
HAL Id: hal-01913941
https://hal.science/hal-01913941v1

Submitted on 21 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

n -level output space mapping for electromagnetic
design optimization

Ramzi Ben Ayed, Stephane Brisset

To cite this version:
Ramzi Ben Ayed, Stephane Brisset. n -level output space mapping for electromagnetic design opti-
mization. COMPEL: The International Journal for Computation and Mathematics in Electrical and
Electronic Engineering, 2014, 33 (3), pp.868 - 878. �10.1108/compel-10-2012-0222�. �hal-01913941�

https://hal.science/hal-01913941v1
https://hal.archives-ouvertes.fr


n-LEVEL OUTPUT SPACE MAPPING FOR ELECTROMAGNETIC 

DESIGN OPTIMIZATION 

Ramzi BEN AYED,   Stéphane BRISSET 

Univ Lille Nord de France, F-59000 Lille, France 
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Abstract. 

Purpose – The aim of this paper is to reduce the evaluation number of the fine model within the output space mapping 

technique in order to reduce their computing time. 

Design/methodology/approach –In this paper, n-level output space mapping is proposed and expected to be even faster than 

the conventional output space mapping. The proposed algorithm takes advantages of the availability of n models of the 

device to optimize, each of them representing an optimal trade-off between the model error and its computation time. Models 

with intermediate characteristics between the coarse and fine models are inserted within the proposed algorithm to reduce the 

number of evaluations of the consuming time model and, then the computing time. The advantages of the algorithm are 

highlighted on the optimization problem of superconducting magnetic energy storage. 

Findings – A major computing time gain equals to 3 is achieved using the n-level output space mapping algorithm instead of 

the conventional output space mapping technique on the optimization problem of superconducting magnetic energy storage. 

Originality/value – The originality of this paper is to investigate several models with different granularities within output 

space mapping algorithm in order to reduce its computing time without decreasing the performance of the conventional 

strategy. 

Keywords: Finite element model, Optimization, Output Space Mapping, Superconducting Magnetic Energy Storage. 

I- INTRODUCTION 

In electrical engineering field, space mapping (SM) techniques (Echeverria et al., 2005) and (Bandler et al., 

1194) are recognized as iterative optimization strategies that avoid the use of a computationally expensive (fine) 

model in the optimization process by shifting the optimization burden from the fine model to a cheap (coarse) 

one. Generally speaking, the coarse model means a low fidelity model which can be evaluated in a very short 

time and the fine model is an accurate model which consumes computing time. 

In each iteration of SM a surrogate model is constructed from the coarse model in such a way that each 

constructed one is a suitable distortion of the cheap model, such that given matching conditions are satisfied. The 

quality of the coarse/surrogate model strongly affects the convergence of the SM optimization algorithm. Indeed, 

a poor coarse/surrogate model may result in a lack of convergence. To avoid this problem a method for assessing 

the quality of coarse/surrogate model is proposed in (Koziel at al. 2008). 

To avoid the evaluation of the fine model several times and hence reduce computing time of SM technique a 

Space-Mapping-Based interpolation is proposed in (Koziel et al. 2006). The proposed interpolation scheme uses 

already available fine model data, so no additional fine model evaluations are necessary to perform this 

interpolation. The method sounds interesting but can’t be used if there aren’t fine model data as in case of new 

device design. 

Manifold Mapping (MM) is a common SM technique that recently investigated in optimization of 

electromagnetic devices (Echeverrίa et al. 2006). An improvement of MM in terms of computing time and 

quality of optimal solution is studied in (Echeverrίa et al.  2007) by using a multilevel approach within the MM 

algorithm. Results show that three-level approach improved the quality of solution enclosed by MM but the gain 

on computing time is not significant. These results are found using two mathematical examples: Poisson-based 

optimization and a parameterized ellipse. In both examples coarse, medium and fine model are analytic and the 

optimization problem is without constraints. The three-level MM (3L-MM) algorithm is also applied in the 

optimization of an octangular double–layered shield in (Crevecoeur et al. 2009). An analytic model, a 2D and a 

3D finite element models are used. 3L-MM converges towards satisfactory solution after 13 evaluations of the 

computationally expensive model. 

