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ABSTRACT

In this paper, we consider ridge detection for multicomponent

signal analysis. We introduce a new ridge detector based on

a projection of the reassignment vector in a specific direction

which is related to the geometry of the spectrogram magni-

tude. The ridge definition we introduce enables that of the

basin of attraction associated with a ridge and then mode re-

construction. Simulations show better concentration of the

information on the ridges obtained by our method compared

to other existing ridge detectors that also make use of the re-

assignment vector.

Index Terms— multicomponent signals; short-time

Fourier transform; reassignment; time-frequency; AM/FM;

ridges

1. INTRODUCTION

The analysis of multicomponent signals has been at the heart

of signal processing research for over 60 years. A chal-

lenge that has faced the signal processing community, and

for which many approaches have been developed, is that

of dealing with signals with multiple AM-FM components

[1, 2]. Time-frequency (TF) analysis is central in the analysis

of such signals, and many techniques have been developed

within that framework: e.g. [3], the synchrosqueezing trans-

form (SST) [4, 5], which enhances the TF representation as-

sociated either with the continuous wavelet transform (CWT)

or the short-time Fourier transform (STFT), while enabling

mode reconstruction. One key issue associated with the SST

method is related to ridge estimation, since an estimate of the

ridge associated with each mode prior to mode reconstruction

is required. Many approaches have been proposed that take

this approach, e.g. [6, 7] and, once the ridges are known,

alternative techniques to SST have been developed for mode

reconstruction by integrating the STFT coefficients in the

vicinity of the detected ridges [8, 9].

In this paper, we are interested in ridge detection using the

properties of the reassignment vector (RV), and then mode re-

construction based on the basins of attraction associated with
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the detected ridges. This approach to mode reconstruction

was first proposed in [10] and then improved in [11, 12], but

some difficulties remain when trying to assess a ridge associ-

ated wih a Dirac distribution, which can arise when the signal

under consideration is discontinuous in time.

The goal of the paper is to propose a new ridge detector,

based on the property of the reassignment vector, but which

allows for AM-FM mode reconstruction in a fully adaptive

way, whatever the types of the modes, including impulses or

discontinuities. The paper is structured as follows, first we

introduce basic definitions, followed by a short review of the

ideas underlying the reassignment vector (RV). Then, we re-

call the principle of ridge detection based on RV and develop

our new technique, then we assess the improvement brought

by our new ridge detector on different type of signals finally

drawing some conclusions.

2. DEFINITIONS

In this section, we provide some basic definitions which will

be useful in the sequel. For a given signal f ∈ L1(R), its

(modified) STFT is defined by

V g
f (t, ω) =

∫

R

f(u)g(u− t)e−i2πω(u−t) du, (1)

where the window g is assumed to be real-valued. The spec-

trogram is then defined as |V g
f (t, ω)|

2. In the following, we

will study more in details multicomponent signals f defined

by:

f(t) =

K
∑

k=1

fk(t), with fk(t) = ak(t)e
i2πφk(t). (2)

3. REASSIGNMENT OF THE SPECTROGRAM

The principle of the reassignment method (RM) [13] is to

compensate for the TF shifts induced by the 2D smoothing

involved in defining the spectrogram. To do so, a meaning-

ful TF location is first determined to which to assign the lo-

cal energy given by the spectrogram. This corresponds to



the centroid of the distribution, whose coordinates are de-

fined by τ̂f (t, ω) := −∂ω arg V g
f (t, ω), and ω̂f (t, ω) := ω +

1
2π∂t arg V g

f (t, ω) [13]. Both quantities locally define an in-

stantaneous frequency (IF) and a group delay (GD) and enable

perfect localization of linear chirps [13]. An efficient proce-

dure to compute them is:

τ̂f (t, ω) = t+ ℜ

{

V tg
f (t, ω)

V g
f (t, ω)

}

,

ω̂f (t, ω) = ω −
1

2π
ℑ

{

V g′

f (t, ω)

V g
f (t, ω)

}

, (3)

where tg stands for the function tg(t) and ℜ{Z} (resp.

