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Traffic State Estimation: Optimal Number and Location of Loop Detectors in the context of Data Assimilation

Traffic managers need tools capable of providing online traffic flow monitoring and short-term predictions on large-scale networks. Data Assimilation (DA) techniques provide traffic state estimates based on a dynamic model and an observation model. Their performance are very sensitive to the observation model definition. The paper proposes a solution to optimize the number and the location of loop sensors in the context of DA. The optimality is defined based on travel time and travelled distance indicators, and Pareto efficiency is used to determine the optimal sensor allocation. The method is tested on two toy networks to assess the role and level of contribution of each sensor. The results provide a better understanding for deploying additional sensors or selecting sensors to be removed, for optimal traffic state estimation and traffic forecast.

INTRODUCTION

State of the art

Traffic managers need tools capable of providing online traffic flow monitoring and short-term forecasts on large-scale networks. These methods aim to obtain an estimate of current and future traffic conditions. Classically, they rely on traffic data collected by loop sensors, and the performance of the traffic state estimation depends on the number and location of sensors on the network. However, traffic managers are facing budgetary contraints : the price of each sensor does not allow for massive complementary deployment, and existing sensors need constant and expensive maintenance operations. In this context, the optimization of the number and the location of loop sensors is a critical issue for traffic managers.

Traffic monitoring and forecast can be achieved with Data Assimilation (DA) techniques. Since the 2000s, many DA solutions have been proposed. They combine observed data (also called observation model) with a dynamic traffic flow model to estimate traffic states at any point of the network. Observed and forecasted states are then combined through a data fusion method, which provide the most likely states on the network. Classically, observed traffic data are collected with a given frequency, which implies data assimilation methods to be sequential. Their are based on two key components: the dynamic traffic flow model, and the observation model. Dynamic traffic flow models can be categorized according to various criteria (see [START_REF] Hoogendoorn | State-of-the-art of vehicular traffic flow modelling[END_REF] for an overview): level of detail, operationalization, representation of the processes. Three modeling scales can be identified. Macroscopic models provide the evolution of densities on the network with respect to time (i.e. Eulerian). Microscopic models provide the evolution of vehicles position with respect to time (i.e.Lagrangian Time). Finally mesoscopic models provide the passage time of vehicles with respect to position (i.e. Lagrangian Space). They have been introduced in (2, 3) to be the solution of the Lighthill-Whitham-Richards (LWR) model ( 4). The later scale seems to be the most promising solution for traffic monitoring and traffic forecast on a large scale network [START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF].

The observation model can be composed of two types of data [START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF][START_REF] Eisenman | Number and location of sensors for realtime network traffic estimation and prediction: Sensitivity analysis[END_REF][START_REF] Gentili | Locating active sensors on traffic networks[END_REF]: Eulerian and Lagrangian. Eulerian data, from spatially-fixed sensors, have been the most widely used for their high level of availability [START_REF] Wang | Real-time freeway traffic state estimation based on extended kalman filter: A case study[END_REF][START_REF] Tampère | An extended kalman filter application for traffic state estimation using ctm with implicit mode switching and dynamic parameters[END_REF][START_REF] Herrera | Incorporation of lagrangian measurements in freeway traffic state estimation[END_REF] since the fifties. Lagrangian data, from vehicles equipped with sensors, can provide positions at a fixed time intervals. The availability of Lagrangian data has increased during the recent years and solutions have been recently proposed to assimilate such data in the context of data assimilation [START_REF] Nanthawichit | Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[END_REF][START_REF] Duret | Data assimilation based on a mesoscopic-lwr modeling framework and loop detector data: methodology and application on a large-scale network[END_REF][START_REF] Yuan | Real-time lagrangian traffic state estimator for freeways[END_REF][START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF].