Output Space Mapping (OSM) (Ben Ayed et al., 2012) and (Encica et al., 2008a) strategy is also an 

interesting variant of Space Mapping techniques. It aligns iteratively the fine model with the coarse model using 

correctors. This strategy is named two-level OSM (2L-OSM) because two models with different accuracy levels 

are used. The purpose of 2L-OSM is to achieve the optimization in a minimum evaluation number of the 

expensive model, and then it allows obtaining accurate results in a short computing time. However, the 

computing time of 2L-OSM can be significant because the fine model is evaluated one time at each iteration and 



 

 

one fine model evaluation can takes hours as in the case of 3D finite element model (3D FEM) (Tran et al., 

2010). 

To overcome this problem, a generalized version of OSM strategy is proposed. The generalized algorithm is 

named n-Level Output Space Mapping (nL-OSM) technique and is able to take profit of n models of the device 

to optimize. The n models represent tradeoffs between accuracy of results and computation time. 

This paper is structured in three main parts. Firstly, the conventional OSM algorithm is reminded. In the 

second part, the adapted nL-OSM technique is explained and detailed. The optimization benchmark problem of 

the Superconducting Magnetic Energy Storage (SMES) (Alotto et al., 1996) is presented in the third part, as well 

as the models with different accuracy levels. Finally, the solutions and computation time of the 2L-OSM are 

compared to nL-OSM ones and some remarks on the use of the proposed algorithm are given in the conclusion. 

II-  OUTPUT SPACE MAPPING 

Output Space Mapping (OSM) technique is a common approach for the optimization of devices represented 

by accurate, but time consuming, models. It has been recently used for solving optimization problems of 

electromagnetic converters (Encica et al., 2008b) and (Tran et al., 2009). This technique requires a second 

model, faster but less accurate, of the device to be optimally sized. This coarse model could be an empirical 

model, a FEM with a coarse mesh or an analytical model. The optimization is carried out with the coarse model 

and the results are validated with the fine one which is, in general, a high fidelity FEM. 

The advantage of the OSM is its easier implementation. Indeed, by aligning the coarse model with the fine 

one, the precision is assured and the design space exploration is done by the optimization with the coarse model, 

avoiding though the possible numerical noise and mesh problems (Neittaamäki et al., 1996). The accuracy of 

optimization results are guaranteed by the FEM evaluations. Within the OSM technique, the role of the FEM is 

to adjust the analytical model outputs in order to better meet the constraints of the transformer optimization 

problem. 

In a word, OSM is investigated in order to obtain satisfactory results with a minimum number of 

computationally expensive fine model evaluations. It aims to use both the coarse and fine models to reduce the 

computation time and increase the accuracy of the obtained solution.   

III- n-LEVEL OUTPUT SPACE MAPPING TECHNIQUE 

 The proposed nL-OSM is expected to reduce even more the computational time compared to the 

conventional 2L-OSM. It takes advantages of the availability of n models of the device to optimize, each of them 

representing an optimal trade-off between the model error and its computation time. In Fig. 1, all the models are 

drawn as points which coordinates are the model error and the model computation time. The points belong to the 

Pareto optimal set and the curve joining those points is a Pareto front. The ideal model is the one that has the 

smallest error and time. Unfortunately, this model does not exist in reality. Fig. 1 shows that for an 

electromagnetic device it exist several models with different granularities. Each model presents an optimal trade-

off between the model error and its computing time. The 1st model is the fastest while the nth model is the most 

accurate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Models of the same electromagnetic device 
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The idea of the proposed algorithm is to use the 1st model during the optimization process to find an 

approximate solution. At iteration i, the ith model is evaluated with this solution to update the correctors until the 

discrepancy between the corrected 1st model and the ith model is small enough. The algorithm stops at iteration n 

when the corrected 1st model’s outputs are equal to the nth model’s ones. Contrary to the classical 2L-OSM that 

use only the 1st and nth models, the nL-OSM uses all the n models to reduce the number of evaluations of the nth 

model and thus the computation time. 

