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ABSTRACT1

Traffic managers need tools capable of providing online traffic flow monitoring and short-term2

predictions on large-scale networks. Data Assimilation (DA) techniques provide traffic state esti-3

mates based on a dynamic model and an observation model. Their performance are very sensitive4

to the observation model definition. The paper proposes a solution to optimize the number and the5

location of loop sensors in the context of DA. The optimality is defined based on travel time and6

travelled distance indicators, and Pareto efficiency is used to determine the optimal sensor alloca-7

tion. The method is tested on two toy networks to assess the role and level of contribution of each8

sensor. The results provide a better understanding for deploying additional sensors or selecting9

sensors to be removed, for optimal traffic state estimation and traffic forecast.10
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INTRODUCTION1

State of the art2

Traffic managers need tools capable of providing online traffic flow monitoring and short-term3

forecasts on large-scale networks. These methods aim to obtain an estimate of current and future4

traffic conditions. Classically, they rely on traffic data collected by loop sensors, and the perfor-5

mance of the traffic state estimation depends on the number and location of sensors on the network.6

However, traffic managers are facing budgetary contraints : the price of each sensor does not allow7

for massive complementary deployment, and existing sensors need constant and expensive main-8

tenance operations. In this context, the optimization of the number and the location of loop sensors9

is a critical issue for traffic managers.10

Traffic monitoring and forecast can be achieved with Data Assimilation (DA) techniques. Since11

the 2000s, many DA solutions have been proposed. They combine observed data (also called ob-12

servation model) with a dynamic traffic flow model to estimate traffic states at any point of the13

network. Observed and forecasted states are then combined through a data fusion method, which14

provide the most likely states on the network. Classically, observed traffic data are collected with15

a given frequency, which implies data assimilation methods to be sequential. Their are based on16

two key components: the dynamic traffic flow model, and the observation model.17

18

Dynamic traffic flow models can be categorized according to various criteria (see (1) for19

an overview): level of detail, operationalization, representation of the processes. Three modeling20

scales can be identified. Macroscopic models provide the evolution of densities on the network21

with respect to time (i.e. Eulerian). Microscopic models provide the evolution of vehicles position22

with respect to time (i.e.Lagrangian Time). Finally mesoscopic models provide the passage time23

of vehicles with respect to position (i.e. Lagrangian Space). They have been introduced in (2, 3) to24

be the solution of the Lighthill-Whitham-Richards (LWR) model (4). The later scale seems to be25

the most promising solution for traffic monitoring and traffic forecast on a large scale network (5).26

The observation model can be composed of two types of data (5, 6, 7): Eulerian and La-27

grangian. Eulerian data, from spatially-fixed sensors, have been the most widely used for their28

high level of availability (8, 9, 10) since the fifties. Lagrangian data, from vehicles equipped with29

sensors, can provide positions at a fixed time intervals. The availability of Lagrangian data has in-30

creased during the recent years and solutions have been recently proposed to assimilate such data31

in the context of data assimilation (11, 12, 13, 5).32

33

The observation model is critical in data assimilation applications, because it provides in-34

formation on the current state on the network. Castillo and al. (14) describe the observation models35

as an observability problem. The optimisation problem contains three parts: (15)36

• Network description37

It can be a toy or a real network. A toy network is simple and helps to better understand the way the38

model works. For instance, freeway corridors with only merges and exits (5), or a mesh network39

(16), are often used for toy network. A real network is more complex and can show the operability40

of the model. The litterature provides many references that consider freeway corridors (17, 18) or41

larger networks on the scale of a city (19, 14, 20).42

• Constraints to limit the solutions43

(15, 21) have proposed a list of constraints for traffic observation models. They rely on the flow44

conservation principle and the positivity of speed. Topological constraint can be defined, for in-45
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stance Eisenman considers the impossibility for two successive links without entrance or exit to1

have an observation localisation (6).2

• Objective function to select one optimal solution3

Castillo and al. have proposed a global overview of objective functions, which must be adjusted ac-4

cording to the objective of the study. It can be : origin–destination matrix estimation (16, 22), flow5

reconstruction (23, 24, 18), travel time estimation (20, 25, 17), or freeway congestion monitoring6

