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ABSTRACT

The paper deals with the problem of representing non-

stationary signals jointly in time and frequency. We use

the framework of reassignment methods, that achieve sharp

and compact representations. More precisely, we introduce

an enhanced version of the synchrosqueezed wavelet trans-

form, which is shown to be more general than the standard

synchrosqueezing, while remaining invertible. Numerical ex-

periments measure the improvement brought about by using

our new technique on synthetic data, while an analysis of

the gravitational wave signal recently observed through the

LIGO interferometer applies the method on a real dataset.

Index Terms— synchrosqueezing; continuous wavelet

transform; multicomponent signals; time-frequency; AM/FM;

chirp detection; gravitational waves

1. INTRODUCTION

For decades, time-frequency (TF) analysis has aimed at de-

signing new techniques for analyzing non-stationary sig-

nals, i.e. whose frequency varies across time. For instance,

the Short-Time Fourier Transform (STFT), the Continuous

Wavelet Transform (CWT) or the Wigner-Ville distribution

[1, 2, 3] have been intensively used, for instance, in music or

speech analysis, geophysics, or electrical engineering.

STFT and CWT, being the simplest of linear TF represen-

tations, are also the most popular. However, they suffer from

a fundamental limitation: the Heisenberg-Gabor uncertainty

principle, which limits their TF resolution. To overcome this

and improve their ability to represent non-stationary signals,

a pioneer work proposed in the seventies a post-processing

technique to sharpen TF representations [4], which was then

extended in [5] and there named reassignment (RM). A very

similar approach followed in [6, 7] and is known as syn-

chrosqueezing (SST).

The nice theoretical results stated in [7] gave a new im-

pulse to the field, and many new developments around SST or

RM have been carried out, over these last years; we can men-

tion the use of redundancy via multitaper approaches [8, 9]

or wavelet packets [10], the generalization to images [11, 12],
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and the application to non-harmonic waves [10]. This led to

new interesting applications as, for instance, in bio-medical

engineering [13] or art investigation [14].

Yet, while both SST and RM are similar techniques,

their aim is quite different. The SST provides an invert-

ible representation similar to STFT or CWT, sharp for any

superposition of modulated waves, as soon as the modula-

tion remains negligible [7]. Instead, RM provides only a

sharpened TF representation, even for large frequency modu-

lation [15], but not a reconstruction procedure. To generalize

SST to non-negligible frequency modulations, the authors of

this paper recently proposed to improve the definition of the

instantaneous frequency (IF) estimate in the STFT setting

[16]. The resulting transformation, called second-order SST

(SST2), was deeply analyzed in [17]. The aim of this present

paper is to extend SST2 to the CWT setting, and show, em-

pirically, the interest of this new transformation. To this end,

we first state some notation and definitions in Section 2, be-

fore introducing our new SST in Section 3. The numerical

experiments presented in Section 4 show the interest of the

new transformation on synthetic and real data.

2. DEFINITIONS

2.1. Continuous wavelet transform

We denote by L1(R) and L2(R) the space of integrable, and

square integrable functions. Consider a signal f ∈ L1(R),
and a window g in the Schwartz class, S(R), the space of

smooth functions with fast decaying derivatives of any order;

its Fourier transform is defined by:

f̂(ξ) = F{f}(ξ) =

∫

R

f(τ)e−2iπξτdτ. (1)

Let us consider an admissible wavelet ψ ∈ L2(R), satisfying

0 < Cψ =
∫∞

0
|ψ̂(ξ)|2 dξ

ξ
<∞. For any time t and scale a >

0, the continuous wavelet transform (CWT) of f is defined

by:

W
ψ
f (a, t) =

1

a

∫

R

f(τ)ψ

(
τ − t

a

)∗

dτ, (2)

where z∗ denotes the complex conjugate of z. We further

assume that ψ is analytic, i.e. Supp(ψ̂) ⊂ [0,∞[, and that



supξ |ψ̂(ξ)| = 1. If f real-valued, CWT admits the following

synthesis formula (Morlet formula):

f(t) = 2R

{
1

C ′
ψ

∫ ∞

0

W
ψ
f (a, t)

da

a

}
, (3)

where R denotes the real part of a complex number andC ′
ψ =∫ ∞

0

ψ̂∗(ξ)
dξ

ξ
.

