable in LF. If the variables from Γ′ do

not occur into Γ′′ and J , then Γ, Γ′′ ⊢ J is derivable.

2 To facilitate reading, let us notice that the syntax of raw kinds and terms is very simple:
K ::= T ype | El(P) | (x : K)K′, P ::= x |(P Q) |[x : K]P.

Since in LF types (kinds) of variables may depend on terms (other variables) the variables
cannot any more be freely permuted. Let us formulate some statements (without detailed
proofs) that we shall use below.

Let us consider the list of variables with kinds, u1 : Q1, . . . , uk : Qk. Let ui ⊳ uj denote that
ui occurs in the kind Qj of uj . The same applies to prefixes like (u1 : Q1) . . . (uk : Qk)Q and [u1 :
Q1] . . . [uk : Qk]Q.

Let u1 : Q1, . . . , uk : Qk be part of a valid context (respectively (u1 : Q1) . . . (uk : Qk)Q,

[u1 : Q1] . . . [uk : Qk]Q be part of derivable kind or term). In this case the relation ⊳ generates a
partial order on indexes 1, . . . , k which we shall denote by ⊳∗.

◮ Lemma 2. Consider the judgements

Γ, x1 : K1, . . . , xn : Kn, Γ′ ⊢ valid,

Γ ⊢ (x1 : K1) . . . (xn : Kn)K0kind,

Γ ⊢ [x1 : K1] . . . [xn : Kn]P : (x1 : K1) . . . (xn : Kn)K0

in LF. For any permutation σ that respects the order ⊳∗,

Γ, xσ1
: Kσ1

, . . . , xσn
: Kσn

, Γ′ ⊢ valid,

Γ ⊢ (xσ1
: Kσ1

) . . . (xσn
: Kσn

)K0kind,

Γ ⊢ [xσ1
: Kσ1

] . . . [xσn
: Kσn

]P : (xσ1
: Kσ1

) . . . (xσn
: Kσn

)K0

are derivable in LF.

Besides standard equality rules, equality in LF is defined by the rules (5.7, 5.8). Obviously,

it is based on β and η conversions (incorporated explicitly using 5.7 and 5.8). This permits

to define conversions in a more familiar way.

◮ Proposition 3.

1. Let J be an LF-judgement (of any of the five forms described above) and v an occurrence

of an expression either of the form ([x : K]P)S or of the form [x : K](Px) with x not free

in P . Let J ′ be obtained by replacement of v by the occurrence of [S/x]P or P respectively.

Then J is derivable in LF iff J ′ is derivable. (We shall say that one is obtained from

another by β, respectively η conversion.)

2. Let J be of the form Γ ⊢ Kkind or Γ ⊢ P : K respectively and v belong to K (respectively,

to P). Let K ′, respectively, P ′ be obtained from K (k′) as in 1. If J is derivable, the

equality Γ ⊢ K = K ′, respectively, Γ ⊢ P = P ′ : K is derivable.

Proof.

1. By induction on the length of a canonical derivation of J .

2. By induction on the length of a canonical derivation of J and (for one of implications) on

the length of series of conversions. ◭

We shall use the fact that LF is strongly normalizing and has the Church-Rosser property

with respect to β- and η-reductions, see H. Goguen’s thesis [8], and also [13]. H. Goguen

applied typed operational semantics to LF and its extension UTT to prove these results; L.

Marie-Magdeleine in [13] applied Goguen’s method to UTT with certain additional equality

rules. We do not always need SN and CR in our proofs, but since we want to concentrate

our attention on isomorphisms, the use of SN and CR permits to make some shortcuts.

In simply-typed λ-calculus the definition of invertibility of terms may use contexts (that
include free term variables). This is relevant for the study of retractions [16]. However, type
variables and terms variables are completely separated, and to describe the isomorphisms of
types it is enough to consider closed terms [3]. Equality of types coincides with identity. One
says that the types A, B are isomorphic iff there exist terms P : A → B and P ′ : B → A such
that P ′ ◦ P =βη λx : A.x and P ◦ P ′ =βη λx : B.x.