In this paper, the coarse computationally cheaper model is denoted by m1(x) ∈ R
p with x ∈ Rq , the fine 

computationally expensive model is denoted by mn(x) ∈ R
p  , and the (n-2) models with k accuracy levels are 

denoted by mk(x) ∈ R
p, k = 2. . n-1. The inputs of all models are the same. The nonlinear constraints of the 

coarse, kth level accuracy, and fine models are g1(x), gk(x) and gn(x), respectively. Generally, the coarse model 

is denoted by c(x) and the fine one is denoted by f(x). In this paper m1(x) refers to c(x) and mn(x) refers to f(x). 

The optimization problem is expressed as:   

(1) 𝑥∗ = 𝑎𝑟𝑔min
𝑥∈𝑋

‖𝑚𝑛(𝑥) − 𝑦‖   𝑠. 𝑡. 𝑔𝑛(𝑥) ≤ 0 

where y ∈ Rp denotes a vector of design specifications and can be zeros in the case of minimization. This 

problem is hard to solve and is decomposed into series of problems. The key point of OSM is to avoid the use of 

the fine model within the optimization process. So, as in the conventional OSM, the use of the fine model mn(x) 
within the optimization is avoided by using the coarse corrected model m1(x, θ), where θ ∈ Rp is the vector of 

correctors. The optimization problem at iteration j is: 

(2) 𝑥𝑗
∗ = 𝑎𝑟𝑔min

𝑥∈𝑋
‖𝑚1(𝑥, 𝜃1

𝑗
) − 𝑦‖   𝑠. 𝑡. 𝑔1(𝑥, 𝜃1

𝑗
) ≤ 0 

(3) [
𝑚1(𝑥, 𝜃1

𝑗
)

𝑔1(𝑥, 𝜃1
𝑗
)
] = 𝑑𝑖𝑎𝑔(𝜃1

𝑗
). [
𝑚1(𝑥)
𝑔1(𝑥)

]
 

The other problems consist of correcting the coarse model with a minimum evaluation number of the most 

accurate model. Then, to reach this goal, the strategy of the nL-OSM is proposed. This strategy can be 

considered as a series of process that are launched iteratively. In the first process, the coarse model is corrected 

by the model with the next accuracy level (m2) using the 2L-OSM algorithm. The others processes consist of 

aligning each model with the model that has the next level of accuracy. For example, during the kth process, the 

kth model is corrected by the (k+1)th model using corrective coefficients θk ∈ R
p . These coefficients are 

initialized to one and computed in order to have the same value for the outputs of the kth and (k+1)th models. 

(4) 𝜃1
𝑗+1

= [
𝑚2(𝑥𝑗

∗, 𝛽2)/𝑚1(𝑥𝑗
∗)

𝑔2(𝑥𝑗
∗, 𝛽2)/𝑔1(𝑥𝑗

∗)
]

 

(5) 𝛽𝑘 = [
𝑚𝑘+1(𝑥𝑗

∗, 𝛽𝑘+1)/𝑚𝑘(𝑥𝑗
∗)

𝑔𝑘+1(𝑥𝑗
∗, 𝛽𝑘+1)/𝑔𝑘(𝑥𝑗

∗)
]  𝑘 = 2. . (𝑛 − 1) 

(6) [
𝑚𝑘(𝑥𝑗

∗, 𝛽𝑘)

𝑔𝑘(𝑥𝑗
∗, 𝛽𝑘)

] = 𝑑𝑖𝑎𝑔(𝛽𝑘). [
𝑚𝑘(𝑥𝑗

∗)

𝑔𝑘(𝑥𝑗
∗)
]  𝑘 = 2. . (𝑛 − 1)

 
The space-mapping between the corrected coarse and 2nd models stops when (7) is checked, 

(7) ‖[
𝑚1(𝑥𝑗

∗, 𝜃1
𝑗
)

𝑔1(𝑥𝑗
∗, 𝜃1

𝑗
)
] − [

𝑚2(𝑥𝑗
∗, 𝛽𝑘)

𝑔2(𝑥𝑗
∗, 𝛽𝑘)