(26). The present paper belongs to the last category.7

Contributions and objectives8

This paper presents a method for assessing the observation model in the context of Traffic State9

Estimation. The method to understand the role and the level on contribution of each sensor is10

proposed. This paper is organized as follows. Section 2 describes the methodology used to obtain11

the observation model, including the description of performance indicators. Section 3 presents the12

results for two toy networks. Section 4 proposes a discussion around the operational context for13

traffic managers. Section 5 closes the paper on the needs for further research.14

METHODOLOGY15

Methodological framework16

FIGURE 1 Flowchart of methodological framework

The paper proposes a methodological framework to test the performance of DA with respect17

to the observation model. Figure 1 provides a flowchart of this framework. It starts with the18

generation of a Ground Truth (GT) with a dynamic traffic flow model. Then an observation model19

is defined with the number and the location of sensors on the network. Observed data are then20

derived: flows and speeds collected every 60s at each loop sensor. Based on this observation21

model, the data assimilation model is applied (see (12) and (5) for more details). It should be22

noted that the demand-supply scenario of the data assimilation model contains errors, so that the23

TSE performance relies mainly on the observation model definition.24
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Ground truth generation1

The ground is generated based on a mesoscopic LWR traffic flow model, which provide traffic2

states at any point of the network. Traffic states consist in passing times of every vehicle at ev-3

ery node of the network, which allows to derive easily traffic data classically measured by loop4

sensors (flow, speed). Based on the ground truth scenario, any observation model can be defined.5

This flexibility allows to test any combination of loop sensors, both in number and position. The6

resulting data is considered as an input of a DA model.7

Data assimilation model8

The DA sequential framework used in the paper is identical to the one recently proposed in (12, 5).9

Each sequence can be divided into 4 stages: (1) Collect the observed states from sensors and10

forecast states from the dynamic traffic flow model. (2) Estimate the most likely traffic states11

through a data fusion model. (3) Update the dynamic traffic flow model accordingly. (4) Run the12

model to obtain forecasts over the next sequence. The output of the DA framework also provides13

passing times of every vehicle at every node of the network. And the performance of the DA14

mainly relies on the observation model, which provides information on the current traffic state and15

update the DA model accordingly.16

Performance indicators17

To assess the performance of the observation model, traffic states estimated from the DA model18

are compared with traffic states from the GT. Two Performance Indicators (PI) are defined.19

20

• The first PI, I1, is the root mean square error of travel time:

I1(O) =

√√√√ 1

N

tN∑
i=t1

(TTGT
i − ̂TTDA

i (O))2 (1)

where N is the number time periods (60 s) during the scenario, TTi(O) the travel time for the21

period i from GT and T̂ TDA
i the travel time obtained from the DA model with the observation22

model O.23

• The second PI is based on the total distance travelled, i.e. the distance travelled by all
vehicles during the simulation (equation 2). I2 measures the difference in total distance between
the GT and DA model.

I2(O) =
N∑

n=1

(DGT
n −DDA

n (O)) (2)

where Dn the distance travelled by vehicle n, and N is the total number of vehicles during the24

simulation.25

Pareto optimum26

Two criteria have been defined to assess the performance of the observation model. For a given27

model with n loop sensors, both indicators will likely not provide the same optimal solution.28

Consequently, the Pareto optimality concept is used to find the optimal observation model O∗(n).29

To do so, the Pareto front is estimated (27) to obtain a set of observation models that are Pareto30

efficient.31
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The optimal observation model O∗(n) is selected by assigning a priority to the maximal1

marginal benefit of both criteria. The process is illustrated in Figure 2, for eight different obser-2

vation models with n sensors. Three of them compose the Pareto front (green line) and two are in3

the area where a benefice for the both criteria (black dotted line) exists. Finally one is maximizing4

marginal benefit (red circle).5

0 2 4 6 8 10 12 14 16 18 20

I
1
 (s)

0

2

4

6

8

10

12

14

16

18

20
I 2

 (
m

)

Observation models O(n)