In dependent type systems the equality of types (kinds) depends on equality of terms.
Some variables from the context may occur in kinds whose isomorphism we want to check.
This motivates the following definition.

◮ Definition 4. Let Γ ⊢ Kkind and Γ ⊢ K ′kind. We shall say that K, K ′ are isomorphic

in Γ iff there exist terms Γ ⊢ P : (K)K ′, Γ ⊢ P ′ : (K ′)K such that

(∗) Γ ⊢ P ′ ◦ P = [x : K]x : (K)K, Γ ⊢ P ◦ P ′ = [x : K ′]x : (K ′)K ′.

◮ Remark 5. Equal kinds may contain different free variables, and it has to be taken into

account. If we consider βη-normal forms of K and K ′, they may not contain some free

variables that are present in K and K ′. The normal forms may be well-formed in a more

narrow context Γ0. Still, the isomorphism of K and K ′ will not hold in Γ0 because Γ is

necessary to prove the equality of kinds to their normal forms. In case of βη-equality one may

try to define some sort of “minimal” context, but when the extensions of LF are more “exotic”,

this may be not possible (at the moment, we study one such extension, a generalization to

dependent type systems of axiom C [10]).

3 Isomorphism of Kinds in LF

At a first glance, the theory of isomorphisms in LF cannot be very interesting. Indeed, with

respect to the LF-equality there exists only one “basic” isomorphism, but as it turns out

even this basic isomorphism generates in LF much more intricate isomorphism relation than

in the simply-typed case.

◮ Example 6. Let Γ ⊢ (x : K1)(y : K2)Kkind be derivable in LF and x /∈ FV (K2). Then

Γ ⊢ (y : K2)(x : K1)Kkind is derivable and (x : K1)(y : K2)K ∼ (y : K2)(x : K1)K in Γ.

The terms

[z : (x : K1)(y : K2)K][y : K2][x : K1](zxy),

[z : (y : K2)(x : K1)K][x : K1][y : K2](zyx)

are mutually inverse isomorphisms between these kinds.

This example corresponds directly to the well known example of isomorphism in simply-

typed lambda calculus. In difference from simply-typed λ-calculus, there are some technical

points that have to be proved, such as the fact that the derivability of Γ ⊢ (y : K2)(x :

K1)Kkind follows from the derivability of Γ ⊢ (x : K1)(y : K2)Kkind . For example, the

derivability of Γ ⊢ (x : K1)(y : K2)Kkind implies the derivability of Γ, x : K1, y : K2 ⊢

Kkind and this implies the derivability of Γ, y : K2, x : K1 ⊢ Kkind because x /∈ FV (K2)

(cf. Lemma 2).

◮ Example 7. Let in the previous example Γ ⊢ K1 = K2. Then there exists at least

two isomorphisms between (x : K1)(y : K2)K and (y : K2)(x : K1)K in Γ. Indeed, one

isomorphism is the identity isomorphism, and another is the isomorphism considered in the

previous example.

The following example shows the “non-locality” of syntactic rewriting relation associated

with isomorphisms in LF.

◮ Example 8. Let Γ ⊢ (x : K1)Kkind be derivable in LF. Let K1 ∼ K2 in Γ, and

Γ ⊢ P : (K1)K2, Γ ⊢ P ′ : (K2)K1 be mutually inverse isomorphisms. Then (x : K1)K ∼

(x : K2)[(P ′x)/x]K in Γ. The isomorphism from the first to the second kind is given by the

following term:

Γ ⊢ [z : (x : K1)K][x : K2](z(P ′x)) : ((x : K1)K)(x : K2)[(P ′x)/x]K,

and its inverse by

Γ ⊢ [z : (x : K2)[(P ′x)/x]K][x : K1](z(Px)) : ((x : K2)[(P ′x)/x]K)(x : K1)K.

Notice that after second substitution (generated by the application of z in the second line)

P ′ and P being mutually inverse isomorphisms will cancel each other. Notice also that since

P and P ′ may be not a unique pair of isomorphisms between K1 and K2, the replacement of

K1 by K2 does not uniquely determine the “target” kind. We cannot merely replace K1 by

K2 (without introducing P ′ in K) because the correct kinding inside K may be lost.