]‖ ≤ 𝜀 

If a solution is evaluated with a kth model it cannot be evaluated with the next level (k+1) model without 

checking (8), 

(8) ‖[
𝑚1(𝑥𝑗

∗, 𝜃1
𝑗
)

𝑔1(𝑥𝑗
∗, 𝜃1

𝑗
)
] − [

𝑚𝑘(𝑥𝑗
∗, 𝛽𝑘)

𝑔𝑘(𝑥𝑗
∗, 𝛽𝑘)

]‖ ≤ 𝜀 

 The nL-OSM algorithm stops when (8) is checked and k=n.  In (8), ε refers to the required accuracy of 

results. This stopping criterion affects strongly the number of loops within the SM algorithm as well as the 

evaluation number of the most consuming time model. In general, results are acceptable when the discrepancy 

between the fine and the coarse corrected model is equal or less than 10-4. 

 



 

 

To summarize, the nL-OSM algorithm carries out the following main steps: 

0- initialization: j = 0, k = 2, θ1
0 = I, β2..n = I  

1- solve (2) in order to find xj
* by using m1(x, θ1

j
) as surrogate model 

2- compute m2(xj
*, β2), g2(xj

*, β2)  and  θ1
j+1
  by using (4) 

3- 𝑗 = 𝑗 + 1 

4- go to step 1 until (7) is true 

5- compute mk+1(xj
*, βk+1) and gk+1(xj

*, βk+1) 

6- compute β2⋯βk by using (5) 

7- go to step 1 until (8) is true 

8- k = k + 1 
9- go to step 5 while 𝑘 < 𝑛 

10- stop 

IV- APPLICATION CASES 

The application case is the optimization problem of a Superconducting Magnetic Energy Storage system 

(SMES) that is known as the team workshop problem #22.  

The SMES device consists of two concentric superconducting coils fed with currents that flow in opposite 

directions. The system is used for storing magnetic energy with a minimum magnetic stray field over a square 

perimeter of 10 meters from coil axis (Team workshop, 1996) as shown in Fig. 3. 

The optimal sizing problem consists of 3 design variables that are the radius (R2), the width (d2) and the 

height of the outer coils. The objectives of optimization are:  

- The stored energy in the device should be 180 MJ. 

- The magnetic field must not violate a physical condition (quench condition) which guarantees 

superconductivity. 

- The stray field measured at 10 meters from the device should be as small as possible. 

 
Figure 3. SMES design variables 
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1- 1st model 

This model refers the coarsest model (m1 ) within it, each coil of the device is considered as a single 

filamentary loop of radius ai located at axis center (Rezzoug et al., 1992). This approximation simplifies greatly 

the calculation of magnetic parameters and allows achieving acceptable results if the measurement point is far 

from the device (i.e. located at a distance ai ≪ 𝑑), else the discrepancy is great as well as the measurement point 

is near the device. 

The mathematical expression of the vector potential Ai and both radial and axial components of the magnetic 

stray field Bρi, Bzi at the point P (x, y, z) are defined as follows (Wilson, 1983): 

 (9) 

Lets {
ρ = √x² + y²

ki = √
4aiρ

(ai+ρ)
2+zi²

 

{
 
 

 
 Ai(ρ, zi, I) =

µ0I

kπ
√
ai

ρ
[(1-

ki
2

2
)K(ki)-E(ki)]

Bρi(ρ, zi, I) = -
∂A

∂z
=

µ0Ikizi

4πρ√aiρ
[-K(ki) +

ai
2+ρ2+zi

2

(ai-ρ)
2+z2

E(ki)]

Bzi(ρ, zi, I) =
1

ρ

∂

∂ρ
(ρA) =

µ0Ikizi

4π√aiρ
[K(ki) +

ai
2-ρ2-zi

2

(ai-ρ)
2+zi

2 E(ki)]

 

where K and E are the complete elliptic integrals of the first and the second kinds, respectively. Then, the vector 

potential of the system can be deduced easily by adding A1 and A2 A1 and A2. 