The observation model is critical in data assimilation applications, because it provides information on the current state on the network. Castillo and al. [START_REF] Castillo | Observability of traffic networks. optimal location of counting and scanning devices[END_REF] describe the observation models as an observability problem. The optimisation problem contains three parts: [START_REF] Castillo | A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks[END_REF] • Network description It can be a toy or a real network. A toy network is simple and helps to better understand the way the model works. For instance, freeway corridors with only merges and exits [START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF], or a mesh network [START_REF] Yang | Optimal traffic counting locations for origin-destination matrix estimation[END_REF], are often used for toy network. A real network is more complex and can show the operability of the model. The litterature provides many references that consider freeway corridors [START_REF] Park | Optimal number and location of bluetooth sensors considering stochastic travel time prediction[END_REF][START_REF] Lovisari | Density/flow reconstruction via heterogeneous sources and optimal sensor placement in road networks[END_REF] or larger networks on the scale of a city [START_REF] Asudegi | Optimal number and location of node-based sensors for collection of travel time data in networks[END_REF][START_REF] Castillo | Observability of traffic networks. optimal location of counting and scanning devices[END_REF][START_REF] Mitsakis | The sensor location problem: methodological approach and application[END_REF].

• Constraints to limit the solutions [START_REF] Castillo | A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks[END_REF][START_REF] Gentili | Survey of models to locate sensors to estimate traffic flows[END_REF] have proposed a list of constraints for traffic observation models. They rely on the flow conservation principle and the positivity of speed. Topological constraint can be defined, for in-stance Eisenman considers the impossibility for two successive links without entrance or exit to have an observation localisation [START_REF] Eisenman | Number and location of sensors for realtime network traffic estimation and prediction: Sensitivity analysis[END_REF].

• Objective function to select one optimal solution Castillo and al. have proposed a global overview of objective functions, which must be adjusted according to the objective of the study. It can be : origin-destination matrix estimation [START_REF] Yang | Optimal traffic counting locations for origin-destination matrix estimation[END_REF][START_REF] Li | Reliable sensor deployment for network traffic surveillance[END_REF], flow reconstruction [START_REF] Hu | Identification of vehicle sensor locations for link-based network traffic applications[END_REF][START_REF] He | A graphical approach to identify sensor locations for link flow inference[END_REF][START_REF] Lovisari | Density/flow reconstruction via heterogeneous sources and optimal sensor placement in road networks[END_REF], travel time estimation [START_REF] Mitsakis | The sensor location problem: methodological approach and application[END_REF][START_REF] Ban | Optimal sensor placement for freeway travel time estimation[END_REF][START_REF] Park | Optimal number and location of bluetooth sensors considering stochastic travel time prediction[END_REF], or freeway congestion monitoring [START_REF] Kwon | Probe vehicle runs or loop detectors?: Effect of detector spacing and sample size on accuracy of freeway congestion monitoring[END_REF]. The present paper belongs to the last category.

Contributions and objectives

This paper presents a method for assessing the observation model in the context of Traffic State Estimation. The method to understand the role and the level on contribution of each sensor is proposed. This paper is organized as follows. Section 2 describes the methodology used to obtain the observation model, including the description of performance indicators. Section 3 presents the results for two toy networks. Section 4 proposes a discussion around the operational context for traffic managers. Section 5 closes the paper on the needs for further research.

METHODOLOGY Methodological framework FIGURE 1 Flowchart of methodological framework

The paper proposes a methodological framework to test the performance of DA with respect to the observation model. Figure 1 provides a flowchart of this framework. It starts with the generation of a Ground Truth (GT) with a dynamic traffic flow model. Then an observation model is defined with the number and the location of sensors on the network. Observed data are then derived: flows and speeds collected every 60s at each loop sensor. Based on this observation model, the data assimilation model is applied (see [START_REF] Duret | Data assimilation based on a mesoscopic-lwr modeling framework and loop detector data: methodology and application on a large-scale network[END_REF] and ( 5) for more details). It should be noted that the demand-supply scenario of the data assimilation model contains errors, so that the TSE performance relies mainly on the observation model definition.

Ground truth generation

The ground is generated based on a mesoscopic LWR traffic flow model, which provide traffic states at any point of the network. Traffic states consist in passing times of every vehicle at every node of the network, which allows to derive easily traffic data classically measured by loop sensors (flow, speed). Based on the ground truth scenario, any observation model can be defined. This flexibility allows to test any combination of loop sensors, both in number and position. The resulting data is considered as an input of a DA model.