Let Γ ⊢ P : El(A) be provable in LF. Then P is either a variable or an application.

Formal proof can be done by induction on the length of derivation of Γ ⊢ P : El(A).

◮ Lemma 9. Let Γ ⊢ El(A)kind and Γ ⊢ El(B)kind. Then Γ ⊢ El(A) ∼ El(B) iff

Γ ⊢ El(A) = El(B). The isomorphism between El(A) and El(B) is unique up to equality in

LF and is represented by the term Γ ⊢ [x : El(A)]x : (El(A))El(B).

Proof. Consider the non-trivial “if”. Assume there exist mutually inverse isomorphisms

Γ ⊢ P : (El(A))El(B) and Γ ⊢ P ′ : (El(B))El(A). That is, the compositions of P and P ′

are equal to identities:

Γ ⊢ [x : El(A)](P ′(Px)) = [x : El(A)]x : (El(A))El(A),

Γ ⊢ [x : El(B)](P (P ′x)) = [x : El(B)]x : (El(B))El(B)

(with x fresh).

Without loss of generality we may assume that each of P , P ′ is normal. Consider, e.g., P ′.

It may have either the form [y : El(B)](zk1 . . . kn) or the form zk1 . . . kn (z being a variable).

It is easily seen that in the second case the whole cannot normalize to [x : El(A)]x. In the

first case, if it normalizes to [x : El(A)]x, n must be 1 and [(Px)/y]k1 must normalize to x.

Similar analysis of the form of P leads to the conclusion of the lemma. ◭

◮ Theorem 10. Let Γ ⊢ Kkind in LF. Then:

1. the number of kinds (considered up to equality) that are isomorphic to K in LF in the

context Γ is finite;

2. for every kind Γ ⊢ K ′kind such that K ∼ K ′ in Γ, the number of isomorphisms between

K and K ′ in Γ is finite;

3. there exists an algorithm that lists all these isomorphisms (and kinds).

First, let us notice that if Γ ⊢ Kkind is derivable in LF then K has either the form

(x1 : K1) . . . (xn : Kn)El(A) or the form (x1 : K1) . . . (xn : Kn)Type. This can be easily

proved by induction on the derivation of Γ ⊢ Kkind in LF.

Proof of Theorem 10. The proof will proceed by induction on rank of K which is defined

as follows.

◮ Definition 11. If K ≡ Type or K ≡ El(A) then rank(K) = 0. If K ≡ (x : K1)K2 then

rank(K) = max(rank(K1), rank(K2)) + 1.

◮ Remark 12. The rank(K) is not changed by β- and η-reductions inside K and by substitu-

tion: rank(K) = rank([k/x]K).

The base case of induction is assured by Lemma 9.

To proceed, we shall use type erasure and Dezani’s theorem about invertible terms in

untyped λ-calculus3 as in [1, 3]. Of course, some modifications to take into account dependent

types will be necessary. Before we continue with the proof of the theorem, several definitions

and auxiliary statements are needed.

◮ Definition 13. Let Γ ⊢ P : K in LF. By e(P) we shall denote the λ-term obtained by

erasure of all kind-labels in P (and replacement of all expressions [x] by λx). We shall call

term variables of P all variables that occur in e(P).

The following definition is a refined (equivalent) reformulation of definition 1.9.2 of [3].

◮ Definition 14. An untyped λ-term M with one free variable x is a finite hereditary

permutation (f.h.p.) iff

M ≡ x, or

there exists a permutation σ : n → n such that M ≡ λxσ1
. . . .xσn

.xP1 . . . Pn (the only

free variable of M is x, and its unique occurrence is explicitly shown) where the only free

variable of Pi is xi and Pi is a finite hereditary permutation (for all 1 ≤ i ≤ n).

If M is a f.h.p. then the term λx.M will be called its closure. We shall also say that it is

closed finite hereditary permutation (c.f.h.p.). The notion of c.f.h.p. corresponds to f.h.p.

of [3].