Pareto front

O*(n)

O*(n-1)

FIGURE 2 Pareto front

Algorithm6

The methodological framework presented above has been implemented to assess the optimum7

number and the position of loop sensors on toy networks. To assess the marginal gain of an addi-8

tional sensor to an existing observation model, the algorithm has been defined as follows. First, it9

tests a set of possible positions for n = 1 loop sensor on the network, and estimates the optimal10

observation model O∗(1). Then, the position of the first loop sensor is set according to O∗(1)11

and the process is repeated for an additional loop sensor on the network. The iterative process is12

repeated until n = N loop sensors on the network. The different steps are described in Algorithm13

1.14

15

RESULTS16

Two toy networks are used to assess the performance of the TSE with respect to the observation17

model.18

• Network 1 represents a homogeneous road stretch19

• Network 2 represents a freeway corridor with one merge and one diverge20

Several demand-supply scenarios are defined for each networks.21
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Algorithm 1 Optimum number and locations of loop sensors
1: procedure INITIALIZATION

2: set the maximum number of loop sensors N
3: set the initial number of loop sensor n = 0
4: end procedure
5: procedure FIND OPTIMUM LOCATION FOR n SENSORS

6: while n < N do
7: Set n = n+ 1
8: Set the position of n−1 loop sensors according to optimal observation model O∗(n−1)
9: Define S the set of possible positions for the loop sensor n

10:
11: for all s in S do
12: Set the observation model O(n, s)
13: Run the DA model with the observation model O(n, s)
14: Calculate indicators I1(O(n, s)) and I2(O(n, s))
15: end for
16: Run the Pareto algorithm and find optimal observation model O∗(n)
17: end while
18: end procedure

Network 11

Network 1 aims to identify the optimal number and the locations of loop sensors on a single link.2

Scenario definition3

Network 1 is a homogeneous road stretch (length = 1000m, 3 lanes). A ground truth has been4

generated with the following scenario: the upstream demand is piecewise constant: 10% until5

t = 600s, then 75% until t = 1200s, and 10% until t = 3600s; the downstream supply (exit) is6

constant for the entire duration of the simulation : 50%. Here, both the demand and the supply have7

been normalized with respect to the road capacity. For the ground truth scenario, the congestion is8

trigered starting from t = 1200s. Then the congestion propagates backward (until x = 750m) and9

gradually decreases. The free-flow situation is recovered at the time t = 1700s.10

The demand scenario of the DA model has been intentionally changed (constant, 42.5%)11

for the DA model. No congestion occurs, which render the traffic states estimated by the DA model12

inaccurate. The impact of the observation model on the DA performance is illustrated in Figure 3.13

Results14

Figure 3 presents the performance of DA with respect to the observation model, both in number15

and in position.16

17

One loop sensor On the left of Figure 3, the observation model is composed of a single loop18

sensor. The performance of the DA model is illustrated for a different loop sensor position between19

x = 100m and x = 900m. Figure 3(a) shows that the travel time estimation is improved for all20

the tested positions. It also shows that the best performance is obtained when the loop sensor is21
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FIGURE 3 Performance of DA on Network 1: One sensor (left) and two sensors (right),
Travel time estimation (top) and Performance Indicators (down)

positionned close to the entry.1

The results are confirmed in Figure 3(c), where both indicators I1 and I2 are plotted with2

respect to the position of the loop sensor. I1, which is related to the travel time estimation, shows3

that the benefits in travel time reconstruction are optimal for x = 100m and x = 200m. Both4

optimal positions are located upstream of the most upstream location of the congestion. When5

x ≥ 300m, the travel time reconstruction becomes worse as the sensor moves away from the entry.6

I2, which is related to the total travelled distance, decreases linearly with respect to the distance7

to the entry. The Pareto efficiency constraint gives that the optimal position for sensor 1 is x =8

100m. We conclude on an intuitive result: when the demand of the DA model is inaccurate, states9

observed close to the entry of the network improve TSE. The conclusion is similar for inaccurate10

supplies: the TSE is improved when the observation model has provided a sensor located close to11