Data assimilation model

The DA sequential framework used in the paper is identical to the one recently proposed in [START_REF] Duret | Data assimilation based on a mesoscopic-lwr modeling framework and loop detector data: methodology and application on a large-scale network[END_REF][START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF]. 

Performance indicators

To assess the performance of the observation model, traffic states estimated from the DA model are compared with traffic states from the GT. Two Performance Indicators (PI) are defined.

• The first PI, I 1 , is the root mean square error of travel time:

I 1 (O) = 1 N t N i=t 1 (T T GT i -T T DA i (O)) 2 (1) 
where N is the number time periods (60 s) during the scenario, T T i (O) the travel time for the period i from GT and T T DA i the travel time obtained from the DA model with the observation model O.

• The second PI is based on the total distance travelled, i.e. the distance travelled by all vehicles during the simulation (equation 2). I 2 measures the difference in total distance between the GT and DA model.

I 2 (O) = N n=1 (D GT n -D DA n (O)) (2) 
where D n the distance travelled by vehicle n, and N is the total number of vehicles during the simulation.

Pareto optimum

Two criteria have been defined to assess the performance of the observation model. For a given model with n loop sensors, both indicators will likely not provide the same optimal solution.

Consequently, the Pareto optimality concept is used to find the optimal observation model O * (n).

To do so, the Pareto front is estimated [START_REF] Ngatchou | Intelligent systems application to power systems[END_REF] to obtain a set of observation models that are Pareto efficient.

The optimal observation model O * (n) is selected by assigning a priority to the maximal marginal benefit of both criteria. The process is illustrated in Figure 2, for eight different observation models with n sensors. Three of them compose the Pareto front (green line) and two are in the area where a benefice for the both criteria (black dotted line) exists. Finally one is maximizing marginal benefit (red circle). 

RESULTS

Two toy networks are used to assess the performance of the TSE with respect to the observation model.

• Network 1 represents a homogeneous road stretch

• Network 2 represents a freeway corridor with one merge and one diverge Several demand-supply scenarios are defined for each networks. Network 1 aims to identify the optimal number and the locations of loop sensors on a single link.

Scenario definition

Network 1 is a homogeneous road stretch (length = 1000m, 3 lanes). A ground truth has been generated with the following scenario: the upstream demand is piecewise constant: 10% until t = 600s, then 75% until t = 1200s, and 10% until t = 3600s; the downstream supply (exit) is constant for the entire duration of the simulation : 50%. Here, both the demand and the supply have been normalized with respect to the road capacity. For the ground truth scenario, the congestion is trigered starting from t = 1200s. Then the congestion propagates backward (until x = 750m) and gradually decreases. The free-flow situation is recovered at the time t = 1700s.

The demand scenario of the DA model has been intentionally changed (constant, 42.5%) for the DA model. No congestion occurs, which render the traffic states estimated by the DA model inaccurate. The impact of the observation model on the DA performance is illustrated in Figure 3. The results are confirmed in Figure 3(c), where both indicators I 1 and I 2 are plotted with respect to the position of the loop sensor. I 1 , which is related to the travel time estimation, shows that the benefits in travel time reconstruction are optimal for x = 100m and x = 200m. Both optimal positions are located upstream of the most upstream location of the congestion. When

Results

x ≥ 300m, the travel time reconstruction becomes worse as the sensor moves away from the entry. I 2 , which is related to the total travelled distance, decreases linearly with respect to the distance to the entry. The Pareto efficiency constraint gives that the optimal position for sensor 1 is x = 100m. We conclude on an intuitive result: when the demand of the DA model is inaccurate, states observed close to the entry of the network improve TSE. The conclusion is similar for inaccurate supplies: the TSE is improved when the observation model has provided a sensor located close to the head of the congestion.

Looking beyong this intuition, it also confirms that I 1 and I 2 are appropriate indicators to measure the performance of the DA model with respect to the observation model.