2.2. Multicomponent signal

In this present paper, we analyze so-called multicomponent

signals of the form,

f(t) =

K∑

k=1

fk(t), with fk(t) = Ak(t)e
2iπφk(t), (4)

for some K, where Ak(t) and φk(t) are functions satisfy-

ing Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for any t

and k. In the following, φ′k(t) is often called instantaneous

frequency (IF) of mode k and Ak(t) its instantaneous am-

plitude (IA). One of the goal of TF analysis is to recover

the instantaneous frequencies {φ′k(t)}1≤k≤K and amplitudes

{Ak(t)}1≤k≤K , from a given signal f . Note that with the an-

alytic wavelets, considering complex modes or their real part

fk(t) = Ak(t) cos(2πφk(t)) is equivalent, as soon as φ′1(t) is

large enough. The CWT of a multicomponent signal is known

to exhibit a ridge structure: the information is concentrated

around ridges defined by aφ′k(t) = 1.

2.3. Reassignment and Synchrosqueezing

A powerful post-processing technique was introduced in [5]

to sharpen the scalogram, termed reassignment method (RM).

It needs the so-called reassignment operators, defined wher-

ever Wf (a, t) 6= 0 by (ω̂f , τ̂f ) = (R(ω̃f ),R(τ̃f )) with





ω̃f (a, t) =
1

2iπ

∂tWf (a, t)

Wf (a, t)

τ̃f (a, t) =

∫
R
τf(τ) 1

a
ψ
(
τ−t
a

)∗
dτ

Wf (a, t)
.

(5)

These operators locally define an IF and a group delay
(GD), and they estimate the position of a ridge if it is close
enough. Then, RM consists in moving the coefficients of the
scalogram according to the map (a, t) 7→ (ω̂f (a, t), τ̂f (a, t)).
We know, from [5], that RM perfectly localizes linear chirps
with constant amplitude. Alternatively, SST reassigns the co-
efficients of the CWT in the time-scale plane according to the
map (a, t) 7→ (ω̂f (a, t), t) [7]:

Tf (a, t) = 2R

{

1

C′
ψ

∫

{b,|W
ψ
f

(b,t)|≥γ}
W
ψ
f
(b, t)δ(ω̂f (a, t)− b)

db

b

}

,

(6)

and then reconstruction of fk is performed through:

fk(t) =

∫

|1−aφ′

k
(t)|<d

Tf (a, t)da. (7)

Since the (complex) coefficients are moved only along the

scale axis, the transform remains invertible using formula (3).

But, since GD is ignored, the method cannot handle large fre-

quency modulations: the perfect localization property is only

ensured for purely harmonic waves [6, 7].

3. SECOND-ORDER SYNCHROSQUEEZING

On one hand, RM provides a nice representation for a wide

range of AM/FM or multicomponent waves. On the other

hand, SST is invertible, but only suitable for low-modulated

waves (|φ′′(t)| ≪ φ′(t)). SST2, introduced in [16] in the

STFT context, aims to combine both properties, by improving

IF estimate ω̂f .

3.1. An improved instantaneous frequency

To start with, we locally estimate the frequency modulation

φ′′(t), by means of the following operator:

q̃f (a, t) =
∂tω̃f (a, t)

∂τ t̃f (a, t)
, (8)

which enables us to define a new complex estimate:

ω̃
(2)
f

(a, t) =

{

ω̃f (a, t) + q̃f (a, t)(t− τ̃f (a, t)) if ∂t t̃f (a, t) 6= 0
ω̃f (a, t) otherwise,

(9)

and then ω̂
(2)
f (a, t) = R(ω̃

(2)
f (a, t)), as a new IF estimate.