Clavel, Duret 9

the head of the congestion.1

Looking beyong this intuition, it also confirms that I1 and I2 are appropriate indicators to measure2

the performance of the DA model with respect to the observation model.3

Two loop sensors Here, the observation model is composed of two sensors. Sensor 1 is set at4

its optimal position x = 100m (see above), and all the possible positions are tested for sensor5

2, between 200m and 900m. The performance of the DA model is illustrated on the right of 36

The travel time estimation slightly improved for all the tested second observations (for a better7

readability, only 3 positions are plotted). The result is confirmed in Figure 3(d). Blue stars show8

the results for different positions for sensor 2, and the red circle shows the result with a single9

loop sensor. The cluster of blue stars is centered around the red circle, which means that the10

marginal benefit of the second sensor is poor. Again, it confirms an intuitive result: the inaccurate11

demand of the DA model is already adjusted from sensor 1 observation. Consequently, when the12

benefit of sensor 2 is marginal, we conclude that a single sensor should be sufficient to provide13

satisfying TSE. It should also be noted that when both the demand at entry and the supply at exit14

are inaccurate, the marginal benefit of sensor 2 is high.15

From Network 1, we conclude that loop sensor deployement depends on the network topol-16

ogy because sensors must be located close to network discontinuities. The optimal number and17

location of sensors is also related to traffic conditions and traffic model performance with no ob-18

servation model. Indeed, every additional sensor will help the model to rectify an inaccuracy19

related to the demand, the supply, or to a calibration defect.20

Network 221

The objective is to understand the causal relationship between the observation model and the per-22

formance of the TSE for a more complex network, with on- and off- ramps. The network is23

illustrated in Figure 4(a). Links 1-2-3 share the same properties in length (10km), number of lanes24

(3). Links 4 and 5 are shorter (5km) with two lanes only.25

Scenario definition26

We use the same methodology as for network 1. First, a ground truth has been generated with27

a traffic flow model. The demand-supply scenario has been defined over one hour, see Figure28

4(b) The upstream demand at entry 1 is piecewise constant: 10% -> 75% -> 10%. The upstream29

demand on entry 2 is also piecewise constant: 7% -> 67% -> 7% . The downstream supplies are30

constant: 30% for exit 1 and 7% for exit 2 (Figure 4(c)). Here again, demand and supply have31

been normalized with respect to the capacity of a 3-lane carriageway. At the diverge pint (node32

3), the demand is fairly distributed among the two directions. The simulation results show that33

three congestions are trigerred: at node 2, propagating backwards along links 1 and 4; at node 4,34

propagating along link 3; at node 6, propagating along link 5.35

The demand scenario for the DA model has been intentionnaly changed as follows. At36

entries 1 and 2, they have been set to be constant at 42.5%, and the splitting ratio at node 3 has37

been skewed: 90/10 instead of 50/50. Moreover, the capacities at exits have been increased.38

Considering this inaccurate demand-supply scenario, the DA model with no observation returns39

free-flowing conditions on the network.40

In the following, ten possible locations for optimal loop detectors are used according the network41

1 results (in red rectangle on Figure 4(a)).42
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FIGURE 4 Network 2: (a) network, (b) demand at entries, (c) supply at exits

Results1

Three optimization processes has been tested : minimizing I1 only, minimizing I2 only, and mini-2

mizing both using the Pareto optimality concept.3

Figure 5 presents the performance of DA with respect to the observation model, both in4

marginal benefit and in optimal position. On this figure, the left column represents the perfor-5

mances with respect to the number of loop sensors and the right column show the corresponding6

positions on the network.7

Minimizing I1 (only) Figures 5(a) and 5(b) show the optimal results based on I1 only. As a8

reminder, I1 is based on travel time, leading to a sensor deployement that gives a priority to the9

quality of travel time estimation on the network. The top priority sensor (1) is located upstream10

node 2, where the major traffic jam is trigered. By doing so, the observation model provides11

decisive information to update the demand upstream the network. The second priority sensors (212

and 3) are located immediatly upstream the node 2. The traffic data observed at these points play13

an important role to properly model the capacity at this node and update traffic volume from link 414

accordingly. It should be noticed that the sensors 4 is located immediatly downstream the diverge.15