The stored energy by the two filamentary loops can be deduced from the mutual flux as follows: 

(10) 

{
We12 =

1

2
I2Φ12

Φ12 = 2πa2A1(ρ, (z2-z1), I1)
   → We12 = πa2I2

µ0I1

kπ
√
a1

a2
[(1-

k2

2
) K(k)-E(k)] 

where k = √
4a1a2

(a1+a2)²+(z2-z1)²
 

2- kth model 

This model considers that each coil is made of Nk wires, carrying current I = J. dS as shown in Fig. 4. This 

approximation allows the calculation of different magnetic parameters at each point of the space with a small 

discrepancy (Rezzoug et al., 1992). 

 

Figure. 4. Subdividing coil to filamentary loops 

So, the vector potential Ac at P (x, y, z) generated by one coil and the stored energy Wc by the system can be 

written:  



 

 

(11) 𝐴𝑐(𝜌, 𝑧𝑖 , 𝐼) = ∑𝐴𝑖(𝜌, 𝑧𝑖 , 𝐼) =

𝑁𝑘

𝑖=1

∑
µ0𝐼

𝑘𝜋
√
𝑎𝑖
𝜌
[(1 −

𝑘𝑖
2

2
)𝐾(𝑘𝑖) − 𝐸(𝑘𝑖)]

𝑁𝑘

𝑖=1

 

(12) 𝑊𝑏 =∑𝑊𝑒𝑖𝑗

𝑖≠𝑗

𝑖,𝑗

 = ∑
1

2

𝑖≠𝑗

𝑖,𝑗

IiΦji 

With the same approach the magnetic stray field can be obtained easily. 

3- nth model 

The nth model has the highest accuracy. In our case it is a 2D FEM with fine mesh. It includes 552,202 nodes 

and 275,219 elements. One evaluation of this model takes 784 seconds. 

4- Accuracy and computing time 

The accuracy and computing time of the models increase with the number of filamentary loops used to model 

one coil. Therefore, many models with different levels of accuracy can be obtained easily by changing the 

number of loops as shown in Table 3. In this table, error refers the discrepancy between analytical models and 

2D FEM outputs. Fig. 5 shows trade-offs between these models error and its computing time. 

Table 3. Models accuracy and computation time 

Type Number of loops Error (%) Time (s) 

𝑚1 1 254 0.016 

𝑚2 100 7.2 1.61 

𝑚3 400 0.3 24.8 

𝑚4 900 0.14 127.53 

 

 

 
Figure. 5. Trade-offs between models error and computing time 

Fig. 5 shows a Pareto front consisting trade-offs between models error and its computing time confirming 

that each model present an optimal compromise between error and time. 

To justify the coherence of the analytical models, Fig 6 shows a comparison on calculated magnetic field 

within outer coil between an analytical model using 400 filamentary loops and the 2D FEM. 

Fig. 6 shows through magnetic maps of the outer coil that the discrepancy between magnetic field values 

calculated by the medium model and the 2D FEM is less than 1%. This confirms the coherence of the analytical 

models built. 
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Figure. 6. Comparison between the analytical model using 400 filamentary loops (right) and a 2D FEM (left). 

Color code refers the flux density in Tesla. Axes refers to coils radial and central axis 

5- Optimization problem 

The goal of the optimization problem is to find the design configurations that give a specified value of stored 

magnetic energy and minimal magnetic stray field. Mathematically, this is formulated as: 

(14) 

min
𝑅2,ℎ2𝑑2

𝑂𝐹 =
𝐵𝑠𝑡𝑟𝑎𝑦
2

𝐵𝑛𝑜𝑟𝑚
2

+
|𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐸𝑟𝑒𝑓|

𝐸𝑟𝑒𝑓
 

𝑤𝑖𝑡ℎ {

2.6 𝑚 ≤ 𝑅2 ≤ 3.4 𝑚

0.204 𝑚 ≤
ℎ2

2⁄ ≤ 1.1 𝑚

0.1 𝑚 ≤ 𝑑2 ≤ 0.4 𝑚

 

𝑠. 𝑡. |𝐽2| ≤ (−6.4|𝐵| + 54)𝐴/𝑚𝑚²  
 

where  Bstray
2 =

∑ |Bstrayi|
22
i=1 ²

22
   ; Eref = 180 MJ  and  Bnorm = 3 mT  with Bstrayi is the magnetic field 

measured in one point (i) located at 10 meters from the device. 