ℑ{Z}) is the real (resp. imaginary) part of the complex

number Z. In that context, the reassignment vector (RV) is

defined by:

RV (t, ω) =

(

τ̂f (t, ω)− t
ω̂f (t, ω)− ω

)

. (4)

When g(t) = e−πt2 , g′(t) = −2πtg(t) and the reassignment

vector reads RV (t, ω) =

(

ℜ

{

V
tg

f
(t,ω)

V
g

f
(t,ω)

}

,ℑ

{

V
tg

f
(t,ω)

V
g

f
(t,ω)

})

.

With such a window, ∇ log |V g
f (t, ω)| can be written in terms

of RV using the following identities:

∂tV
g
f (t, ω) = −V g′

f (t, ω) + 2iπωV g
f (t, ω) (5)

∂ωV
g
f (t, ω) = −2iπV tg

f . (6)

Thus, we immediately obtain:

∇ log |V g
f (t, ω)| =

∂t|V
g
f (t, ω)|

|V g
f (t, ω)|

,
∂ω|V

g
f (t, ω)|

|V g
f (t, ω)|

)

= −ℜ

{

V g′

f (t, ω)

V g
f (t, ω)

}

, 2πℑ

{

V tg
f (t, ω)

V g
f (t, ω)

})

= 2πRV (t, ω)

In what follows, we use the notation (Lt(t, ω), Lω(t, ω)) :=

RV (t, ω). When the window g(t) = e−aπt2 is used instead,

we may write: ∇ log |V g
f (t, ω)| = 2π

(

aLt(t, ω),
1
a
Lω(t, ω)

)

,

meaning ∇ log |V g
f (t, ω)| can still be accessed via the appro-

priate renormalizations of the reassignment vector field.

4. DEFINITIONS OF CONTOUR POINTS

In this section, we investigate two different definitions of con-

tour points. Detecting ridge points and linking them to build

smooth contours is a challenging problem that has previously

been considered in both STFT and wavelet settings [6, 11].

As we will see later, the proposed approach consists of pro-

jecting the RV, possibly renormalized, in a specific direction.

Our aim is indeed to detect zero-crosssings of a signed func-

tion, which we can do in practice with the contourc Matlab

function, the difficulty being to find a appropriate direction of

projection.

4.1. Ridge definition based on reassignment vector pro-

jection

In the technique introduced in [10, 14] to define contours in

the TF plane, points on a contour correspond to locations

where the RV changes orientation rapidly, which happens

when the contours, corresponding to the IF of a mode, is

crossed. However, determining where those crossings are in

a discrete setting is problematic, therefore it is preferable to

project the RV in a specific direction, given by an angle θ,

and then determine the location of the change of sign of the

projection. These points, called contour points (CPs), are

defined as the zeros of the following quantity

〈∇ log |V g
f (t, ω)|, vπ

2
+θ〉, (7)

where vλ is the unit vector in the direction λ. This approach

requires the direction θ to be known a priori and is therefore

not well suited to determining CPs with varying orientations.

Instead of imposing an orientation θ an alternative is to com-

pute CPs as in [15]:

α(t, ω) := 〈∇ log |V g
f (t, ω)|, vθ(t,ω) mod π〉 = 0 (8)

with θ(t, ω) the argument of ∇ log |V g
f (t, ω)| and (θ(t, ω)

mod π) ∈ [0, π[. This approach was further studied in [11]

and compared to a technique based on a study of the zeros of

the spectrogram proposed in [16]. The rationale behind this

formula is that α(t, ω) corresponds to the signed magnitude

of the (renormalized) RV. More precisely, it can be checked

that α(t, ω) is negative above a ridge (with finite slope) and

positive below. This way, a new type of CPs is defined that is

no longer dependent on a fixed angle θ.

However, this technique, called M1 in the sequel, has sev-

eral drawbacks, which are related. First, a zero of the spectro-

gram is a repulsive point for the vector field ∇ log |V g
f (t, ω)|

[11], and the mod π computation induces α(t, ω) to be zero

on horizontal TF lines crossing that zero. This creates special

structures in the vicinity of zeros as shown on Figure 1 A.

The second limitation is that the technique fails to detect ver-

tical ridges, because of the mod π factor. To illustrate this, we

consider the STFT of a noisy Dirac and see how the contour

detector works. The results depicted in Figure 1 B show that,

the mod π creates artificial sign changes in α(t, ω) preventing

the detection of the actual contour.

