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The paper deals with the problem of representing nonstationary signals jointly in time and frequency. We use the framework of reassignment methods, that achieve sharp and compact representations. More precisely, we introduce an enhanced version of the synchrosqueezed wavelet transform, which is shown to be more general than the standard synchrosqueezing, while remaining invertible. Numerical experiments measure the improvement brought about by using our new technique on synthetic data, while an analysis of the gravitational wave signal recently observed through the LIGO interferometer applies the method on a real dataset.

INTRODUCTION

For decades, time-frequency (TF) analysis has aimed at designing new techniques for analyzing non-stationary signals, i.e. whose frequency varies across time. For instance, the Short-Time Fourier Transform (STFT), the Continuous Wavelet Transform (CWT) or the Wigner-Ville distribution [START_REF] Flandrin | Time-frequency / Time-scale Analysis[END_REF][START_REF] Cohen | Time-frequency analysis[END_REF][START_REF] Mallat | A wavelet tour of signal processing[END_REF] have been intensively used, for instance, in music or speech analysis, geophysics, or electrical engineering.

STFT and CWT, being the simplest of linear TF representations, are also the most popular. However, they suffer from a fundamental limitation: the Heisenberg-Gabor uncertainty principle, which limits their TF resolution. To overcome this and improve their ability to represent non-stationary signals, a pioneer work proposed in the seventies a post-processing technique to sharpen TF representations [START_REF] Kodera | A new method for the numerical analysis of non-stationary signals[END_REF], which was then extended in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF] and there named reassignment (RM). A very similar approach followed in [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF][START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF] and is known as synchrosqueezing (SST).

The nice theoretical results stated in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF] gave a new impulse to the field, and many new developments around SST or RM have been carried out, over these last years; we can mention the use of redundancy via multitaper approaches [START_REF] Xiao | Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement[END_REF][START_REF] Daubechies | ConceFT: concentration of frequency and time via multitapered synchrosqueezed transform[END_REF] or wavelet packets [START_REF] Yang | Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions[END_REF], the generalization to images [START_REF] Yang | Synchrosqueezed wave packet transform for 2D mode decomposition[END_REF][START_REF] Clausel | The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM-FM images[END_REF],

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-BS03-0002-01 (ASTRES). and the application to non-harmonic waves [START_REF] Yang | Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions[END_REF]. This led to new interesting applications as, for instance, in bio-medical engineering [START_REF] Wu | Using synchrosqueezing transform to discover breathing dynamics from ecg signals[END_REF] or art investigation [START_REF] Yang | Quantitative canvas weave analysis using 2-d synchrosqueezed transforms: Application of timefrequency analysis to art investigation[END_REF].

Yet, while both SST and RM are similar techniques, their aim is quite different. The SST provides an invertible representation similar to STFT or CWT, sharp for any superposition of modulated waves, as soon as the modulation remains negligible [START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF]. Instead, RM provides only a sharpened TF representation, even for large frequency modulation [START_REF] Franc ¸ois Auger | Time-frequency reassignment and synchrosqueezing: An overview[END_REF], but not a reconstruction procedure. To generalize SST to non-negligible frequency modulations, the authors of this paper recently proposed to improve the definition of the instantaneous frequency (IF) estimate in the STFT setting [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. The resulting transformation, called second-order SST (SST2), was deeply analyzed in [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]. The aim of this present paper is to extend SST2 to the CWT setting, and show, empirically, the interest of this new transformation. To this end, we first state some notation and definitions in Section 2, before introducing our new SST in Section 3. The numerical experiments presented in Section 4 show the interest of the new transformation on synthetic and real data.

DEFINITIONS

Continuous wavelet transform

We denote by L 1 (R) and L 2 (R) the space of integrable, and square integrable functions. Consider a signal f ∈ L 1 (R), and a window g in the Schwartz class, S(R), the space of smooth functions with fast decaying derivatives of any order; its Fourier transform is defined by:

f (ξ) = F{f }(ξ) = R f (τ )e -2iπξτ dτ. (1) 
Let us consider an admissible wavelet ψ ∈ L 2 (R), satisfying

0 < C ψ = ∞ 0 | ψ(ξ)| 2 dξ ξ < ∞.
For any time t and scale a > 0, the continuous wavelet transform (CWT) of f is defined by:

W ψ f (a, t) = 1 a R f (τ )ψ τ -t a * dτ, (2) 
where z * denotes the complex conjugate of z. We further assume that ψ is analytic, i.e. Supp( ψ) ⊂ [0, ∞[, and that

sup ξ | ψ(ξ)| = 1.
If f real-valued, CWT admits the following synthesis formula (Morlet formula):

f (t) = 2R 1 C ′ ψ ∞ 0 W ψ f (a, t) da a , (3) 
where R denotes the real part of a complex number and

C ′ ψ = ∞ 0 ψ * (ξ) dξ ξ .