◮ Remark 15. In “standard” cases the passage from the term P such that e(P) is a f.h.p. to

the term whose erasure is a c.f.h.p. is done by a single abstraction:

Γ, z : K ⊢ P : K ′

Γ ⊢ [z : K]P : (z : K)K ′
.

We do not “abstract” the “head variable” of a f.h.p. because sometimes we want to by-step

the problem of permutability of variables in LF if the head variable is not the rightmost

variable of a context.

The result similar to simply-typed λ-calculus holds.

◮ Proposition 16 (cf. Theorem 1.9.5 of [3]). If Γ ⊢ P : (K)K ′ and Γ ⊢ P ′ : (K ′)K are

mutually inverse terms in LF then e(P) and e(P ′) are c.f.h.p.

If e(P) is a c.f.h.p. then P has the structure

[z : (x1 : K1) . . . (xn : Kn)K0][x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn).

When we consider invertible terms, we always can assume that they are normal and in such

a form.

3 Probably the “simply-typed erasure”: to replace all occurrences of El(A) by El (considered as another
constant kind) will work as well, but it seems that a fully justified application of this method may need
as much technical lemmas as the proof that we propose below.

In difference from simply-typed λ-calculus, there are additional constraints on the possible
permutations in LF, because some of the types Kj may depend on variables xi, i < j, and in this
case permutation of xi and xj destroys typability. As a consequence, if e(P) is a f.h.p. then the
original term is not necessarily well typed.

◮ Example 17. The term

P ≡ [z : (x : K1)(y : K2(x))K][y : K2(x)][x : K1](zxy)

is not well typed in LF, but e(P) is a c.f.h.p.

Let us prove some lemmas concerning properties of well typed terms P such that e(P) is

a f.h.p. (they can be easily reformulated for c.f.h.p.)

◮ Lemma 18. Let Γ ⊢ P : K ′ be derivable in LF, and e(P) be a f.h.p. with head variable

z : K, K ≡ (x1 : K1) . . . (xn : Kn)K0. Let

P ≡ [x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn).

If x is a free variable that occurs in P1, . . . , Pn then it occurs in the kind of z.

Proof. There is no occurrence of x as term variable of f.h.p. because of the properties of

f.h.p. Let there be an occurrence of x into kinds of variables in Pi. Notice that since P is well

typed, P1 : K1 (in appropriate context), P2 : [P1/x1]K2,. . . , Pn : [Pn−1/xn−1](. . . [P1/x1]Kn,

zP1 . . . Pn : [Pn/xn](. . . [P1/x1]K0 = K ′

0
.

Consider the Böhm-tree of e(P) [1, 3]. We order the paths (from the root to nodes, not

necessarily to leaves) lexicographically, in such a way that the path “more to the left” is

less that the paths “more to the right”. Now, we may find the smallest path such that the

variable in some Pi that corresponds to the occurrence at its end contains x in its kind.

If the length of the path is 1, the occurrence lies in the prefix of Pi, and a matching

occurrence of x into [Pi−1/xi−1](. . . [P1/x1]Ki must exist. Indeed, it cannot come from

Pj , j < i due to the choice of the path, so it comes from Ki.

Now, assume that the path is longer. Then we obtain a contradiction. Indeed, x must

occur into the “abstracted” prefix of some subterm of some Pi, i.e., it lies within an occurrence

of the form yQ1 . . . Qk, and belongs to the prefix of some of Qi. As above, we arrive at

the conclusion that a matching occurrence into kind of y must exist, but y belongs to the

abstracted prefix at the previous node of the same path. ◭

◮ Corollary 19. Let Γ ⊢ P : K ′ be derivable in LF, e(P) be a f.h.p. and z occur as the “head

variable” of P . Then there is no other occurrences of z into P , even in the kinds of other

variables.

Proof. Since e(P) is a f.h.p. z could occur (except the “head”) only into kinds of variables in

P . But then by the previous lemma it must occur into its own kind and this is impossible. ◭

◮ Lemma 20. Let (as above) Γ ⊢ P : K ′ be derivable in LF, and e(P) be a f.h.p. The free

variable x occurs in K ′ iff it occurs in the kind of the head variable of P .