The new synchrosqueezing operator is then defined by replac-

ing ω̂f by ω̂
(2)
f in (6). Note that the definition is very similar

in the STFT context [16].

3.2. Computation

CWT is computed scale by scale in the Fourier domain,

thanks to the Plancherel theorem:

W
ψ̂
f (a, t) :=W

ψ
f (a, t) =

∫

R

f̂(ξ)ψ̂(aξ)∗e2iπtξ dξ. (10)

We denote by W
ψ̂
f , W

ξψ̂
f and W

ψ̂′

f the CWTs corresponding,

in the Fourier domain, to wavelets ψ̂, ξψ̂ and (ψ̂)′. We easily

get:

∂tW
ψ̂
f (a, t) =

2iπ

a
W

ξψ̂
f (a, t) (11)

τ̃f (a, t)W
ψ̂
f (a, t) = tW

ψ̂
f (a, t) +

a

2iπ
W

ψ̂′

f (a, t).



Then, the reassignment operators (5) can be written:





ω̃f (a, t) =
W

ξψ̂
f (a, t)

aW
ψ̂
f (a, t)

τ̃f (a, t) = t+
a

2iπ

W
ψ̂′

f (a, t)

W
ψ̂
f (a, t)

.

(12)

By differentiating and using equation (11) again, we finally

obtained

q̃ =
2iπ

a2

W ξ2ψ̂W
ψ̂
f − (W ξψ̂

f )2

W
ψ̂
f +W

ξψ̂′

f W
ψ̂
f −W

ψ̂′

f W
ξψ̂
f

, (13)

whereW
ξψ̂′

f andW
ξ2ψ̂
f denote the CWTs computed using the

wavelets ξ 7→ ξ(ψ̂)′ and ξ 7→ ξ2ψ̂, the variables (a, t) being

omitted to lighten the notation.

3.3. A second-order SST

We term our new SST “second-order”, because it manages to

perfectly localize linear chirps:

Theorem 3.1. Let h(t) = A(t)e2iπφ(t), with A(t) =
Ae−P (t), where A > 0, P (t) > 0 and P and φ are second-

order polynomials. Then we have, wherever Wh(a, t) 6= 0,

ω̂
(2)
f (a, t) = φ′(t). (14)

Proof. We have the following expansion for any t, τ ∈ R:

h(τ) = h(t)e(2iπφ
′(t)−P ′(t))(τ−t)+(iπφ′′(t)−

P ′′(t)
2 )(τ−t)2 .

(15)

Then, we can write

Wh(a, t) =
h(t)

a

∫

R

e(iπφ
′′(t)−

P ′′(t)
2

)τ2ψ
( τ

a

)∗
e(2iπφ

′(t)−P ′(t))τ dτ

∂tWh(a, t) =
[

2iπφ′(t)− P ′(t)
]

Wh(a, t)

+
[

2iπφ′′(t)− P ′′(t)
]

Wh(a, t)(τ̃f (a, t)− t).

We finally get

ω̃f (a, t) =

[

φ′(t)−
P ′(t)

2iπ

]

+

[

φ′′(t)−
P ′′(t)

2iπ

]

(τ̃f (a, t)− t).

Differenting each side with respect to t, we immediately get:

q̃f (a, t) = φ′′(t)− P ′′(t)
2iπ , from which we deduce,

φ′(t) = R (ω̃f (a, t) + q̃f (a, t)(t− τ̃f (a, t)) = ω̂
(2)
f (a, t)

Remark: In [17], we proved a stronger result for the STFT,

showing that the good localization property still holds for

quasi-linear chirps, i.e. when we have |φ′′′(t)| ≪ 1. A sim-

ilar result should be available in the CWT context for modes

satisfying |φ′′′(t)| ≪ φ′(t), but this is left for future investi-

gations.