Two loop sensors

Here, the observation model is composed of two sensors. Sensor 1 is set at its optimal position x = 100m (see above), and all the possible positions are tested for sensor 2, between 200m and 900m. The performance of the DA model is illustrated on the right of 3

The travel time estimation slightly improved for all the tested second observations (for a better readability, only 3 positions are plotted). The result is confirmed in Figure 3(d). Blue stars show the results for different positions for sensor 2, and the red circle shows the result with a single loop sensor. The cluster of blue stars is centered around the red circle, which means that the marginal benefit of the second sensor is poor. Again, it confirms an intuitive result: the inaccurate demand of the DA model is already adjusted from sensor 1 observation. Consequently, when the benefit of sensor 2 is marginal, we conclude that a single sensor should be sufficient to provide satisfying TSE. It should also be noted that when both the demand at entry and the supply at exit are inaccurate, the marginal benefit of sensor 2 is high.

From Network 1, we conclude that loop sensor deployement depends on the network topology because sensors must be located close to network discontinuities. The optimal number and location of sensors is also related to traffic conditions and traffic model performance with no observation model. Indeed, every additional sensor will help the model to rectify an inaccuracy related to the demand, the supply, or to a calibration defect.

Network 2

The objective is to understand the causal relationship between the observation model and the performance of the TSE for a more complex network, with on-and off-ramps. The network is illustrated in Figure 4(a). Links 1-2-3 share the same properties in length (10km), number of lanes [START_REF] Laval | The hamilton-jacobi partial differential equation and the three representations of traffic flow[END_REF]. Links 4 and 5 are shorter (5km) with two lanes only.

Scenario definition

We use the same methodology as for network 1. First, a ground truth has been generated with a traffic flow model. The demand-supply scenario has been defined over one hour, see Figure 4(b) The upstream demand at entry 1 is piecewise constant: 10% -> 75% -> 10%. The upstream demand on entry 2 is also piecewise constant: 7% -> 67% -> 7% . The downstream supplies are constant: 30% for exit 1 and 7% for exit 2 (Figure 4(c)). Here again, demand and supply have been normalized with respect to the capacity of a 3-lane carriageway. At the diverge pint (node 3), the demand is fairly distributed among the two directions. The simulation results show that three congestions are trigerred: at node 2, propagating backwards along links 1 and 4; at node 4, propagating along link 3; at node 6, propagating along link 5.

The demand scenario for the DA model has been intentionnaly changed as follows. At entries 1 and 2, they have been set to be constant at 42.5%, and the splitting ratio at node 3 has been skewed: 90/10 instead of 50/50. Moreover, the capacities at exits have been increased.

Considering this inaccurate demand-supply scenario, the DA model with no observation returns free-flowing conditions on the network. In the following, ten possible locations for optimal loop detectors are used according the network 1 results (in red rectangle on Figure 4(a)). Consequently, based on I 1 only, the optimal observation model offers a better representation of the imbalance between demand and supply, which size the traffic jam on the network and provide a better travel time estimation. However, free-flowing situations are not well-adressed, which may lead to traffic volume errors when the network is free-flowing.

Minimizing I 2 (only) Figures 5(c) and 5(d) show the optimal results based on I 2 only. As a reminder, I 2 is based on total travelled distance, leading to a sensor deployement that gives a priority to the quality of trafic volumes on the network. Only 4 sensors present a major importance according to I 2 . Sensors 1 and 4 aim to offer a better representation of the traffic volume at entries of the network. Sensors 2 and 3 both improve the model performance near internal nodes.

The results also show that the benefit of additional observation sensors (5 or more) is negligible.

Consequently, based on I 2 only, the optimal observation model offers a better representation of the total traffic volume on the network. But the optimal solution does not guaranty that traffic jam and travel times are properly estimated.

Pareto optimality concept The optimality of both previous indicators is combined, using the Pareto optimality concept (Figures 5(c) and 5(d)) Sensors 1 and 2 are identical to the previous optimality conditions. Sensor 3 is located at immediatly upstream an exit, and sensors 4 and 5 are positionned at internal nodes (upstream merge, downstream diverge). The results also confirm that additional sensors deteriorate the performance of the Traffic State Estimation, especially travel time.