Proof. As above, P ≡ [x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn), where z : (x1 : K1) . . . (xn :

Kn)K0. The variable x′

i is the head variable of Pi (by properties of f.h.p.).

We proceed by induction on the depth of the Böhm-tree. If the depth is 1, K ′ =

(xσ1
: Kσ1

) . . . (xσn
: Kσn

)K0 and the lemma is obvious (Pi are variables and P is just a

permutation).

Let x occur in the kind K ′ ≡ (x′

σ1
: K ′

σ1
) . . . (x′

σn
: K ′

σn
)K ′

0
. Does it imply that it occurs

in the kind of z? As above,

P1 : K1 (in appropriate context),

P2 : [P1/x1]K2,

. . . ,

Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),

zP1 . . . Pn : [Pn/xn](. . . [P1/x1]K0) = K ′

0
.

There are three possibilities: (i) x occurs in the kind of z (and we are done); (ii) x occurs in

one of K ′

σi
; (iii) x occurs in one of the Pi and into K ′

0
(via substitution).

In case (ii) x occurs in kind of the head variable of Pσi
. We may apply I.H. (for implication

in opposite direction) and deduce that x occurs also in the kind of Pσi
. We always may

choose the leftmost of such Pσj
, and conclude that a matching occurrence of x must exist in

the kind of z.

In case (iii) we use Lemma 18 and arrive to the previous case.

Now, let us consider the opposite implication for P . Let x occur in the kind of z. Either

it lies in K0 (and then will occur in the kind of P as well) or it must be matched by the

kind of one of Pi. Then by I.H. it occurs also in the kind of its head variable and into the

prefix of P , and thus into K ′. ◭

◮ Corollary 21. If Γ ⊢ P : (K)K ′ is an isomorphism in LF (all is in normal form) the same

free variables occur into K and K ′.

Proof. The term e(P) has to be a c.f.h.p., so

P ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn).

We apply previous lemma to [x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn) in context Γ, z : (x1 :

K1) . . . (xn : Kn)K0. ◭

Below we consider some properties of dependency of variables (relations ⊳ and ⊳∗) that

we shall use in our study of isomorphism.

◮ Lemma 22. Let us consider Γ ⊢ P : (K)K ′, Γ ⊢ P ′ : (K ′)K such that

Γ ⊢ P : (K)K ′, Γ ⊢ P ′ : (K ′)K are derivable in LF,

P ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn),

P ′ ≡ [z′ : (xσ1
: Kσ1

) . . . (xσn
: Kσn

)K ′

0
][x1 : K1] . . . [xn : Kn](z′P ′

σ1
. . . P ′

σn
),

and e(P) and e(P ′) are mutually inverse c.f.h.p.

Then xi ⊳ xj iff x′

i ⊳ x′

j.

Proof. Without loss of generality, we may consider also the terms [x′

σ1
: K ′

σ1
] . . . [x′

σn
:

K ′

σn
](zP1 . . . Pn) in the context Γ, z : (xσ1

: Kσ1
) . . . (xσn

: Kσn
)K ′

0
and x1 : K1] . . . [xn :

Kn](z′P ′

σ1
. . . P ′

σn
) in the context Γ, z′ : (x′

σ1
: K ′

σ1
) . . . (x′

σn
: K ′

σn
)K ′

0
. Let us prove that

xi ⊳ xj ⇒ x′

i ⊳ x′

j
4.

Because e(P) is a c.f.h.p., the head variables of Pi are x′

i (1 ≤ i ≤ n). Since xi ⊳ xj , xi

occurs in Kj , the type of Pj (in appropriate context) is

[Pj−1/xj−1](. . . [P1/x1]Kj),

4 Let us emphasize that here the dependency between xi and xj , respectively x′

i and x′

j should be

considered, not between x′

σi
and x′

σj
.

thus x′

i does occur in the kind of Pj . By Lemma 20 it occurs also into the kind of x′

j , and

x′

i ⊳ x′

j .

For opposite implication, we consider P ′. ◭

◮ Corollary 23. The partial order ⊳∗ generated by ⊳ on x1, . . . , xn coincides with ⊳∗ generated

by ⊳ on x′

1
, . . . , x′

n.