It helps to rectify the splitting ratio according to observed traffic volumes mesured immediatly16

downstream node 3. Additional sensors (5 or more) deteriorate the travel time estimation. It can17

be explained has follow : additional sensors are located close to already deployed sensors, which18

lead to unconstitencies in traffic data due to agregation procedure (classicaly between 1 and 5 min).19
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FIGURE 5 Performance of DA on Network 2: marginal benefit values (left) and optimal
position (right), I1 (top), I2 (second line) and Pareto optimum (down)

Consequently, based on I1 only, the optimal observation model offers a better representation of the1
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imbalance between demand and supply, which size the traffic jam on the network and provide a1

better travel time estimation. However, free-flowing situations are not well-adressed, which may2

lead to traffic volume errors when the network is free-flowing.3

Minimizing I2 (only) Figures 5(c) and 5(d) show the optimal results based on I2 only. As a4

reminder, I2 is based on total travelled distance, leading to a sensor deployement that gives a5

priority to the quality of trafic volumes on the network. Only 4 sensors present a major importance6

according to I2. Sensors 1 and 4 aim to offer a better representation of the traffic volume at7

entries of the network. Sensors 2 and 3 both improve the model performance near internal nodes.8

The results also show that the benefit of additional observation sensors (5 or more) is negligible.9

Consequently, based on I2 only, the optimal observation model offers a better representation of the10

total traffic volume on the network. But the optimal solution does not guaranty that traffic jam and11

travel times are properly estimated.12

Pareto optimality concept The optimality of both previous indicators is combined, using the13

Pareto optimality concept (Figures 5(c) and 5(d)) Sensors 1 and 2 are identical to the previous14

optimality conditions. Sensor 3 is located at immediatly upstream an exit, and sensors 4 and 515

are positionned at internal nodes (upstream merge, downstream diverge). The results also confirm16

that additional sensors deteriorate the performance of the Traffic State Estimation, especially travel17

time.18

19

From Network 2, we conclude that loop sensor deployement must be based on:20

- the topology of the network: near entries and exits for a better representation of total trafic21

volumes, upstream merge to properly update the model in case of congestion, and downstream22

diverge to rectify errors in splitting ratios.23

- the performance of the traffic model: the optimal number of sensors is 5, which also correspond24

to the number of variables that have been intentionnaly changed (two demands at entries, two25

capacities at exits, one split ratio).26

CONCLUSION27

Main findings28

The paper presents a simulation-based methodology to optimize the number and the positions of29

loop sensors, in order to improve Traffic State Estimated from loop sensor in the context of Data30

Assimilation The method has evaluated the performance of the DA model regarding its ability to31

estimate both the travel times and total travelled distance on the network. The results confirms32

the importance of the network discontinuities, where congestion are often trigered. It also confirm33

that the number of sensors to be deployed should be based on the network topology and the traffic34

model performance with no observation model. Based on these principles, both travel times and35

total travelled distance can be greatly improved, which demonstrates the ability of the method to36

be applied for free-flowing and congested networks. On this basis, sensor removal or addition37

strategies can be built for an optimal traffic state estimation.38

Further research39

The proposed methodology has been applied on toy networks, for inaccurate demand-supply sce-40

narios. Further research is still needed to confirm its practical use with real network.41
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• What is the importance of the calibration of the traffic model, and how to design the1

observation model in order to rectify calibration errors?2

• In the paper, the observation model is only composed of loop sensors. Floating Car Data3

are more and more popular and the question of observability can be posed similarly : can the4

propose methodology be replicated to size the FCD in the context of DA?5

• In the paper, the authors have used the DA framework proposed in (12, 5). Further6

research may be needed to generalise the conclusions for other traffic model (micro, macro) and7

other DA frameworks.8

And finally, the paper proposes to built the optimum observations model based on two indicators,9

and the optimum is determined based on Pareto optimality concept. Other optimization techniques10

could be explored, for instance bioinspired methods as genetic algorithms.11
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