4.2. Determination of ridge points based on differential

geometry

Alternatively, the estimation of ridges and valleys of an im-

age is an old and well-known problem in computer vision, for

which a nice answer has been proposed [17] using the Hes-

sian of the smoothed image, within the scale-space theory.

Indeed, the quantity log(|V g
f (t, ω)|) can be viewed as an im-

age, whose gradient is equal to:

G(t, ω) = 2π(aLt(t, ω),
1

a
Lω(t, ω)), (9)



A B

Fig. 1. A: an illustration of the behaviour of a contour, com-

puted with method M1, in the vicinity of a zero of the spectro-

gram;B: STFT of a noisy Dirac distribution (SNR = 0 dB) on

which the first 10 contours, according to their energy content

and computed with method M1, are superimposed.

and its Hessian to:

H(t, ω) =

(

a∂tLt(t, ω) a∂ωLt(t, ω)
1
a
∂tLω(t, ω)

1
a
∂ωLω(t, ω)

)

=

(

Htt Htω

Hωt Hωω

)

, (10)

where, omiting the variable (t, ω):

∂tLt = ℜ
{

−1 +
V

tg
V

g′

f
−V

tg′

f
V

g
f

(V
g
f
)2

}

, ∂tLω = 2πℑ
{

V
t2g
f

V
g
f
−(V

tg
f

)2

(V
g
f
)2

}

∂ωLt =
1
2π

ℑ
{

V
g′′

f
V

g
f
−(V

g′

f
)2

(V
g
f
)2

}

, ∂ωLω = ℜ
{

V
tg′

f
V

g
f
−V

tg
f

V
g′

f

(V
g
f
)2

}

.

Taking into account the relation between g and its derivative,
the computation of the Hessian matrix can be carried out
using only one more STFT as those already used to compute
Lt and Lω . Since H is diagonal in an orthonormal real basis
of eigenvectors, we denote by λp and λq , the eigenvalues of
H and p and q the corresponding unitary eigenvectors, i.e.
p = (cos(β), sin(β)) with

cos(β) =

√

√

√

√

1

2

(

1 +
Htt −Hωω

√

(Htt −Hωω)2 + 4HtωHωt

)

sin(β) = sign(Htω)

√

√

√

√

1

2

(

1− Htt −Hωω
√

(Htt − Lωω)2 + 4HtωHωt

)

, (11)

and q = (sin(β),− cos(β))T . In that framework, λp =
pTHp and λq = qTHq. Then, we define Lp(t, ω) =
〈G(t, ω), p〉 (Lq being defined the same way from q), and

compute the ridge and valley points (corresponding to two

different types of CPs) as follows:

Ridges:Lp(t, ω) = 0 and λp(t, ω) < 0, |λp(t, ω)| ≥ |λq(t, ω)|

Valleys:Lp(t, ω) = 0 and λp(t, ω) > 0, |λp(t, ω)| ≤ |λq(t, ω)|.

This new formulation appears to get rid of the problem aris-

ing from the use of the mod π factor. However, there is still

one thing that can give rise to instability: when Htω is too

small, which is typically the case when a purely harmonic

mode or a Dirac is considered, sign(Htω) may change spuri-

ously. Note that this change does not affect these two types of

signals in the same manner: if Htω changes signs in the vicin-

ity of an horizontal ridge (constant frequency), we get β = 0
(since sin(β) = 0), and Lp corresponds to the projection in

the direction π
2 , while in case of a vertical ridge (i.e. a Dirac

impulse) β = ±π
2 (since sin(β) = ±1), and Lp corresponds

to a projection either in the direction 0 or π.

So when considering this model the problem of instability

with a Dirac pulses remains, but we note that the ridge detec-

tion is stable if β is far from π
2 (i.e cos(β) not too small). We

therefore change the direction of projection when cos(β) be-

comes too low by using the following new estimate for the

eigenvectors:

Algorithm 1

p defined with (11), if cos(β) < γ else by































cos(β) =

√

1
2

(

1− Htt−Hωω√
(Htt−Lωω)2+4HtωHωt

)

,

sin(β) = sign(Htω)

√

1
2

(

1 + Htt−Hωω√
(Htt−Hωω)2+4HtωHωt

)

β = atan(sin(β)/ cos(β))

This method is denoted M2 in the sequel. Looking at the

above description, we see that p is replaced by a vector or-

thogonal to it only if β = π
2 (the absolute value between the

original vector and the new one equals 2| cos(β)|| sin(β)|).
Figure 2 A displays the STFT of the same noisy Dirac as the

one in Figure 1 B, again with the first 10 contours, with re-

spect to their energy content and computed with method M2,

superimposed. This illustrates the benefits of using method

M2 rather than M1 for that particular type of signals.