One more lemma:

◮ Lemma 24. Let P ≡ [x′

σ1
: K ′

σ1
] . . . [x′

σn
: K ′

σn
](zP1 . . . Pn) as above. Then x′

i, the head

variable of Pi, does not occur in Pj , j < i. Similar result holds for P ′.

Proof. The proof is based on the same idea as in Lemma 19. We consider the Böhm-tree of

e(P) and the ordering of the paths as above. We assume that x′

j does occur in (the kind of)

some variable in Pj Then there is a smallest path leading to corresponding occurrence of an

abstracted variable in the tree.

If it belongs to the prefix of Pj (the path has the length 1) then x′

j must belong to Kj

in the type of z (because of minimality of the path it cannot come from substitution of Pl

with l < j into Kj), and we obtain a contradiction, because there is no occurrences of x′

j

into kind of z (z lies more to the left in the context).

If the smallest path is longer, similar contradiction appears because we can show that an

occurrence of x′

j must appear in the kind in the node that immediately precedes the end of

this smallest path. ◭

The following lemma prepares the inductive step of our main theorem.

◮ Lemma 25 (Decomposition). Let Γ ⊢ P : (K)K ′, Γ ⊢ P ′ : (K ′)K be as in previous lemma.

Let us consider the term

R ≡ [z′′ : (x′′

1
: K ′′

1
) . . . (x′′

n : K ′′

n)K ′′

0
][x′′

σ1
: K ′′

σ1
] . . . [x′′

σn
: K ′′

σn
](z′′x′′

1
. . . x′′

n).

Here R represents permutation. In particular, K ′′

1
≡ K ′

1
, K ′′ ≡ [x′′

1
/x′

1
]K ′

1
, . . . , K ′′

n ≡

[x′′

n−1
/x′

n−1
] . . . [x′′

1
/x′

1
]K ′

n, K ′′

0
≡ [x′′

n−1
/x′

n−1
] . . . [x′′

1
/x′

1
]K ′

0

Consider also

P0 ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′

1
: K ′

1
] . . . [x′

n : K ′

n](zP1 . . . Pn)

and

P ′

0
≡ [z′ : (x′

1
: K ′

1
) . . . (x′

n : K ′

n)K ′

0
][x1 : K1] . . . [xn : Kn](z′P ′

1
. . . P ′

n).

Then Γ ⊢ R : (K ′′)K ′, Γ ⊢ P0 : (K)K ′′, Γ ⊢ P ′

0
: (K ′′)K are derivable in LF and the

following decompositions hold:

Γ ⊢ P = R ◦ P0 : (K)K ′,

Γ ⊢ P ′ ◦ R = P ′

0
: (K ′′)K.

Proof. The derivability of all these terms relies on Lemma 22 and its Corollary. Verification

of equalities uses standard reductions. For example, let us consider Γ ⊢ P = R ◦ P0 : (K)K ′.

Composition of two terms is defined as usual: R ◦ P0 ≡ [z : K](R(P0z)). By two

β-reductions we obtain

[z : K][x′′

σ1
: K ′′

σ1
] . . . [x′′

σn
: K ′′

σn
]([x1 : K1] . . . [xn : Kn](zP1 . . . Pn)x′′

1
. . . x′′

n).

After that follows the series of β-reductions and renaming of bound variables (x′′ → x′) that

gives P .

Verification for another equality is similar. ◭

Proof of the Theorem 10 (continuation).

Let Γ ⊢ P : (K)K ′ be an isomorphism. Then there exists its inverse Γ ⊢ P ′(K ′)K. In

particular, Γ ⊢ P ′ ◦ P = [z : K]z : (K)K.

Using the Decomposition Lemma, we may write

Γ ⊢ P ′ ◦ (R ◦ P0) = (P ′ ◦ R) ◦ P0 = P ′

0
◦ P0 = [z : K]z : (K)K.

Similar fact holds for P ◦ P ′.

Via two standard β-reductions we obtain

P ′

0
◦ P0 = [z : K][x1 : K1] . . . [xn : Kn]([x′

1
: K ′

1
] . . . [x′

n : K ′

n](zP1 . . . Pn)P ′

1
. . . P ′

n).