Multicomponent signal

In this present paper, we analyze so-called multicomponent signals of the form,

f (t) = K k=1 f k (t), with f k (t) = A k (t)e 2iπφ k (t) , (4) 
for some K, where A k (t) and φ k (t) are functions satisfying

A k (t) > 0, φ ′ k (t) > 0 and φ ′ k+1 (t) > φ ′ k (t)
for any t and k. In the following, φ ′ k (t) is often called instantaneous frequency (IF) of mode k and A k (t) its instantaneous amplitude (IA). One of the goal of TF analysis is to recover the instantaneous frequencies {φ ′ k (t)} 1≤k≤K and amplitudes {A k (t)} 1≤k≤K , from a given signal f . Note that with the analytic wavelets, considering complex modes or their real part

f k (t) = A k (t) cos(2πφ k (t)) is equivalent, as soon as φ ′ 1 (t) is large enough.
The CWT of a multicomponent signal is known to exhibit a ridge structure: the information is concentrated around ridges defined by aφ ′ k (t) = 1.

Reassignment and Synchrosqueezing

A powerful post-processing technique was introduced in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF] to sharpen the scalogram, termed reassignment method (RM). It needs the so-called reassignment operators, defined wherever

W f (a, t) = 0 by (ω f , τf ) = (R(ω f ), R(τ f )) with          ωf (a, t) = 1 2iπ ∂ t W f (a, t) W f (a, t) τf (a, t) = R τ f (τ ) 1 a ψ τ -t a * dτ W f (a, t) . (5) 
These operators locally define an IF and a group delay (GD), and they estimate the position of a ridge if it is close enough. Then, RM consists in moving the coefficients of the scalogram according to the map (a, t) → (ω f (a, t), τf (a, t)). We know, from [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], that RM perfectly localizes linear chirps with constant amplitude. Alternatively, SST reassigns the coefficients of the CWT in the time-scale plane according to the map (a, t) → (ω f (a, t), t) [START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF]:

T f (a, t) = 2R 1 C ′ ψ {b,|W ψ f (b,t)|≥γ} W ψ f (b, t)δ(ω f (a, t) -b) db b , (6) 
and then reconstruction of f k is performed through:

f k (t) = |1-aφ ′ k (t)|<d T f (a, t)da. (7) 
Since the (complex) coefficients are moved only along the scale axis, the transform remains invertible using formula (3). But, since GD is ignored, the method cannot handle large frequency modulations: the perfect localization property is only ensured for purely harmonic waves [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF][START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF].

SECOND-ORDER SYNCHROSQUEEZING

On one hand, RM provides a nice representation for a wide range of AM/FM or multicomponent waves. On the other hand, SST is invertible, but only suitable for low-modulated waves (|φ ′′ (t)| ≪ φ ′ (t)). SST2, introduced in [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF] in the STFT context, aims to combine both properties, by improving IF estimate ωf .

An improved instantaneous frequency

To start with, we locally estimate the frequency modulation φ ′′ (t), by means of the following operator:

qf (a, t) = ∂ t ωf (a, t) ∂ τ tf (a, t) , (8) 
which enables us to define a new complex estimate:

ω(2) f (a, t) = ωf (a, t) + qf (a, t)(t -τf (a, t)) if ∂t tf (a, t) = 0 ωf (a, t) otherwise, (9) 
and then

ω(2) f (a, t) = R(ω (2) 
f (a, t)), as a new IF estimate. The new synchrosqueezing operator is then defined by replacing ωf by ω(2) f in [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF]. Note that the definition is very similar in the STFT context [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF].

Computation

CWT is computed scale by scale in the Fourier domain, thanks to the Plancherel theorem:

W ψ f (a, t) := W ψ f (a, t) = R f (ξ) ψ(aξ) * e 2iπtξ dξ. (10) 
We denote by W ψ f , W ξ ψ f and W ψ′ f the CWTs corresponding, in the Fourier domain, to wavelets ψ, ξ ψ and ( ψ) ′ . We easily get:

∂ t W ψ f (a, t) = 2iπ a W ξ ψ f (a, t) (11) τf (a, t)W ψ f (a, t) = tW ψ f (a, t) + a 2iπ W ψ′ f (a, t).
Then, the reassignment operators (5) can be written:

               ωf (a, t) = W ξ ψ f (a, t) aW ψ f (a, t) τf (a, t) = t + a 2iπ W ψ′ f (a, t) W ψ f (a, t) . ( 12 
)
By differentiating and using equation ( 11) again, we finally obtained

q = 2iπ a 2 W ξ 2 ψ W ψ f -(W ξ ψ f ) 2 W ψ f + W ξ ψ′ f W ψ f -W ψ′ f W ξ ψ f , ( 13 
)
where W ξ ψ′ f and W ξ 2 ψ f denote the CWTs computed using the wavelets ξ → ξ( ψ) ′ and ξ → ξ 2 ψ, the variables (a, t) being omitted to lighten the notation.