4.3. Determination of basins of attraction using RV and

mode reconstruction

Having determined the ridges associated with the modes mak-

ing up the signal, we define the basin of attraction (BA) asso-

ciated with a ridge, i.e. the set of coefficients associated with

a given contour, as in [11]. Since the RV points to a ridge in

its vicinity, we determine the BA of a given ridge as the set

of points such that the RV points to that ridge. However, be-

cause the localization property of RV is only valid for linear

chirps, and also because of the presence of noise, RV does

not point exactly to a ridge. Therefore, it is proposed in [11]

to associate with a given coefficient (t, ω) the closest ridge of

point (τ̂f (t, ω), ω̂f (t, ω)). The BA corresponding to the most

energetic contour of the STFT of a noisy Dirac is given in

Figure 2 B. Once the BAs are computed, the corresponding

modes can be retrieved as follows. Let Bi ⊂ R
2 be the BA

associated with ridge i, then a local reconstruction technique
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Fig. 2. A: Contours (the 10 most energetic ones) associated with a noisy Dirac using method M2(SNR = 0 dB); B: Basin of

attraction (in yellow) associated with the most energetic contour comuted on a noisy Dirac; C: Reconstructed signal based on

the coefficients contained in the basin of attraction depicted in B along with the original Dirac distribution; D: Energy contained

on the first contour for noisy Diracs (SNR in abscissa) and for the different methods (M1 and M2 with different values for γ);

E: noisy STFT of linear and a polynomial chirp with the first two contours superimposed (SNR = 0 dB, γ = 0.1); F: Energy

contained on the first two contours computed on E, for methods M1 and M2, for different SNRs

of mode fi corresponding to ridge i can be achieved by:

fi(t) =
1

g(0)

∫

(t,ω)∈Bi

V g
f (t, ω)dω. (12)

An illustration of the reconstruction procedure is given in Fig-

ure 2 C, where only the BA computed in Figure 2 B is used for

mode reconstruction (in blue), along with the original signal

(in red).

5. NUMERICAL RESULTS

In this section, we purposefully focus only on assessing the

quality of the new ridge detector, which is the main novelty

of the paper, depending on parameter γ (defined in Algorithm

1), the only one to be fixed in method M2. We investigate the

quality of the ridge estimation for different types of mode and

when the noise level varies. To measure this, we consider the

energy contained in the first K (the number of modes) contour

as γ varies:

P (γ) =

K
∑

i=1

∑

(t,ω)∈C
γ
i

|V g
f (t, ω)|

2, (13)

where Cγ
i is the ith contour, according to its energy content,

computed with method M2 with parameter γ. We remark,

that when M2 is applied to a noisy Dirac (see Figure 2 D) the

energy is better concentrated on the first contour, when the

noise increases, when γ is chosen larger: the noise results in

some instabilities in the direction of p, which varies around

π/2, and, to choose a large enough γ enables to compensate

for that. As far as the signal whose STFT is depicted in Figure

2 E, as expected, the sensitivity to γ is very low (see Figure 2

F), since the angle p with the horizontal axis is lower than π
3

(corresponding to γ = 0.5), and so, in Algorithm 1, one stays

in the first case. Finally, it is worth noting that the proposed

method M2 always behaves better than M1.

6. CONCLUSION

In this paper, we have presented a new algorithm to esti-

mate structures called contours, associated with the STFT

of multicomponent signals. This algorithm is based on the

study of the geometry of STFT magnitude. We then defined

basins of attraction associated with the contours ; these can be

used to reconstruct the modes making up the signal. Numer-

ical experiments show a better concentration of the STFT on

the contours determined using this new technique rather than

other methods based on the projection of reassignment vector.
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