Before we continue with reductions, let us see what can be established about contexts and

kinding of P1, . . . , Pn and P ′

1
, . . . , P ′

n
5.

Consider now the typing of P1, . . . , Pn and P ′

1
, . . . , P ′

n. A straightforward use of properties

of LF-derivations gives us:

Γ, z : K, x′

1
: K ′

1
, . . . , x′

n : K ′

n ⊢ P1 : K1,

Γ, z : K, x′

1
: K ′

1
, . . . , x′

n : K ′

n ⊢ P2 : [P1/x1]K2,

. . .

Γ, z : K, x′

1
: K ′

1
, . . . , x′

n : K ′

n ⊢ Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),

respectively,

Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ⊢ P ′

1
: K ′

1
,

Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ⊢ P ′

2
: [P ′

1
/x1]K ′

2
,

. . .

Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ⊢ P ′

n : [P ′

n−1
/xn−1](. . . [P ′

1
/x1]K ′

n).

The derivability of these judgements is obtained using the known properties of LF-derivations

(see [12, 14]).

Using Corollary 19, Lemma 24, and then applying Lemma 1 (strengthening), we can

make the contexts considerably smaller:

Γ, x′

1
: K ′

1
⊢ P1 : K1,

Γ, x′

1
: K ′

1
, x′

2
: K ′

2
⊢ P2 : [P1/x1]K2,

. . .

Γ, x′

1
: K ′

1
, . . . , x′

n : K ′

n ⊢ Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),

respectively,

Γ, x1 : K1 ⊢ P ′

1
: K ′

1
,

Γ, x1 : K1, x2 : K2 ⊢ P ′

2
: [P ′

1
/x1]K ′

2
,

. . .

Γ, x1 : K1, . . . , xn : Kn ⊢ P ′

n : [P ′

n−1
/xn−1](. . . [P ′

1
/x1]K ′

n).

5 This is important, because as the Example 8 shows x′

1 may very well occur into P2, . . . , Pn, x′

2 occur
into P3, . . . , Pn, etc.

It is easily verified that the assumption that P0 and P ′

0
are mutually inverse implies

that Pj and P ′

j are mutually inverse (in the above contexts). Notice that the rank is not

changed by substitution (Remark 12), so the ranks of kinds of [x′

1
: K ′

1
]P1, . . . , [x′

n : K ′

n]Pn,

[x1 : K1]P ′

1
, . . . , [xn : Kn]P ′

n are strictly smaller than the ranks of (K)K ′ and (K ′)K.

We may apply inductive hypothesis to the pairs P1, P ′

1
,. . . , Pn, P ′

n
6. So, the number of

the isomorphisms of the form P0, P ′

0
is finite and we may list them using isomorphisms

corresponding to kinds of smaller rank, obtained by inductive hypothesis.

To pass to the general case, we have to include permutations represented by R. Their

number is also finite. The upper bound is given by the number of permutations on {1, . . . , n}

and actual number may be less due to the constraints imposed by the relation ⊳∗ of variable

dependency. Of course they all can be listed constructively, and so all the isomorphisms for

a given K may be listed. ◭

◮ Corollary 26. The relation of isomorphism of kinds in LF is decidable.

Proof. An algorithm (not very efficient) works as follows. Let Γ ⊢ Kkind, Γ ⊢ K ′kind.

Using main theorem, we create the list of all kinds that are isomorphic to K and verify

whether any of them is equal to K ′ (e.g., reducing to normal form). ◭

◮ Remark 27. When P : (K)K ′ is an isomorphism, the rank(K) permits to obtain an upper

bound to the depth of the Böhm’s tree of the f.h.p. e(P) and this in its turn may be used to

obtain an upper bound on the number of isomorphisms in the theorem.

4 Conclusion

The “core system” that we studied, Z. Luo’s LF with variables, kind Type and dependent

product (and definitional equality) is relatively limited, but the limited character of this

system permits to obtain a complete deciding algorithm for isomorphism relation between

kinds in spite of the fact that local (or non-contextual) rewriting does not work. The limited

character of this system permits also to describe completely the structure of isomorphisms.