6- Optimization results 

In order to minimize the risk to enclose local optimum, optimization with the surrogate analytical model is 

launched with 10 starts points. The optimization uses Sequential Quadratic Programming (SQP) method that 

allows obtaining an optimum in a very short time. 

Table 4 and 5 shows the results obtained with different number of models. Table 4 shows the computation 

time and the number of evaluations of each SMES model. Table 5 shows a comparison between optimal 

solutions found by the nL-OSM algorithm and an optimum solution found in literature (Team workshop, 1996). 

Table 4. Computation time and evaluation number of each SMES model 

 Evaluation number of 

each model 
𝑚5 𝑚4 𝑚3 𝑚2 𝑚1 Time (s) 

5L-OSM 2 2 2 10 1225 1849 

4L-OSM 2 2 3 - 1230 1849 

3L-OSM 2 4 - - 1452 2101 

2L-OSM 7 - - - 2476 5527 

 

Table 5. Optimum found by different algorithms 

 R2 (m) h2/2 (m) d2 (m) OF Bstray²(T²) Energy (MJ) 

(Team workshop, 1996) 3.08 0.2390 0.3940 0.08808 7.9138e-7 180.0277 

2L-OSM 3.08 0.2405 0.3937 0.08910 7.9382e-7 180.1622 

3L-OSM 3.08 0.2405 0.3937 0.08920 7.9530e-7 180.1572 

4L-OSM 3.08 0.2405 0.3936 0.08960 7.9503e-7 180.2215 

5L-OSM 3.08 0.2405 0.3936 0.08963 7.9501e-7 180.2535 

 

R(m)

Z
(m

)

 

 

2.9224 2.9618 3.0012 3.0406 3.08 3.1194 3.1588 3.1982 3.2376 3.2770

0.2271

0.2032

 0.1793

0.1554

0.1315

0.1076

0.0837

0.0598

0.0359

0.0120 
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 n-level OSM algorithm and the global optimization algorithm used in (Team workshop, 1996) converge to 

the same solution. This confirms that multi-starts optimization is an efficient method to reduce the risk of local 

optimum when using a local optimization algorithm such as SQP. 

The 2-level OSM and the n-level OSM algorithms converge to the same solution. However, the computation 

time has decrease up to 3 times, thanks to the addition of models with intermediate accuracy and computation 

time. The computation time of nL-OSM stop to decrease when the number of intermediate models is greater than 

2 in the case of the SMES. Indeed, computing time of the 5L-OSM and 4L-OSM are equal. 

In the case of the SMES, the 4L-OSM is the best algorithm in terms of computing time. This result can’t be 

generalized to other cases because the efficiency in terms of computing time of the nL-OSM is forcefully related 

to the accuracy and the computing time of built coarse and medium models. It‘s very important to highlight that 

it is possible that the computing time of the nL-OSM algorithm can be greater than the (n-1)L-OSM if medium 

models are chosen incorrectly: first feelings through the SMES case show that to have an additional gain on 

computing time, the introduced medium model (k) must satisfy two conditions. The first one is the medium 

model (k) must be at least three-times more accurate and ten-times less rapid than the coarse model. The second 

condition is that the medium model k must be at least seven-times more rapid and three-times less accurate than 

the medium model (k+1). 

V- CONCLUSION 

The n-level OSM algorithm allows reducing computing time in comparison with the traditional OSM 

algorithm thanks to n-2 models inserted between the coarse and the fine model. Inserted models can be obtained 

easily by changing the mesh size in FEM, the number of elements in lumped-mass models, and the number of 

assumptions in analytical models. 

Using the different models with different granularities, the n-level OSM algorithm converge to the same 

optimum found by the conventional OSM algorithm with a major reduction of computing time equals to 3 and 

without decreasing the performance of the space mapping technique. 

The gain in computing time with the adapted space mapping algorithm stops increasing when number of 

medium models is important. To avoid meeting this case, the authors propose to search for an automatic 

diagnostic of models to find the optimal number of medium models to introduce between coarse and fine ones. 
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