From Network 2, we conclude that loop sensor deployement must be based on:

-the topology of the network: near entries and exits for a better representation of total trafic volumes, upstream merge to properly update the model in case of congestion, and downstream diverge to rectify errors in splitting ratios.

-the performance of the traffic model: the optimal number of sensors is 5, which also correspond to the number of variables that have been intentionnaly changed (two demands at entries, two capacities at exits, one split ratio).

CONCLUSION Main findings

The paper presents a simulation-based methodology to optimize the number and the positions of loop sensors, in order to improve Traffic State Estimated from loop sensor in the context of Data Assimilation The method has evaluated the performance of the DA model regarding its ability to estimate both the travel times and total travelled distance on the network. The results confirms the importance of the network discontinuities, where congestion are often trigered. It also confirm that the number of sensors to be deployed should be based on the network topology and the traffic model performance with no observation model. Based on these principles, both travel times and total travelled distance can be greatly improved, which demonstrates the ability of the method to be applied for free-flowing and congested networks. On this basis, sensor removal or addition strategies can be built for an optimal traffic state estimation.

Further research

The proposed methodology has been applied on toy networks, for inaccurate demand-supply scenarios. Further research is still needed to confirm its practical use with real network.

• What is the importance of the calibration of the traffic model, and how to design the observation model in order to rectify calibration errors?

• In the paper, the observation model is only composed of loop sensors. Floating Car Data are more and more popular and the question of observability can be posed similarly : can the propose methodology be replicated to size the FCD in the context of DA?

• In the paper, the authors have used the DA framework proposed in [START_REF] Duret | Data assimilation based on a mesoscopic-lwr modeling framework and loop detector data: methodology and application on a large-scale network[END_REF][START_REF] Duret | Traffic state estimation based on eulerian and lagrangian observations in a mesoscopic modeling framework[END_REF] 

  Each sequence can be divided into 4 stages: (1) Collect the observed states from sensors and forecast states from the dynamic traffic flow model. (2) Estimate the most likely traffic states through a data fusion model. (3) Update the dynamic traffic flow model accordingly. (4) Run the model to obtain forecasts over the next sequence. The output of the DA framework also provides passing times of every vehicle at every node of the network. And the performance of the DA mainly relies on the observation model, which provides information on the current traffic state and update the DA model accordingly.
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 17811 Optimum number and locations of loop sensors 1: procedure INITIALIZATION 2: set the maximum number of loop sensors N 3: set the initial number of loop sensor n = 0 4: end procedure 5: procedure FIND OPTIMUM LOCATION FOR n SENSORS 6: while n < N do Set n = n + 1 Set the position of n-1 loop sensors according to optimal observation model O * (n-1) 9: Define S the set of possible positions for the loop sensor n 10: for all s in S do 12: Set the observation model O(n, s) 13: Run the DA model with the observation model O(n, s) 14: Calculate indicators I 1 (O(n, s)) and I 2 (O(n, s)) the Pareto algorithm and find optimal observation model O * (n)
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 33 Figure 3 presents the performance of DA with respect to the observation model, both in number and in position.
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 4 FIGURE 4 Network 2: (a) network, (b) demand at entries, (c) supply at exits
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 523 Figure 5 presents the performance of DA with respect to the observation model, both in marginal benefit and in optimal position. On this figure, the left column represents the performances with respect to the number of loop sensors and the right column show the corresponding positions on the network.
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 5 FIGURE 5 Performance of DA on Network 2: marginal benefit values (left) and optimal position (right), I 1 (top), I 2 (second line) and Pareto optimum (down)

  Further

  research may be needed to generalise the conclusions for other traffic model (micro, macro) and other DA frameworks. And finally, the paper proposes to built the optimum observations model based on two indicators, and the optimum is determined based on Pareto optimality concept. Other optimization techniques could be explored, for instance bioinspired methods as genetic algorithms.