A second-order SST

We term our new SST "second-order", because it manages to perfectly localize linear chirps: Theorem 3.1. Let h(t) = A(t)e 2iπφ(t) , with A(t) = Ae -P (t) , where A > 0, P (t) > 0 and P and φ are secondorder polynomials. Then we have, wherever W h (a, t) = 0,

ω(2) f (a, t) = φ ′ (t). ( 14 
)
Proof. We have the following expansion for any t, τ ∈ R: h(τ ) = h(t)e (2iπφ ′ (t)-P ′ (t))(τ -t)+(iπφ ′′ (t)-P ′′ (t)

2

)(τ -t) 2 . ( 15 
)
Then, we can write

W h (a, t) = h(t) a R e (iπφ ′′ (t)-P ′′ (t) 2 )τ 2 ψ τ a * e (2iπφ ′ (t)-P ′ (t))τ dτ ∂tW h (a, t) = 2iπφ ′ (t) -P ′ (t) W h (a, t) + 2iπφ ′′ (t) -P ′′ (t) W h (a, t)(τ f (a, t) -t).
We finally get

ωf (a, t) = φ ′ (t) - P ′ (t) 2iπ + φ ′′ (t) - P ′′ (t) 2iπ (τ f (a, t) -t).
Differenting each side with respect to t, we immediately get: qf (a, t) = φ ′′ (t) -P ′′ (t) 2iπ , from which we deduce, 

φ ′ (t) = R (ω f (a, t) + qf (a, t)(t -τf (a, t)) = ω(2) f (a,

NUMERICAL EXPERIMENTS

Representation and decomposition of a synthetic signal

We consider a synthetic 3-modes multicomponent signal, made of a pure wave, an exponential chirp and an hyperbolic chirp, whose instantaneous frequencies are respectively constant, exponential (φ ′′ (t) ∝ φ ′ (t)) and hyperbolic (φ ′′ (t) ∝ φ ′ (t) 2 ). CWT and SST of our test-signal are displayed in Figure 1; we can clearly see on the representation of SST the 3 ridges corresponding to the modes, but the corresponding coefficients are spread out around these ridges. This is because, except for pure harmonic waves, the frequency modulation is not negligible and should be taken into account in IF estimation. Now we consider a noisy version of this test-signal (with input SNR = 10 dB), and compare, in the following Figure 2, the representations given by SST, SST2 and RM. It is clear that both SST2 and RM achieve a compact representation, although it is corrupted by a non-negligible noise. Now, if we reconstruct the different modes from the synchrosqueezed representations, we just need to sum the vertical coefficients around a ridge, as expressed in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF]. If we take 3 coefficients per ridge (parameter d in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[END_REF]) and per time sample, we end up with an accuracy of 14 dB for SST, and 21 dB for our SST2.

To better assess the superiority of SST2, we now compare the obtained results with the ideal time-frequency representation, by means of the Earth Mover Distance (EMD), as done in [START_REF] Peleg | Fast and robust earth mover's distances[END_REF]. The EMD is a sliced Wasserstein distance, commonly used in optimal transport, which allows for the comparison of two distributions. In Figure 3, we show EMD computed for the exponential chirp of Figure 1, different input SNRs and different representations (the lower the EMD, the better). We see that the reassigned representation (RM) achieves the best performance whatever the input SNR, and also that SST2 is relatively close. In contrast, the representation given by SST is quite poor. The improvement brought about by SST2 or RM is particularly significant at low noise levels, but remains whatever the input SNR. 

Application on real data

We now illustrate an application of our technique on the gravitational wave signal recorded last year [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF], which had a considerable impact in the scientific community. The signal recorded by the LIGO interferometer is typically a chirp with large frequency modulation, for which the SST2 clearly improves the result. We consider the pre-processed signal from Hanford interferometer, available online at https://losc.ligo.org/s/events/ GW150914/P150914/fig1-waveform-H.txt. We display, in Figure 4, its TF representations given by SST and SST2, obtained with the complex Morlet wavelet with σ = 0.8. Both representations show a nice ridge with increasing IF, but SST2 is more concentrated. We also show the same representations, with the estimated ridge superimposed. The results differ significantly, since only SST2 allows us to recover the complete "ringdown", which is the part of the signal emitted after the fusion of the two blackholes.

If we reconstruct the chirp using both representations, we observe that SST2 gives a result closer to the expected one that SST does: the SNR is 6.45 dB for SST and 7.81 dB for SST2. Time curves displayed in Figure 4 also show that the ringdown part of the chirp is better recovered using SST2. 

CONCLUSION

We introduced in this paper the second order SST, which is the counterpart for wavelets of the STFT-based SST2 defined in [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. Similar to the STFT context, the new transformation was shown to perfectly localize linear chirps, and to remain efficient when the frequency modulation is quasi-linear. Numerical experiments illustrated the benefit of SST2 over standard synchrosqueezing, and recalled the main differences between STFT and CWT for analyzing multicomponent signals.

Future works should build a theoretical analysis of SST2, to extend the results of [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]. On an applicative point of view, the next step would be to combine the method introduced here with other recent improvements of SST [START_REF] Daubechies | ConceFT: concentration of frequency and time via multitapered synchrosqueezed transform[END_REF][START_REF] Yang | Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions[END_REF], which should lead to significantly better performance.
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