4. NUMERICAL EXPERIMENTS

4.1. Representation and decomposition of a synthetic sig-

nal

We consider a synthetic 3-modes multicomponent signal,

made of a pure wave, an exponential chirp and an hyper-

bolic chirp, whose instantaneous frequencies are respec-

tively constant, exponential (φ′′(t) ∝ φ′(t)) and hyperbolic

(φ′′(t) ∝ φ′(t)2). CWT and SST of our test-signal are dis-

played in Figure 1; we can clearly see on the representation of

SST the 3 ridges corresponding to the modes, but the corre-

sponding coefficients are spread out around these ridges. This

is because, except for pure harmonic waves, the frequency

modulation is not negligible and should be taken into account

in IF estimation.

t
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Fig. 1. CWT and SST of the synthetic signal.

Now we consider a noisy version of this test-signal (with

input SNR = 10 dB), and compare, in the following Figure 2,

the representations given by SST, SST2 and RM. It is clear

that both SST2 and RM achieve a compact representation,

although it is corrupted by a non-negligible noise. Now, if

we reconstruct the different modes from the synchrosqueezed

representations, we just need to sum the vertical coefficients

around a ridge, as expressed in (7). If we take 3 coefficients

per ridge (parameter d in (7)) and per time sample, we end up

with an accuracy of 14 dB for SST, and 21 dB for our SST2.

To better assess the superiority of SST2, we now compare

the obtained results with the ideal time-frequency representa-

tion, by means of the Earth Mover Distance (EMD), as done

in [18]. The EMD is a sliced Wasserstein distance, commonly

used in optimal transport, which allows for the comparison of

two distributions. In Figure 3, we show EMD computed for

the exponential chirp of Figure 1, different input SNRs and

different representations (the lower the EMD, the better). We

see that the reassigned representation (RM) achieves the best

performance whatever the input SNR, and also that SST2 is

relatively close. In contrast, the representation given by SST

is quite poor. The improvement brought about by SST2 or

RM is particularly significant at low noise levels, but remains

whatever the input SNR.
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Fig. 2. Time-frequency representations of the noisy synthetic

signal, with input SNR = 10 dB.
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Fig. 3. EMD as a function of Input SNR, for different repre-

sentations.

4.2. Application on real data

We now illustrate an application of our technique on the

gravitational wave signal recorded last year [19], which

had a considerable impact in the scientific community.

The signal recorded by the LIGO interferometer is typi-

cally a chirp with large frequency modulation, for which

the SST2 clearly improves the result. We consider the

pre-processed signal from Hanford interferometer, avail-

able online at https://losc.ligo.org/s/events/

GW150914/P150914/fig1-waveform-H.txt. We

display, in Figure 4, its TF representations given by SST

and SST2, obtained with the complex Morlet wavelet with

σ = 0.8. Both representations show a nice ridge with in-

creasing IF, but SST2 is more concentrated. We also show the

same representations, with the estimated ridge superimposed.

The results differ significantly, since only SST2 allows us

to recover the complete “ringdown”, which is the part of

the signal emitted after the fusion of the two blackholes.

If we reconstruct the chirp using both representations, we

observe that SST2 gives a result closer to the expected one

that SST does: the SNR is 6.45 dB for SST and 7.81 dB for

SST2. Time curves displayed in Figure 4 also show that the

ringdown part of the chirp is better recovered using SST2.
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Fig. 4. From top to bottom : TF representation of the Hanford

signal, the estimated ridge, and the reconstruction, for SST

(left) and SST2 (right).

5. CONCLUSION

We introduced in this paper the second order SST, which is

the counterpart for wavelets of the STFT-based SST2 defined

in [16]. Similar to the STFT context, the new transformation

was shown to perfectly localize linear chirps, and to remain

efficient when the frequency modulation is quasi-linear. Nu-

merical experiments illustrated the benefit of SST2 over stan-

dard synchrosqueezing, and recalled the main differences be-

tween STFT and CWT for analyzing multicomponent signals.

Future works should build a theoretical analysis of SST2, to

extend the results of [17]. On an applicative point of view, the

next step would be to combine the method introduced here

with other recent improvements of SST [9, 10], which should

lead to significantly better performance.
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