Whether the term P is an isomorphism turns out to be decidable as well.

The restrictions on isomorphisms imposed by type-dependencies allow more (not less)

“fine-tuning” than in the case of simply-typed λ-calculus. Isomorphisms of kinds to themselves

are called automorphisms. We have a sketch of a proof (work in progress) that every finite

group is isomorphic to the group of automorphisms of some kind in LF. The groups of

automorphisms of simple types correspond to automorphisms of finite trees. An arbitrary

finite group can not be represented in this way.

The main use of LF is to specify other type theories. To do this, LF is extended by

new constants, rules for these constants, etc. For example the Second Order Logic SOL

and Universal Type Theory UTT are defined in [11]. There are other possibilities to build

type theories using LF, e.g., on may add new equality rules, like the analog of the axiom C

from [10]. Another modification of equality (for the whole UTT) was studied in [13].

The isomorphisms in LF described above will remain isomorphisms in these type theories

but, of course, other isomorphisms may appear. The study of these isomorphisms remains

an open problem.

6 In this order, because the isomorphisms obtained by inductive hypothesis are substituted into kinds
more to the right.

We did not yet study (and try to improve) the complexity of decision procedures for

isomorphism relation between kinds and for the property of a term P to be an isomorphism.

All this is left for study in the near future.

Acknowledgements. The author would like to express his thanks to the organizers of

the Univalent Foundations Year at IAS, Princeton (September 2012 – August 2013), the

organizers of the Trimester on Semantics of Proofs and Certified Mathematics at the Institute

Henri Poincaré (Paris, April–July 2014) who partly supported his participation in these

research programs and created excellent work environment, and to anonymous referees for

their valuable remarks.

References

1 K. Bruce, R. Di Cosmo, and G. Longo. Provable isomorphisms of types. Math. Str. in

Comp. Science, 2(2):231–247, 1992.

2 D. Chemouil.Isomorphisms of simple inductive types through extensional rewriting. Math.

Str. in Comp. Science, 15(5):875–915, 2005.

3 R. Di Cosmo. Isomorphisms of types: from lambda-calculus to information retrieval and

language design. Birkhäuser, 1995.

4 The Coq Reference Manual, http://coq.inria.fr/coq/refman/.

5 D. Delahaye. Information Retrieval in a Coq Proof Library Using Type Isomorphisms.

TYPES 1999: 131-147

6 M. Fiore. Isomorphisms of generic recursive polynomial types. In: POPL’04, pp. 77–88,

New York, NY, USA, 2004. ACM

7 M. Fiore, R. Di Cosmo and V. Balat. Remarks on isomorphisms in typed lambda calculi

with empty and sum types. Annals of Pure and Applied Logic, 141(1):35–50, 2006.

8 H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University of

Edinburgh, 1994.

9 The HoTT Book. Homotopy Type Theory: Univalent Foundations of Mathematics. IAS

Princeton, 2013.

10 G. Longo, K. Milsted and S. Soloviev. The Genericity Theorem and effective Parametricity

in Polymorphic lambda-calculus. Theor. Comp. Science, 121(1993), pp. 323–349.

11 Z. Luo. Computation and Reasoning. A Type Theory for Computer Science. Oxford, 1994.

12 Z. Luo, S. Soloviev, T. Xue. Coercive subtyping: Theory and implementation. Informaion

and Computation, 223 (2013), pp. 18–42.

13 L. Marie-Magdeleine. Sous-typage coercitif en présence de réductions non-standards dans

un système aux types dépendants. Thèse de doctorat. Université Toulouse 3 Paul Sabatier,

2009.

14 S. Soloviev, Z. Luo. Coercion completion and conservativity in coercive subtyping. Annals

of Pure and Applied Logic, 113(1–3):297–322, 2002.

15 S. V. Solov’ev. The category of finite sets and cartesian closed categories. J. of Soviet

Mathematics, 22(3):1387–1400, 1983.

16 C. Stirling. Proof Systems for Retracts in Simply Typed Lambda Calculus. ICALP (2) 2013,

pp. 398–409.

